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Abstract. In this paper, a receding horizon control strategy for a class of bilinear
discrete-time systems with Markovian jumping parameters and constraints is investi-
gated. Specifically, the stochastic jump system under consideration involves control and
state multiplicative noise and partly unknown transition probabilities (TPs). The reced-
ing horizon formulation adopts an on-line optimization paradigm that utilizes open loop
optimized control move plus linear feedback control and is solved as a semi-definite pro-
gramming (SDP) problem. The mean square stability, control performance and constraint
satisfaction properties are guaranteed, where the terminal-weighting matrix is determined
off-line and the control move is calculated on-line. A numerical example is given to show
the validity of the developed approach.
Keywords: Markovian jump linear systems, Receding horizon control, Partly unknown
transition probabilities, Multiplicative noise, Constraints

1. Introduction. As a special class of stochastic hybrid systems, Markovian jump linear
systems (MJLSs), which include both time-evolving and event-driven mechanisms, have
received much attention in recent years. MJLSs work on different operation modes under
a switching law governed by a Markov process and they are usually described by normal
differential (or difference) equations and a Markov chain. A large variety of real systems,
for example, solar thermal central receivers, economic models, manufacturing systems
and networked control systems (NCS) with stochastic time delays, etc., can be modeled
as MJLSs. Technical and economical reasons motivate the development of MJLSs with an
ever-increasing complexity, for example, new stabilization method for MJLSs with time
delays [1], state estimation and control via sliding mode approach [2]. As a significant
fact, transition probabilities (TPs) of Markov process determine the system evolution to a
large degree and many studies on MJLSs are based on the full access of them. Nowadays, a
new research tendency is to study MJLSs with partly unknown TPs [3-5]. The underlying
systems cover MJLSs with completely known TPs and switched systems under arbitrary
switching law as two special cases.
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On another research front line, receding horizon control (RHC), which is often known as
model predictive control (MPC) [6-11] has become a popular strategy to handle hard/soft
constraint and has guaranteed stability, feasibility, and optimality [7]. The RHC has been
developed for classical discrete-time MJLSs [12], and it has been extended for MJLSs with
polytopic uncertainties in both system parameters and TPs [13]. In this RHC approach,
a linear state feedback control is calculated at each sampling time according to different
operation modes and the resulting worst-case cost is smaller than guaranteed cost con-
trol. The robust one-step RHC [14] for MJLSs has been proposed to further reduce the
minimum value of worst-case cost by introducing a one-step receding cost function. A
nonlinear control sequence is obtained and a numerical example shows the robust one-
step RHC can provide better performance in contrast with the guaranteed cost control
and robust RHC. Following the research of robust RHC for MJLSs, an extension work
has been developed for the uncertain MJLSs subject to actuator saturations [15]. As the
sequel, the development of robust one-step RHC for MJLSs, constrained one-step RHC
[16] and multiple-step RHC [17] for MJLSs have also been studied.
However, a literature review reveals that the issue of the RHC for jump bilinear stochas-

tic system (JBSS) has not been fully investigated and remains important and challenging
due to the difficulties of utilizing the existing results. Many real systems can be repre-
sented by stochastic bilinear model (see [18,19] and references therein) because the noise
is dependent on the state and control move, for example, some of the cell biological
or chemical reaction, the body temperature and water balance adjustment process, and
blood circulation. Much attention in the last decade mainly focuses on the H∞ control
theory framework [20-23]. For a JBSS, every operation mode represents a stochastic dy-
namic rather than a deterministic one, and when the mode is fixed, the system evolves
as a stochastic system due to the multiplicative noises appearing in the state and control
input. Generally speaking, a JBSS can be regarded as a result of a series of stochastic sys-
tems switching from one to another accompanied with the governing of a Markov chain.
Obviously, an MJLS is a special case of a JBSS, and consequently the JBSS with partly
unknown TPs covers the MJLS with the same jump character.
In this paper, the motivation for the study of RHC problem of JBSSs with partly

unknown TPs is from the robust point of view, because the existing RHC for MJLS cannot
deal with multiplicative noise. The underlying systems are more general in comparison
with the MJLSs with partly unknown TPs, which can be viewed as a special case of the
ones tackled here. An open loop plus closed loop controller structure [11] applies to the
constrained JBSS through a receding horizon method and the optimization problem is
solved in terms of SDP on-line. Moreover, the relationship between the RHC strategy
for the usual JBSS and switched bilinear system under arbitrary switching is revealed
by the underlying system. Note that the proposed RHC strategy is quite different from
[11]. First, the terminal-weighting matrix is obtained a priori under a cost monotonicity
condition, which is presented in linear matrix inequality (LMI) form. Second, the terminal
invariant ellipsoid is employed to relax the constraint condition, i.e., at time k+N up to
infinite horizon, we do not require constrained LMI condition while solving the controller
on-line. Third, a fictitious feedback control law, which is theoretically employed out of
the predictive horizon or equivalently, inside invariant ellipsoid, simplifies the feasibility
and the mean square stability analysis.
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2. System Descriptions and Problem Formulation. Consider the discrete-time MJ-
LS

x(k + 1) = A(rk)x(k) +B(rk)u(k) +
m∑
q=1

[Cq(rk)x(k) +Dq(rk)u(k)]wq(k), (1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input. wq(k) ∈ R (where
q = 1, . . . ,m) are independent and identically distributed random noises which satisfy

E[wq(k)] = 0, E[wq(k)wq(k)] = 1, E[wq(k)wp(k)] = 0 for q 6= p.

A(rk), B(rk), Cq(rk) and Dq(rk) are matrices with appropriate dimensions which depend
on the jump modes rk. Suppose the initial state and initial mode are x0 and r0. The
mode process {rk : k = 0, 1, . . .} is a discrete time Markov chain that takes values in a
finite integer set S = {1, 2, . . . , s} with the following TPs:

Pr{rk+1 = j |rk = i} = pij,
s∑

j=1

pij = 1.

In addition, the TPs of the jump mode rk are assumed to be partly unknown and partly
accessed. For example, for the system (1) with four operation modes, the one-step TP
matrix [3] can be denoted as

Π =


p11 p12 ? ?
? ? p23 p24
p31 ? ? ?
p41 ? p43 p44

 , (2)

where “?” represents the unknown elements. For the notation clarity, ∀i ∈ S, we denote
that

S = Si
k + Si

uk, (3)

where
Si
k = {j : pij is known}, Si

uk = {j : pij is unknown}. (4)

If Si
k 6= ϕ, it can be further described as

Si
k = {ki

1, . . . , k
i
a}, ∀ 1 ≤ a ≤ s, (5)

where ki
a represents the jump mode j corresponding to the known element located in the

ith row, ath column of matrix Π. Also, we denote

πi
k =

∑
j∈Sik

pij (6)

throughout this paper. For the mode rk+f = g ∈ S, matrices A(rk+f ), B(rk+f ), Cq(rk+f )
and Dq(rk+f ) are noted as A(g), B(g), Cq(g) and Dq(g) for simplicity.

We are interested in regulating system (1) to the origin in the mean square sense when
the quadratic and linear constraints [11] should be satisfied. That is

$ :

[
x(k)
u(k)

]T
Gl

[
x(k)
u(k)

]
+ fT

l

[
x(k)
u(k)

]
≤ ηl, l = 1, . . . , L. (7)

with Gl = GT
l ≥ 0. If Gl equals zero, (7) is viewed as a linear constraint. If fT

l equals
zero, (7) degenerates to a quadratic constraint.

Then we seek to minimize the performance objective given by the quadratic cost func-
tion

J(k) = J1(k,N − 1) + J2(k,N), (8)
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where

J1(k,N − 1) = Ek

{
N−1∑
f=0

[
x(k + f |k)
u(k + f |k)

]T
H

[
x(k + f |k)
u(k + f |k)

]}
, (9)

J2(k,N) = Ek{xT(k +N |k) P (rk+N)x(k +N |k)}, (10)

where Ek{·} denotes the conditional mathematical expectation E{· |x0 , r0}, H = diag{Q,
R} ≥ 0.
An open loop optimized control move plus linear feedback control law will be obtained

through optimizing a finite horizon quadratic performance index (9) with the terminal
cost (10) when constraints (7) are also satisfied. It can be denoted as

Op1: min
u(k+f |k)

J(k)

subject to

[
x(k)
u(k)

]T
Gl

[
x(k)
u(k)

]
+ fT

l

[
x(k)
u(k)

]
≤ ηl, l = 1, . . . , L.

We try to design controller

u(k + f |k ) = uop(k + f |k ) + F (rk+f ) [x(k + f |k )− x̄(k + f |k )] , (11)

u(k +N |k ) = F (rk+N)x̄(k +N |k ), (12)

to minimize performance index J(k), where, x̄(k + f |k ) = Ek{x(k + f |k )}, (f =
0, 1, . . . , N − 1). The controller uop(k + f |k ) is the open loop optimized variable and
F (rk+f ) is the linear feedback gain matrix. u(k + N |k ) is a fictitious feedback control
employed to guarantee the mean square stability of the JBSS (1) over an infinite horizon
[8].
To obtain the control law, which guarantees the stability of JBSS (1), we also define

the mean square stability, which is selected as the stability concept in this paper.

Definition 2.1. [14]. The JBSS (1) is mean square stable, if for any initial state x0 and
initial mode r0,

Ek{xT(k)x(k)} → 0 as k → ∞. (13)

3. Optimization Problem. In this section, we present a theorem to solve the con-
strained on-line optimization Op1, which is constructed by a linear optimized objective
subject to a series of sufficient LMI conditions.

Theorem 3.1. Optimization problem Op1 can be transferred into the following SDP prob-
lem:

min
uop(0),Σ(g, f),Σ(g,N),Σ(rk, 1),Σ(f), γ,
Ω(f),Ω1(0),Ω2(0),Ω3(0),Ω(N), x̄(N)

{
N−1∑
f=0

tr[HΩ(f)]

}
+ tr[P (i)Ω(N)] (14)

subject to
[
I 0

]
Σ(g, f + 1) U1(g, f) U2(g, f) U3(g, f)
∗

[
I 0

]
Σ(g, f) 0 0

∗ ∗ Z 0
∗ ∗ ∗ I

 ≥ 0, f = 1, 2, . . . , N − 1, (15)

[ [
I 0

]
Σ(rk, 1) U3(rk, 0)
∗ I

]
≥ 0, (16) Ω(f) Σ(g, f) Σ(f)

∗
[
I 0

]
Σ(g, f) 0

∗ ∗ I

 ≥ 0, f = 1, 2, . . . , N − 1, (17)
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∗ Ω3(0) uop(0)
∗ ∗ I

 ≥ 0, (18)

[
Ω(N)−

[
I 0

]∑
(g,N) x̄(N)

∗ I

]
≥ 0, (19){

γ + 1
2
(fT

l Σ(f) + ΣT(f)fl) ≤ ηl
GlΩ(f) + Ω(f)GT

l ≤ 2γ
m+n

I
, f = 0, 1, . . . , N − 1, (20)

for i = 1, 2, . . . , s, g = 1, 2, . . . , s, l = 1, 2, . . . , L, where

U1(g, f) = Ā(g)Σ(g, f), U2(g, f) =
[
φ1 · · · φm

]
, U3(g, f) =

[
ϑ1 · · · ϑm

]
,

Ā(g) =
[
A(g) B(g)

]
, φ1 = C̄1(g)Σ(g, f), φm = C̄m(g)Σ(g, f),

C̄1(g) =
[
C1(g) D1(g)

]
, C̄m(g) =

[
Cm(g) Dm(g)

]
,

ϑ1 = C̄1(g)Σ(f), ϑm = C̄m(g)Σ(f), U3(rk, 0) =
[
ϑ01 · · · ϑ0m

]
,

ϑ01 = C1(rk)x(0) +D1(rk)uop(0), ϑ0m = Cm(rk)x(0) +Dm(rk)uop(0),

Z = diag

m︷ ︸︸ ︷[ [
I 0

]∑
(g, f)

[
I 0

]∑
(g, f) · · ·

[
I 0

]∑
(g, f)

]
.

Matrices P (i) can be calculated from
πi

kX(i) UT(i) X(i)Q1/2 Y T(i)R1/2

∗ W (j) 0 0
∗ ∗ I 0
∗ ∗ ∗ I

 ≥ 0, (21)

[
X(i) ΘT(i)
∗ X(j)

]
≥ 0, j ∈ Si

uk, (22)

where

Θ(i) = A(i)X(i) +B(i)Y (i), W (j) = diag{X(ki
1),X(ki

2), · · · ,X(ki
a)},

UT(i) =
[ √

piki1Θ
T(i)

√
piki2Θ

T(i) · · · √
pikia ΘT(i)

]
,

Θ(i) = A(i)X(i) +B(i)Y (i), i = 1, 2, · · · , s.
The problem can be solved in two steps. First, The terminal-weighting matrix P (i),

which appears in the objective function of SDP (14), can be determined off-line by solving
P (i) = X−1(i), if there exist matrices X(i) = XT(i) > 0, X(j) = XT(j) > 0, and
Y (i) (i ∈ S) satisfying LMIs (21) and (22). Then, the control move u(k) = uop(0) can be
directly obtained by solving SDP (14) on-line at every sampling time, if there exist scalar
γ > 0, matrices Σ(g, f), Σ(g,N), Σ(rk, 1), Σ(f), Ω(f), Ω1(0), Ω2(0), Ω3(0), Ω(N) and
x̄(N) satisfying LMI constraints (15)-(20).

Proof: For notational ease in the proof, we use x(f) to represent state x(k+f |k ) which
is denoted as the predicted state from current sampling time k and similar notations will
be used for all predicted quantities (for example Ξ(f) = Ξ(k+f |k ), Ω(N) = Ω(k+N |k )).
Current time state is denoted as x(k) = x(k |k) .

Noticing that the state vector x(f) can be written as x(f) = x̄(f) + x̂(f) and with
the aim to find the upper bound of index (8), we first try to find the upper bound of the
covariance matrix of x̂(f), i.e., Ξ(f) = Ek{x̂(f)x̂T(f)}. Obviously, x̂(f) represents the
difference between the state x(f) and the mean of the state x̄(f). Control inputs (11)
and (12) can be rewritten as

u(f) = uop(f) + F (g)[x(f)− x̄(f))], u(N) = F (i)x̄(i) (23)
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with x̄(f) = Ek{x(f)}, rk+N = i for notational ease. Then the mean of the system
dynamics have the form

x̄(f + 1) = Ek[x(f + 1)] = A(g)x̄(f) +B(g)uop(f). (24)

It can be concluded that

x̂(f + 1) =x(f + 1)− x̄(f + 1)

= [A(g) +B(g)F (g)]x̂(f) +
m∑
q=1

{[Cq(g) +Dq(g)F (g)]x̂(f)}wq(f)

+
m∑
q=1

[Cq(g)x̄(f) +Dq(g)uop(f)]wq(f).

From the above equation, we have

Ξ(f + 1) =Ek

{
x̂(f + 1)x̂T(f + 1)

}
= [A(g) +B(g)F (g)]Ξ(f) [A(g) +B(g)F (g)]T

+
m∑
q=1

{
[Cq(g) +Dq(g)F (g)]×Ξ(f)[Cq(g) +Dq(g)F (g)]T

}
+

m∑
q=1

{
[Cq(g)x(f) +Dq(g)uop(f)][Cq(g)x(f) +Dq(g)uop(f)]

T
}
.

(25)

Equation (25) can be viewed as a constraint of optimization problem Op1. To obtain a
feasible optimized solution, it can be transformed into a matrix inequality form. Actually,
the solution of the modified “inequality” (25) gives an upper bound on Ξ(f). Under the
assumption of Ξ(f) > 0, and the notation of

Ψ(g, f) = F (g)Ξ(f), Σ(g, f) =

[
Ξ(f)

Ψ(g, f)

]
, Ξ(f) =

[
I 0

]
Σ(g, f),

and replacing the equality sign “=” in (25) with a matrix inequality sign “≥”, we obtain
LMI (15) for f = 1, 2, . . . , N − 1.
For f = 0, we have x(0)− x̄(0) = 0 and u(0) = ū(0) = uop(0)

x̂(1) =
m∑
q=1

[Cq(rk)x̄(0) +Dq(rk)uop(0)]wq(0),

Ξ(1) =
m∑
q=1

[Cq(rk)x̄(0) +Dq(rk)uop(0)][Cq(rk)x̄(0) +Dq(rk)uop(0)]
T.

Similarly as the acquisition of LMI (15), we obtain LMI (16).
Second, we try to find upper bound of the performance index J(k), and prove that Op1

can be transferred into an SDP.We put an upper bound Ω(f) to Ek

{[
x(f)
u(f)

] [
x(f)
u(f)

]T}
,

and then we have

Ω(f) ≥Ek

{[
x(f)
u(f)

] [
x(f)
u(f)

]T}

=

[
x̄(f)
uop(f)

] [
x̄(f)
uop(f)

]T
+

[
Ξ(f)

Ψ(g, f)

]
Ξ−1(f)

[
Ξ(f)

Ψ(g, f)

]T
.

(26)
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Denoting Σ(f) =

[
x̄(f)

uop(g, f)

]
and applying Schur complement, this relationship can be

written as LMI (17) for f = 1, 2, . . . , N − 1.

For f = 0, we have Ω(0) ≥
[

x̄(0)
uop(0)

]
. Because x̄(0) = x(0) and uop(0) must be

obtained and calculated on-line, respectively, we cannot deal
∑

(0) as an LMI variable

and then we decompose matrix Ω(0) into

[
Ω1(0) Ω2(0)
∗ Ω3(0)

]
to construct LMI (18) in a

component form.
For f = N , we have

Ω(N) ≥ Ek[x(N)xT(N)] = x̄(N)x̄T(N) +Ξ(N).

The above inequality can be transferred into LMI (19) by using Schur complement. Ac-
cording to the inequality (26), we have

J1(k,N − 1) ≤
N−1∑
f=0

tr[HΩ(f)], J2(k,N) ≤ tr[P (i)Ω(f)], for i = 1, 2, . . . , s.

Then the upper bound of index J(k) can be obtained as the term established in the
minimization objective (14).

As the constraint (7) is considered, we have[
x(f)
u(f)

]T
Gl

[
x(f)
u(f)

]
= tr

{[
x(f)
u(f)

]T
Gl

[
x(f)
u(f)

]}
≤ tr {GlΩ(f)} ,

for f = 0, 1, . . . , N − 1.

Put an upper bound γ on tr {GlΩ(f)}, we obtain tr {GlΩ(f)} ≤ γ which immediately
implies the second item of (20) holds. After that, the constraint (7) will be satisfied if the
first item of (20) holds. Then, the constraint is established in LMI form.

It should be noted that at time k + N , we do not require the constraint (20) because
it will be satisfied naturally by using the terminal invariant ellipsoid. It will be fully
discussed in the following section.

Next, we try to obtain cost monotonicity condition, which leads to mean square stability
of jump bilinear system (1) under control (23). The mean square stabilizability will be
proved in the sequel section. Assume jump mode rk+N and rk+N+1 can be represented by
i and j respectively, variables u∗

op(f) and x∗(f) are optimal solutions for the performance
index J(k + f + 1) and variables u◦

op(f) and x◦(f) are optimal for J(k + f). It is noted
that if u◦

op(f) and x◦(f) are optimal solutions at time k + f and they are also feasible
ones at time k + f + 1. At time k + f + 1, the optimal solutions u∗

op(f) and x∗(f) are
always smaller than the feasible ones u◦

op(f) and x◦(f). If we replace u∗
op(f) and x∗(f)

by u◦
op(f) and x◦(f) on the receding horizon [k, k + f − 1], we have

J∗(k + f + 1) =
N∑

f=0

[
(x̄∗(f))TQx̄∗(f) + (u∗

op(f))
TRu∗

op(f)
]

+ (x̄∗(N + 1))TP (j)x̄∗(N + 1)

≤
N−1∑
f=0

[(x̄◦(f))TQx̄◦(f) + (u◦
op(f))

TRu◦
op(f)] + (x̄◦(N))TQx̄◦(N)

+ (x̄◦(N))TF T(i)RF (i)x̄◦(N)
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+ (x̄◦(N))T φT(i)

(∑
j∈S

pijP (j)

)
φ(i)x̄◦(N), (27)

where φ(i) = A(i) +B(i)F (i).

J∗(k + f) =
N−1∑
f=0

[(x̄◦(f))TQx̄◦(f) + (u◦
op(f))

TRu◦
op(f)] + (x̄◦(N))TP (i)x̄◦(N). (28)

Because

(x̄◦(N))TφT(i)

(∑
j∈S

pijP (j)

)
φ(i)x̄◦(N)

= (x̄◦(N))TφT(i)πi
kP (j)φ(i)x̄◦(N) +

∑
j∈Siuk

pij
[
(x̄◦(N))TφT(i)P (j)φ(i)x̄◦(N)

]
and

(x̄◦(N))TP (i)x̄◦(N) = πi
k

[
(x̄◦(N))TP (i)x̄◦(N)

]
+
∑
j∈Siuk

pij
[
(x̄◦(N))TP (i)x̄◦(N)

]
,

it follows from (27) and (28) that the cost monotonicity condition should satisfy

δJ∗ = J∗(k + f + 1)− J∗(k + f)

= (x̄◦(N))T

{
Q+ F T(i)RF (i) + φT(i)πi

kP (j)φ(i)

− πi
kP (i) +

∑
j∈Siuk

pij[φ
T(i)P (j)φ(i)− P (i)]

}
x̄◦(N) ≤ 0

(29)

If (29) is expected to be held, then we only need to have

Q+ F T(i)RF (i) + φT(i)πi
kP (j)φ(i)− πi

kP (i) ≤ 0 (30)

and

φT(i)P (j)φ(i)− P (i) ≤ 0, ∀j ∈ Si
k (31)

hold. Pre- and post multiplying X(i) = P−1(i) on both sides of (30) and (31), denoting
Θ(i) = A(i)X(i) + B(i)Y (i), and using Schur complement, we obtain sufficient LMI
conditions (21) and (22) from (30) and (31). Given a receding horizon length N and an
initial state x0, assume state x(k) can be obtained at every sampling time, the on-line
optimizations can be computed in a tractable manner by solving SDP (14) subject to
LMIs (15)-(20). This completes the proof.

Remark 3.1. In the diagonal of (15) and (17), there are some matrices, such as
[
I 0

]
Σ(g, f), and they are not symmetric ones. However, due to

[
I 0

]
Σ(g, f) = Ξ(f) and

Ξ(f) are symmetric matrices, then we have[
I 0

]
Σ(g, f) =

1

2

([
I 0

]
Σ(g, f) + ΣT(g, f)

[
I
0

])
. (32)

This means inequalities (15)-(17) can be solved as LMI constraints.

Remark 3.2. In contrast with [11], the terminal-weighting matrix is directly solved via
cost monotonicity condition, which implies the mean square stability. The stability anal-
ysis will be further discussed in the following part based on the feasibility analysis.
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Remark 3.3. It should be pointed out that our RHC strategy is not completely the same
as the one proposed by [11]. The predictive controller (11) is not the real one that applied
to the real plant but used to obtain a better performance because the optimized quadratic
performance index approaches to a smaller level by increasing the predictive horizon length
[7]. Controller (12) is not applied to the real plant and it is a theoretically fictitious
feedback control move to guarantee the mean square stability of JBSS (1) over infinite
horizon. That is to say in the predictive horizon [k, k+N −1], optimized control sequence[
uT(k) · · · uT(k +N − 1)

]T
is used to drive the state into the terminal invariant

set ε(P (rk+N)); out of the predictive horizon, feed back control F (rk+N)x̄(k + N |k ) is
theoretically used to guarantee the mean square stability. The first-step control move u(k)
is applied to the real plant. The feasibility and stabilizability problem will be discussed in
the following sections.

Remark 3.4. The SDP (14) gives a general framework when the RHC for stochastic
switched linear systems is considered. If Si

uk = φ, Si
k = S, JBSS (1) degenerates to a

usual JBSS with completely known TPs. If Si
k = φ, Si

uk = S, JBSS (1) degenerates to a
switched bilinear systems under arbitrary switching.

4. Feasibility and Mean Square Stabilizability. Since the controllers (11) and (12)
are calculated over different time horizon, there is no direct connection between cost J(k)
and J(k + 1). In order to prove the mean square stabilizability of RHC scheme proposed
in Section 3, the feasibility of SDP (14) at every sampling time needs to be established
first by observing the cost monotonicity condition (21) and (22).

From (21) and (22), we have (29) and it implies that

Ek{xT(N)P (i)x(N)} ≥Ek{xT(N + 1)P (j)x(N + 1) + xT(N)Qx(N)

+ xT(N)F T(i)RF (i)x(N)}.
(33)

Follows from (33), we conclude that

Ek

{
xT(k +N |k )P (rk+N)x(k +N |k )

}
≥Ek

{
xT(k +N + 1 |k )P (rk+N+1)x(k +N + 1 |k )

} (34)

Inequality (34) implies that if we have an ellipsoid ε(P (rk+N)) : x
T(k+N |k)P (rk+N)x(k+

N |k) ≤ β (where β is a given scalar), then this ellipsoid is invariant. It can be noted as
ε(P (rk+N)) which depends on the jump mode and it is a stochastic invariant ellipsoid.
Obviously, the terminal invariant ellipsoid ε(P (rk+N)) should be located inside the con-
strained region $. Therefore, we have answered why constraint (20) is not considered at
time k +N .

Assume that the receding horizon length is fixed as N and the control pair (uop(f −
1),F (rk+f−1)) (where f = 1, 2, . . . , N − 1) is found at time k− 1. At time k, we compute
another optimal control pair (uop(f),F (g)) which is better than the proceeding control
pair in the sense that

J(x(f), k,u(f), N) ≤ J(x(f − 1), k − 1,u(f − 1), N), (35)

where

J(x(f), k,u(f), N) = Ek

{
N−1∑
f=1

[
x(k + f |k)
u(k + f |k)

]T
H

[
x(k + f |k)
u(k + f |k)

]}
. (36)

u(f − 1) is the optimal control move at time k− 1 and it can be viewed as an admissible
control move for cost J(x(f), k,u(f), N) on the interval [k, k +N − 1].
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If we denote predictive step f = 0 in (9), then we obtain real time cost

J(x(k), k,u(k), N) = xT(k)Qx(k) + uT(k)Ru(k). (37)

The control u(k) is applied to the real system and it always exists since there is at least
one feasible solution if N is fixed. It will be proved in the next theorem.

Theorem 4.1. For a given predictive horizon length N > 1, there exists a control u(k)
such that the following relationship is satisfied:

J(x(k), k,u(k), N) ≤ J(x(k − 1), k − 1,u(k − 1), N) (38)

and there exists a limited constant α satisfying

J(x(k), k,u(k), N)− J(x(k + 1), k + 1,u(k + 1), N) ≥ α (39)

for all k such that once current time state x(k) is inside ellipsoid ε(P (rk+N)) then the
state x(k + 1) is also inside ε(P (rk+N)).

Proof: The statement of (38) can be immediately obtained since (35) is established.
If we take control u(k) and state x(k) as feasible solutions at time k + 1 on the horizon
[k + 1, k +N ], we have

J(x(k), k,u(k), N)− J(x(k + 1), k + 1,u(k + 1), N)

≥xT(k)Qx(k) + uT(k)Ru(k) ≥ inf
{
xT(k)Qx(k) |x(k) ∈ ε(P (rk+N))

}
≥ λmin(Q)

λmax(P (rk+N))
β = α.

The above inequality implies that the real time cost (37) decreased, so we can conclude
that once current time state x(k) is inside ellipsoid ε(P (rk+N)) then the state x(k + 1)
is also inside ε(P (rk+N)). This completes the proof.
According to Theorem 4.1, the existence of control move u(k) for a given finite predic-

tive horizon length N guarantees the feasibility of SDP (14) at every sampling time and
next we direct our attention to prove the mean square stabilizability of JBSS (1) under
the cost monotonicity condition (20) and (21).

Theorem 4.2. If the optimization problem (14) has a solution at the initial time, then
the RHC law u(k), which stems from the SDP (14) at every sampling time k, stabilizes
the discrete time JBSS (1) for all the time that satisfies the constraints on the input and
state.

Proof: As mentioned in Section 4, from (21) and (22), we have (33) and it follows that

Ek

{
xT(k +N |k )Qx(k +N |k ) + xT(k +N |k )F T(i)RF (i)x(k +N |k )

}
→ 0,

as k → ∞. It is easy to obtain that

Ek{xT(k +N |k )Γ(i)x(k +N |k )} → 0, as k → ∞, (40)

where Γ(i) = Q+ F T(i)RF (i). From [14], we get

Ek{xT(k +N |k )Γ(i)x(k +N |k )} ≥ ΓEk{xT(k +N |k )x(k +N |k )}, (41)

with Γ = min
rk=1,2,...,s

λmin(Γ(i)).

Since Γ > 0, we have Ek{xT(k+N |k )x(k+N |k )} → 0 as k → ∞ hold, which directly
implies Ek{xT(k)x(k)} → 0 as k → ∞. Combined with Definition 2.1, JBSS (1) is mean
square stable under the control law (23), which are equivalent to (11) and (12). This
completes the proof.
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Remark 4.1. The terminal invariant ellipsoid ε(P (rk+N)) is employed to relax the con-
straint condition, i.e., at time k+N and the time followed, the state is limited inside the
ellipsoid, which always locates inside the constraint region. The feasibility can be guar-
anteed without extra state-only constraint. A fictitious feedback control law F (i), which
is theoretically employed inside the invariant ellipsoid, simplifies the feasibility and the
mean square stability analysis.

5. Numerical Example. In this section, a numerical example is given to show the
validity of the RHC strategy. Consider the MJLS (1) with 4 operation modes and the
following data [3]:

A1 =

[
0.32 −0.40
0.80 −0.80

]
, A2 =

[
0.08 −0.26
0.80 −1.12

]
,

A3 =

[
0.16 −0.08
0.80 −0.96

]
, A4 =

[
0.48 −0.18
0.80 −0.88

]
,

B1 =

[
2
1

]
, B2 =

[
1
−1

]
, B3 =

[
1
1

]
,

B4 =

[
0.8
−1

]
, C =

[
2 1
−1 2

]
, D =

[
1
−2

]
.

Assume the one-step partly unknown transition probability matrix is

Π =


0.3 ? 0.1 ?
? ? 0.3 0.2
? 0.1 ? 0.3
0.2 ? ? ?

 .

The weighting matrix is chosen as Q1 = Q2 = Q3 = Q4 = I ∈ R2×2, R1 = R2 = R3 =
R4 = 1. We consider linear constraint

[
−1 1

]
x ≤ −1.5 and quadratic constraint

xT

[
1 0
0 1

]
x ≤ 1.5, respectively. The multiplicative stochastic noise w(k) follows 0 ∼ 1

distribution and is independent identically distributed. The initial state is set to be

x0 =
[
−2 1

]T
and the initial mode is r0 = 1. The receding horizon length is taken as

N = 5. Simulation time is chosen as 20 time units and each unit is taken as Ts = 1. The
mode path from time step 0 to the time step 20 is generated randomly, 20 times. The
quadratic performance index is taken as

4∑
f=0

[
‖x(k + f |k )‖2Q + ‖u(k + f |k )‖2R

]
+ ‖x(k + 5 |k )‖2P (i) .

The terminal-weighting matrix P (i) can first be obtained by solving LMIs (21) and
(22) off-line and we have

P (1) =

[
5.5998 −2.7073
−2.7073 5.1607

]
, P (2) =

[
4.2424 −3.0560
−3.0560 6.8165

]
,

P (3) =

[
5.4362 −3.5441
−3.5441 7.3135

]
, P (4) =

[
7.7675 −2.1396
−2.1396 7.2321

]
.

Then we solve SDP (14) subject to LMIs (15)-(20) at every sampling time to regulate
the system into the mean square stable sense while optimizing quadratic performance
index and satisfying state/input constraint under a given mode evolution. Only the first
element of the control law (11), i.e., uop(k), or equivalently uop(0) in (14), is applied to the
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real plant. The simulation results are shown in Figures 1 and 2. The real line represents
state trajectory and the dash-dot line represents the constraint borderline.
Figure 1 shows the state trajectory of the system when the RHC strategy is adopted in

the case of linear constraint and Figure 2 shows the case under quadratic constraint. In
both cases, the controlled system is mean square stable. In Figure 2, it is quite clear to
see, the initial state is out of the constraint region and the RHC strategy drives the state
to meet the constraint and finally converges to zero in the mean square sense.

Figure 1. State trajectory with linear constraint

Figure 2. State trajectory with quadratic constraint
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6. Conclusions. In this work, we have developed a tractable RHC strategy for JBSS
with partly unknown TPs. The system under consideration covers usual JBSS and
switched bilinear systems under arbitrary switching. We have focused on the design
of the controller constructed by open loop optimized control move plus linear feedback
control, which allows the optimization problem to be solved as an SDP problem. Fur-
thermore, the terminal-weighting matrix is obtained from off-line LMI computation. The
terminal invariant set together with a fictitious feedback control is introduced to relax the
constraint condition and guarantees the mean square stabilizability. A numerical example
has illustrated the applicability of the proposed scheme.
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