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Abstract. There are lots of classification and feature extraction algorithms in the field
of brain computer interface. It is significant to use optimal classification algorithm and
fewer features to implement a fast and accurate brain computer interface system. In
this paper, we evaluate the performances of five classical classifiers in different aspects
including classification accuracy, sensitivity, specificity, Kappa and computational time
in low-dimensional feature vectors extracted from EEG signals. For our experiments we
used BCI Competition 2003 Data Set III and Data Set Ia. Classifiers were compared on
61 different datasets which were created with a combination of extracted features. When
classifiers were ranked based on the average values of performance metrics, we conclude
that the NB and the SVM classifiers are shown to be good candidates for pattern classifi-
cation for low dimensional feature vectors. On the other hand, it can obviously mention
that decision tree classifier provides the worst performance. We believe that this paper
has a significant contribution in the field of classifier for brain computer interface appli-
cations.
Keywords: Brain computer interface, Classification accuracy, Classification perfor-
mance, Computational time, Kappa, Low-dimensional feature vector, Sensitivity, Speci-
ficity

1. Introduction. The brain computer interface (BCI) provides a new communication
channel for subjects to interact with the external world without using their muscles.
Electroencephalogram (EEG) based BCI systems analyze electrical brain activity recorded
from electrodes placed on the subject’s scalp and extract features to determine the intents
of the user. Features are then translated into control signals that are used to control
external devices (e.g., an electromechanical arm, a wheelchair) [1].

Input signals of an EEG based BCI system are naturally non-stationary, have poor
signal to noise ratio, dependent on physical or mental tasks, and contaminated with
various artifacts, such as electromyogram (EMG) and electrooculogram (EOG). All these
disadvantages motivate the researchers substantially to improve the speed and accuracy of
all components of the communication system between the brain and a BCI output device.
Hence, it is significant to use optimal classification algorithm and low dimensional feature
set to implement a fast and accurate brain computer interface system [2-4].

Selection of the most appropriate classifier is a critical problem in brain computer in-
terface applications. In literature, several classification algorithms have been tested for
specific features such as linear discriminate analysis (LDA) [5,6], k-nearest neighbor (k-
NN) [7], support vector machines (SVM) [7], and neural networks [8]. Most of them have
evaluated the performance of classifier just in terms of classification accuracy (CA). On
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the other hand, feature vector dimension influences classifier’s performance [9]. So, in
order to propose the most appropriate classifier, it is essential to predict properties of
feature set, such as whether it is low or high dimension. There are also some studies in
literature which compare the performance of different classifiers. Tran et al. reported
the empirical comparison of the reduced multivariate model and its extensions using hy-
perbolic, ramp and step basis functions, SVM, k-NN and multilayer perceptron network
(MLP) [10]. They considered classification accuracy, computational time and storage re-
quirement metrics to evaluate performance of classifiers. Their results showed that SVM
is the best classifier with an average accuracy rate of 83.69%. In another approach, Dixon
and Brereton used six synthetic data sets to compare five different classifiers (Euclidean
distance to centroids, LDA, Quadratic Discriminant Analysis, radial basis function ker-
nel support vector machine (RBF-SVM) and Learning Vector Quantization) performance
[11]. According to their results, they recommended to look at the data structure prior to
model building to determine the suitable classifier. However, they did not test their pro-
posed methods with a real data set. Lorena et al. investigated the use of nine supervised
machine learning algorithms (repeated incremental pruning to produce error reduction,
genetic algorithm for rule set production, decision trees, random trees, k-NN, näıve Bayes
(NB), Logistic Regression, SVM and MLP) to model the potential distribution of 35 plant
species from Latin America [12]. They calculated only AUC (Area under the ROC Curve)
metric to evaluate the classifier’s effectiveness. As a consequence of their results, random
trees showed the best performance, while k-NN showed the worst. In another classifier
based study, Furdea et al. compared four classification algorithms, including stepwise
linear discriminant analysis, shrinkage linear discriminant analysis, linear support vector
machine and RBF-SVM, with the aim to find a suitable classifier to distinguish ‘yes-’
or ‘no-thinking’ [13]. They achieved the highest classification accuracy of 68.8% with
RBF-SVM. Among those studies none of them have investigated classifiers in terms of
low-dimensionality and also they have generally used only CA metric to compare per-
formances of classifiers. This paper, based on the theory of optimal classifier and fewer
features, contributes to the literature a statistical approach for comparative performance
assessment of five classifiers which are commonly used in EEG-based brain computer
interface applications. We evaluate the performances of classifiers in different aspects
including CA, sensitivity (SE), specificity (SP), Kappa (κ) and computational time (CT).
For our study, we used BCI Competition 2003 Data Set III and Data Set Ia which are

described in the following section. For Data Set III we extracted six features by calculating
alpha frequency (8-13 Hz), beta frequency (13-20 Hz) and total frequency band powers
of the signals and for Data Set Ia three features were extracted by calculating gamma
frequency band power of the signals. Then, we classified the signals with five classifiers
including k-NN, SVM, LDA, NB and decision tree (DT).
The paper is organized as follows. Section 2 describes the materials and methods. The

results are provided in Section 3. The conclusions and discussions are given in Section 4.

2. Materials and Methods.

2.1. Data set description. Our algorithm is performed on the BCI Competition 2003
Data Set III, which was taken from a single healthy female subject at the University of
Technology Graz, and Data Set Ia, which was taken from a single healthy subject at the
University of Tuebingen. Following subsections described the data set in detail.

2.1.1. Description of BCI Competition 2003 Data Set III. Brain activity was recorded
with three bipolar EEG channels (C3, Cz, C4) with sampling frequency of 128 Hz and
it was filtered between 0.5 and 30 Hz (Figure 1(a)). The recording length of a trial was
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set to 9 seconds. The first 2 seconds were quiet. At t = 2 seconds, an acoustic stimulus
indicated the beginning of the trial, and a cross (“+”) was displayed for 1 seconds. Then,
at t = 3 seconds, an arrow (left/right) was displayed as a cue. The subject was asked
to use imagination of left or right hand movements to move the feedback bar into the
direction of the cue. The order of left and right cues was random. During the experiment
the subject sat in a relaxing chair with armrests. We decided to use the last 6 seconds,
while the first 3 seconds is the preparation period in which no event happened.

Figure 1. Montage of EEG electrodes as international 10-20 system. (a)
Montage for Data Set III signals and (b) montage for Data Set Ia signals.

The experimental data set consists of 140 trials for training set (70 trials for right hand
movement, RHM and 70 trials for left hand movement, LHM) and 140 trials for test set
(70 trials for RHM and 70 trials for LHM). For further information about the data set,
please refer to [14,15].

2.1.2. Description of BCI Competition 2003 Data Set Ia. The subject was asked to move
a cursor up and down on a computer screen, while his/her slow cortical potentials (SCPs)
were recorded. The subject received visual feedback of his/her SCPs, which were corrected
for vertical eye movements. It is observed that cortical positivity (negativity) led to a
downward (upward) movement of the cursor on the screen. Brain activity was recorded
from six different channels with sampling frequency of 256 Hz. Six EEG electrodes are
(A1, A2, FC3, CP3, FC4 and CP4) located according to the International 10-20 system
as shown in Figure 1(b) and are referenced to the vertex electrode Cz. Each trial had
duration of 6 seconds. During every trial, the task was visually presented by a highlighted
goal at either the top or bottom of the screen to indicate up or down from 0.5 seconds
onward until the end of the trial. The visual feedback was presented from 2nd second
to 5.5 seconds. Only this 3.5-second interval is provided for training and testing in each
trial.

The experimental data set consists of 268 trials for training set (135 trials for cursor
up movement, CUM and 133 trials for cursor down movement, CDM) and 293 trials for
test set (147 trials for CUM and 146 trials for CDM). For further information about the
data set, please refer to [16].

2.2. Feature extraction. Feature extraction is a crucial step in BCI system, because
its capability directly influences the performance of the classifier. However, it requires a
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lot of research to extract useful features using the existing feature extraction methods or
from a newly developed method.
In this study power spectral density (PSD) technique is used as feature extraction

method. This technique has always been a popular method for classifying EEG signals [17-
19]. The first step in EEG classification is to determine if the signals have distinguishable
features in their power spectrum. With a close examination, we observed that the alpha,
the beta and the total band powers of the Data Set III signals, recorded from C3 and
C4, show difference between left and right hand movement imaginations. On the other
hand Mensh et al. showed that gamma band power (24-37 Hz) of the Data Set Ia signals
can be used as features to classify CUM and CDM [20]. We used this band power in our
paper for feature extraction.
In order to obtain band power (BP) of the signals, first we calculated the fast Fourier

transform (FFT) coefficients as follows:

X(k) =
1

N

N−1∑
n=0

x(n)e−j2π(k−1)(n−1)/N , k = 0, 1, . . . , N (1)

where N is number of EEG samples taken for analysis, x(n) is the EEG signal, X(k) is
the kth FFT coefficient. Then, BP is computed by:

BP
∣∣∣fUPPER

fLOW
=
∑∥∥∥X(k)

∣∣∣fUPPER

fLOW

∥∥∥2 (2)

where X(k)|fUPPER

fLOW
denotes FFT coefficients between low cutoff frequency (fLOW ) and

upper cutoff frequency (fUPPER). For the alpha band fLOW = 8 Hz and fUPPER = 13 Hz,
for the beta band fLOW = 13 Hz and fUPPER = 20 Hz and for the total band fLOW = 0.5
Hz and fUPPER = 30 Hz (because EEG data set was filtered between 0.5 and 30 Hz when
it was recorded). For the gamma band fLOW = 24 Hz and fUPPER = 37 Hz.

Figure 2. Band powers. (a) Alpha BP of channel C3, (b) alpha BP of
channel C4, (c) beta BP of channel C3, (d) beta BP of channel C4, (e) total
BP of channel C3 and (f) total BP of channel C4.

The calculated band powers of the training set of Data Set III are illustrated in Figure
2. In this figure , Figure 2(a) shows the alpha BP of channel C3, which is defined as
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feature 2 (f1), Figure 2(b) shows the alpha BP of channel C4, which is defined as feature
2 (f2), Figure 2(c) shows the beta BP of channel C3, which is defined as feature 3 (f3),
Figure 2(d) shows the beta BP of channel C4, which is defined as feature 4 (f4), Figure
2(e) shows the total BP of channel C3, which is defined as feature 5 (f5), Figure 2(f) shows
the total BP of channel C4, which is defined as feature 6 (f6). The horizontal axis is the
index of trial numbers, and the vertical axis shows the values of power. Plus indicates the
trials of RHM, and circle denotes the trials of LHM. As seen from the figure, the band
powers for the RHM and the LHM trials have clustered in the opposite directions. Based
on this strong clue, we considered these values can be selected as features to classify the
two tasks.

The calculated gamma band powers of the training set of Data Set Ia are illustrated in
Figure 3. In this figure , Figure 3(a) shows the gamma BP of channel A2, which is defined
as feature 7 (f7), Figure 3(b) shows the gamma BP of channel CP3, which is defined as
feature 8 (f8) and Figure 3(c) shows the gamma BP of channel CP4, which is defined as
feature 9 (f9). The horizontal axis is the index of trial numbers, and the vertical axis is
the values of power. Plus points show the trials of CUM, and circles denote the trials of
CDM.

Figure 3. Band powers. (a) Gamma BP of channel A2, (b) gamma BP
of channel CP3 and (c) beta BP of channel CP4.

2.3. Classification algorithms. A classifier is an algorithm which has to be trained
with labeled training examples to be able to distinguish new unlabeled examples between
a fixed set of classes. The general framework of training and testing process of the
classification procedure is illustrated in Figure 4. From each trial, features are extracted
to form a feature vector which is used as the representation of corresponding trial. Feature
vector set is obtained by extracting features from training trials, and then used to train
classifier. In the testing phase, trained classifier decides the class label according to
extracted feature vector from corresponding test trial.

In our study we trained k-NN, SVM, LDA, NB and DT classification algorithms by
using all training data set. In the following subsections, we briefly review aspects of the
five classifiers.

2.3.1. k-Nearest Neighbor. The k-NN classifier is a common classification algorithm, whi-
ch determines a testing sample’s class by the majority class of the k closest training
samples [21,22]. This is illustrated with a simple example in Figure 5, which shows data
records, each with two attributes that are representations of two classes of data (blue and
red). In this case k = 5. The unlabeled test trial would be labeled by the category of
the class red, because four out of its five closest samples (neighbors) are red. It is worth
the mention that the performance of a k-NN algorithm depends on the distance metric
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Figure 4. The general framework of training and testing process

Figure 5. A simple example of the k-NN algorithm

and the value of k. In our study, we used Euclidean distance metric and leave-one-out
cross-validation (LOOCV) technique to determine the best value of k to maximize the
classification performance. The k value was searched in interval between 1 and 15, with
step size of 1. Appendix describes in detail the LOOCV technique.

2.3.2. Support vector machine. An SVM performs classification tasks by constructing the
best hyper plane in a multidimensional space by finding the maximum possible margin
[23,24]. In this paper, the SVM classification framework is implemented by the following
expression:

f(x) = sign

(
T∑
i=1

αiyiK(x, xi) + b

)
, (3)

where f(x) is the decision function, T is the number of trials, αi ∈ R are the Lagrangian
multipliers obtained by solving a quadratic optimization problem, yi ∈ {1,−1} are the
class labels, b is the bias and K(x, xi) is the Kernel function. Although there are many
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alternatives for the Kernel function existing, we utilized most commonly used radial basis
function kernel as:

K (x, xi) = exp

(
−‖x− xi‖2

2σ2

)
. (4)

We have chosen this kernel due to the fact that the number of hyper parameters of
this kernel is smaller than those of other kernels. This kernel function is specified by the
scaling factor σ. To determine optimum value for the scaling factor, the same validation
procedure is used in the k-NN classification algorithm. The most appropriate σ value was
searched in interval between 0.1 and 1.5 (step size 0.1) with the same validation procedure
used in the k-NN classification algorithm.

2.3.3. Linear discriminant analysis. LDA classifies two classes based on the assumption
that both classes are under normal distribution with equal covariance matrices. The
separating hyper plane is obtained by finding the projection of the labeled training data
that maximizes the distance between the two classes’ means and minimizes the interclass
variance. The main aim is to solve the problem

y = wTx+ w0, (5)

where x is the feature vector. The vectors w and w0 are determined by maximization of
the interclass means and minimization of interclass variance [25].

2.3.4. Näıve Bayes. Näıve Bayes classifier is a simple probabilistic algorithm based on
applying Bayes’ theorem [26,27] with näıve independence assumptions. Consider a set of
training trials where each trial is made up from m discrete-valued features and a class
from a finite set C. The näıve Bayes classifier can probabilistically predict the class of an
unknown trial using the available training trial set to calculate the most probable output.
The most probable class CNB of an unknown trial with the conjunction A = a1, a2, . . . , am
is calculated by

CNB = argmax
c∈C

p(c\A). (6)

2.3.5. Decision tree. This algorithm constructs a decision tree with branch(es) and node(s)
based on feature vector set. The decision tree begins with a root node r derived from
whichever variable in the feature space minimizes a measure of the impurity of the two
sibling nodes. The measure of the impurity at node r, denoted by im(r), is as shown in
the following equation:

im(r) = −
m∑
i=1

p(wi\r) log p(wi\r). (7)

where p(wi\r) is the proportion of patterns xi allocated to class wi at node r. Each
none-terminal node is then divided into two further nodes, r1 and r2, such that p1, p2 are
the proportions of entities passed to new nodes r1, r2 respectively. The most appropriate
division is that which maximizes the difference given in Equation (8).

∆im(d, r) = im(r)− p1im(r1)− p2im(r2) (8)

The decision tree grows until a phase is reached in which there is no significant decrease
in the measure of impurity when a further additional division d is implemented. When
this phase is reached, the node r is not sub-divided further, and automatically becomes a
terminal node. The class wi, associated with the terminal node r is that which maximizes
the conditional probability p(wi\r). Eventually, in testing phase, test samples are clas-
sified using the calculated optimal decision tree model. For a detailed description of the
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method, please see [28]. In this paper, to construct the decision tree default configuration
of the classregtree function in Statistics Toolbox, Matlab R2010b was used.

2.4. Performance metrics for classifiers.

2.4.1. Classification accuracy. If we define class labels of the binary (two-class) prediction
problem as positive and negative, classifier has the following four possible outcomes:

• True positive (TP): The number of positive samples correctly predicted.
• True negative (TN): The number of negative samples correctly predicted.
• False positive (FP): The number of positive samples incorrectly predicted.
• False negative (FN): The number of negative samples incorrectly predicted.

Classification accuracy is defined as the percentage of the number of trials classified
correctly in the test set over the total trials. It is calculated by:

CA =
TP + TN

TP + TN + FP + FN
× 100 (9)

In our study, we defined the RHM and the CUM imageries as the positive samples and
the LHM and the CDM imageries as the negative samples.

2.4.2. Sensitivity and specificity. Sensitivity and specificity are calculated by the following
formulae, respectively:

SE =
TP

TP + FN
× 100 (10)

SP =
TN

TN + FP
× 100 (11)

For the Data Set III the sensitivity refers to the ratio of correctly classified RHMs to
the total population of RHM cases, whereas specificity is the ratio of correctly classified
LHMs to the total population of LHM cases. On the other hand, for the Data Set Ia the
sensitivity refers to the ratio of correctly classified CUMs to the total population of CUM
cases, whereas specificity is the ratio of correctly classified CDMs to the total population
of CDM cases.

2.4.3. Kappa. Kappa statistics is defined as the proportion of correctly classified samples
after accounting for the probability of chance agreement. It is calculated by:

Kappa =
P (D)− P (E)

1− P (E)
(12)

where P (D) denotes the proportion of overall agreement and P (E) is the probability of
expected agreement by chance. The Kappa coefficient value is ranged between 1 and
−1, which corresponds to a perfect and a completely wrong classification, respectively. A
Kappa coefficient with value 0 means that the performance is equal to random guess.

2.4.4. Computational time. We computed the training and testing times of the classifiers.
All the runtime experiments were conducted on a PC with Intel R© Core TM i7 CPU 1.73
GHz, 4 GB RAM.
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3. Results. The BCI Competition 2003 Data Set III and Data Set Ia were tested with
five classifiers using the different combinations of the features (57 combinations for BCI
Competition Data Set III and 4 combinations for BCI Competition Data Set Ia). The
results of the classifiers in terms of four metrics including CA, SE, SP and κ for Data Set
III are given in Table 1. In the table, the best results of the metrics are written in boldface
and averages of the four metrics are given in the last line. In case of using f1, f3, f4 and
f6 features together, NB classifier provided the best CA, SP and κ performance which are
82.9%, 88.6% and 0.66, respectively. The best SE was obtained as 88.6% when f2 and f3
feature pair classified by using the k-NN algorithm. The worst case was obtained when
f1 and f3 feature pair classified by using DT algorithm. In this case CA, SE, SP and κ
were calculated as 52.9%, 61.4%, 44.3% and 0.06, respectively. According to the averages
of four metrics NB classifier achieves the highest average values of CA, SP and κ which
are 76.4%, 77.8% and 0.53, respectively. The highest average value of SE is obtained as
75.7% by k-NN algorithm.

The results of the classifiers in terms of the four metrics for Data Set Ia are given
in Table 2. The best results of the metrics are written in boldface and averages of the
four metrics are given in the last line. In case of using f7 and f8 features together, SVM
classifier provided the best CA and κ performance which are 76.1% and 0.52, respectively.
The best SE was obtained as 85.0% when f8 and f9 feature pair were classified using the
k-NN algorithm. On the other hand, the best SP was obtained as 88.4% by LDA and
NB classifiers. However, the worst case was obtained when f7 and f9 feature pair were
classified using DT algorithm. In this case CA, SE, SP and κ were calculated as 59.0%,
56.5%, 61.6% and 0.18, respectively. According to the averages of the four metrics, SVM
classifier achieves the highest average values of CA and κ which are 72.1% and 0.44,
respectively. The highest average value of SE is obtained as 74.8% by k-NN algorithm.
Additionally, the highest average value of SP is obtained as 86.3% by NB algorithm.

We also computed the computational times of the classifiers for training and testing
stages. Table 3 presents the average computational times of the both stages (the values
are given in seconds). It can be seen in the table that the fastest training and testing
times were obtained as 0.005 CPU seconds with LDA and NB classifiers. Conversely, the
slowest time for the training and testing stages was obtained by SVM.

Table 4 presents the most suitable classifiers for each metric according to the averages
of the metrics on the data sets. To determine the winner of the classifier we counted
the number of times each classifier was repeated throughout the each row. For the BCI
Competition Data Set III, the NB was selected the most suitable classifier for four metrics
(CA, SP, κ and CT). For the BCI Competition Data Set Ia, the NB and the SVM were
selected the most suitable classifiers for two metrics (for the SVM; CA and κ, for the NB;
SP and CT). Consequently, the overall winners of the classifiers are determined as the
NB and the SVM.

4. Conclusion and Discussion. This paper evaluated the performances of five classi-
fiers (k-NN, SVM, LDA, NB and DT) in different aspects including CA, SE, SP, κ and
CT in low-dimensional feature vectors extracted from the BCI Competition 2003 Data
Set III and Data Set Ia. The classifiers were compared on a total of 61 different datasets
which were created with a combination of extracted features.

The results showed that NB algorithm achieved much better performance for Data
Set III, however, SVM and NB achieved much better performance for Data Set Ia. The
experiments proved that it is difficult to propose a firm classification algorithm. Based
on the results from Tables 1 and 2, it seems selection of the most appropriate classifier
highly depends on structure of the data set. Furthermore, when classifiers were ranked
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Table 1. Performances of the classifiers for Data Set III

Features
k-NN SVM LDA NB DT

CA SE SP κ CA SE SP κ CA SE SP κ CA SE SP κ CA SE SP κ

f1-f2 78.6 75.7 81.4 0.57 78.6 77.1 80.0 0.57 77.9 77.1 78.6 0.56 78.6 78.6 78.6 0.57 78.6 78.6 78.6 0.57

f1-f3 65.0 70.0 60.0 0.30 65.0 67.1 62.9 0.30 65.7 61.4 70.0 0.31 65.7 65.7 65.7 0.31 52.9 61.4 44.3 0.06

f1-f4 69.3 70.0 68.6 0.39 75.7 72.9 78.6 0.51 80.0 78.6 81.4 0.60 76.4 78.6 74.3 0.53 62.9 67.1 58.6 0.26

f1-f5 63.6 67.1 60.0 0.27 65.0 68.6 61.4 0.30 65.0 62.9 67.1 0.30 65.7 62.9 68.6 0.31 65.0 62.9 67.1 0.30

f1-f6 78.6 74.3 82.9 0.57 79.3 75.7 82.9 0.59 78.6 74.3 82.9 0.57 79.3 80.0 78.6 0.59 75.0 78.6 71.4 0.50

f2-f3 73.6 88.6 58.6 0.47 72.1 80.0 64.3 0.44 79.3 81.4 77.1 0.59 75.7 74.3 77.1 0.51 65.0 82.9 47.1 0.30

f2-f4 63.6 77.1 50.0 0.27 67.9 72.9 62.9 0.36 71.4 70.0 72.9 0.43 69.3 68.6 70.0 0.39 60.0 72.9 47.1 0.20

f2-f5 79.3 75.7 82.9 0.59 77.1 77.1 77.1 0.54 76.4 74.3 78.6 0.53 77.1 75.7 78.6 0.54 71.4 61.4 81.4 0.43

f2-f6 65.0 78.6 51.4 0.30 70.7 74.3 67.1 0.41 71.4 72.9 70.0 0.43 72.1 70.0 74.3 0.44 54.3 62.9 45.7 0.09

f3-f4 67.9 77.1 58.6 0.36 66.4 74.3 58.6 0.33 70.0 70.0 70.0 0.40 70.0 65.7 74.3 0.40 65.7 77.1 54.3 0.31

f3-f5 63.6 64.3 62.9 0.27 63.6 60.0 67.1 0.27 63.6 57.1 70.0 0.27 65.7 67.1 64.3 0.31 56.4 55.7 57.1 0.13

f3-f6 70.7 82.9 58.6 0.41 70.7 74.3 67.1 0.41 75.0 74.3 75.7 0.50 76.4 75.7 77.1 0.53 65.7 75.7 55.7 0.31

f4-f5 69.3 67.1 71.4 0.39 75.7 72.9 78.6 0.51 76.4 75.7 77.1 0.53 74.3 75.7 72.9 0.49 67.1 67.1 67.1 0.34

f4-f6 69.3 77.1 61.4 0.39 66.4 68.6 64.3 0.33 69.3 70.0 68.6 0.39 70.0 70.0 70.0 0.40 53.6 58.6 48.6 0.07

f5-f6 77.9 74.3 81.4 0.56 76.4 74.3 78.6 0.53 78.6 77.1 80.0 0.57 77.9 77.1 78.6 0.56 77.1 82.9 71.4 0.54

f1-f2-f3 79.3 78.6 80.0 0.59 79.3 80.0 78.6 0.59 77.9 77.1 78.6 0.56 81.4 82.9 80.0 0.63 75.7 80.0 71.4 0.51

f1-f2-f4 78.6 77.1 80.0 0.57 79.3 78.6 80.0 0.59 77.9 77.1 78.6 0.56 80.7 75.7 85.7 0.61 78.6 80.0 77.1 0.57

f1-f2-f5 77.9 74.3 81.4 0.56 79.3 78.6 80.0 0.59 77.9 77.1 78.6 0.56 77.1 78.6 75.7 0.54 77.1 74.3 80.0 0.54

f1-f2-f6 78.6 72.9 84.3 0.57 80.0 78.6 81.4 0.60 80.7 80.0 81.4 0.61 80.7 78.6 82.9 0.61 80.0 78.6 81.4 0.60

f1-f3-f4 70.0 70.0 70.0 0.40 72.9 74.3 71.4 0.46 77.9 78.6 77.1 0.56 75.7 78.6 72.9 0.51 65.7 70.0 61.4 0.31

f1-f3-f5 65.0 67.1 62.9 0.30 66.4 65.7 67.1 0.33 65.0 61.4 68.6 0.30 65.7 64.3 67.1 0.31 55.7 58.6 52.9 0.11

f1-f3-f6 78.6 75.7 81.4 0.57 78.6 80.0 77.1 0.57 79.3 74.3 84.3 0.59 80.0 80.0 80.0 0.60 77.1 77.1 77.1 0.54

f1-f4-f5 69.3 72.9 65.7 0.39 75.0 72.9 77.1 0.50 76.4 75.7 77.1 0.53 74.3 72.9 75.7 0.49 70.0 80.0 60.0 0.40

f1-f4-f6 79.3 75.7 82.9 0.59 79.3 78.6 80.0 0.59 78.6 74.3 82.9 0.57 80.7 75.7 85.7 0.61 75.0 78.6 71.4 0.50

f1-f5-f6 77.9 72.9 82.9 0.56 77.1 74.3 80.0 0.54 78.6 77.1 80.0 0.57 75.7 77.1 74.3 0.51 78.6 82.9 74.3 0.57

f2-f3-f4 72.1 85.7 58.6 0.44 72.1 78.6 65.7 0.44 75.0 75.7 74.3 0.50 71.4 68.6 74.3 0.43 62.9 77.1 48.6 0.26

f2-f3-f5 79.3 75.7 82.9 0.59 75.0 74.3 75.7 0.50 75.7 72.9 78.6 0.51 77.1 78.6 75.7 0.54 72.9 67.1 78.6 0.46

f2-f3-f6 71.4 85.7 57.1 0.43 75.0 80.0 70.0 0.50 78.6 78.6 78.6 0.57 73.6 72.9 74.3 0.47 65.0 77.1 52.9 0.30

f2-f4-f5 78.6 75.7 81.4 0.57 80.0 80.0 80.0 0.60 77.9 74.3 81.4 0.56 78.6 72.9 84.3 0.57 71.4 62.9 80.0 0.43

f2-f4-f6 69.3 84.3 54.3 0.39 67.9 75.7 60.0 0.36 67.9 70.0 65.7 0.36 70.0 68.6 71.4 0.40 60.0 71.4 48.6 0.20

f2-f5-f6 80.7 77.1 84.3 0.61 80.0 78.6 81.4 0.60 77.9 75.7 80.0 0.56 79.3 77.1 81.4 0.59 72.1 65.7 78.6 0.44

f3-f4-f5 69.3 70.0 68.6 0.39 72.1 72.9 71.4 0.44 75.7 75.7 75.7 0.51 73.6 74.3 72.9 0.47 65.7 71.4 60.0 0.31

f3-f4-f6 70.0 82.9 57.1 0.40 70.7 77.1 64.3 0.41 73.6 74.3 72.9 0.47 73.6 70.0 77.1 0.47 65.7 75.7 55.7 0.31

f3-f5-f6 78.6 75.7 81.4 0.57 77.9 77.1 78.6 0.56 78.6 77.1 80.0 0.57 80.0 82.9 77.1 0.60 74.3 72.9 75.7 0.49

f4-f5-f6 78.6 74.3 82.9 0.57 79.3 78.6 80.0 0.59 77.9 77.1 78.6 0.56 78.6 72.9 84.3 0.57 77.9 81.4 74.3 0.56

f1-f2-f3-f4 80.0 78.6 81.4 0.60 79.3 78.6 80.0 0.59 77.9 77.1 78.6 0.56 81.4 77.1 85.7 0.63 76.4 81.4 71.4 0.53

f1-f2-f3-f5 77.9 74.3 81.4 0.50 78.6 77.1 80.0 0.57 78.6 78.6 78.6 0.57 75.6 77.1 74.3 0.51 72.9 74.3 71.4 0.46

f1-f2-f3-f6 80.0 77.1 82.9 0.60 78.6 80.0 77.1 0.57 78.6 77.1 80.0 0.57 81.4 77.1 85.7 0.63 75.7 78.6 72.9 0.51

f1-f2-f4-f5 80.0 74.3 85.7 0.60 79.3 78.6 80.0 0.59 77.1 75.7 78.6 0.54 79.3 80.0 78.6 0.59 76.4 75.7 77.1 0.53

f1-f2-f4-f6 77.9 75.7 80.0 0.56 77.9 77.1 78.6 0.56 77.1 75.7 78.6 0.54 77.9 74.3 81.4 0.56 79.3 80.0 78.6 0.59

f1-f2-f5-f6 77.9 74.3 81.4 0.56 79.3 78.6 80.0 0.59 80.7 80.0 81.4 0.61 77.9 77.1 78.6 0.56 78.6 74.3 82.9 0.57

f1-f3-f4-f5 67.9 71.4 64.3 0.36 71.4 74.3 68.6 0.43 77.1 77.1 77.1 0.54 71.4 72.9 70.0 0.43 67.1 65.7 68.6 0.34

f1-f3-f4-f6 79.3 77.1 81.4 0.59 77.1 77.1 77.1 0.54 79.3 74.3 84.3 0.59 82.9 77.1 88.6 0.66 77.1 77.1 77.1 0.54

f1-f3-f5-f6 78.6 74.3 82.9 0.57 78.6 80.0 77.1 0.57 78.6 77.1 80.0 0.57 73.6 74.3 72.9 0.47 76.4 77.1 75.7 0.53

f1-f4-f5-f6 77.1 72.9 81.4 0.54 77.1 74.3 80.0 0.54 77.9 77.1 78.6 0.56 77.9 78.6 77.1 0.56 78.6 82.9 74.3 0.57

f2-f3-f4-f5 80.0 77.1 82.9 0.60 77.9 78.6 77.1 0.56 75.7 72.9 78.6 0.51 80.0 75.7 84.3 0.60 72.1 62.9 81.4 0.44

f2-f3-f4-f6 70.7 81.4 60.0 0.41 72.9 78.6 67.1 0.46 72.1 75.7 68.6 0.44 74.3 71.4 77.1 0.49 63.6 77.1 50.0 0.27

f2-f3-f5-f6 80.7 77.1 84.3 0.61 77.1 77.1 77.1 0.54 77.1 74.3 80.0 0.54 82.1 78.6 85.7 0.64 70.7 61.4 80.0 0.41

f2-f4-f5-f6 79.3 75.7 82.9 0.59 77.9 77.1 78.6 0.56 78.6 75.7 81.4 0.57 75.7 72.9 78.6 0.51 72.1 65.7 78.6 0.44

f3-f4-f5-f6 78.6 75.7 81.4 0.57 78.6 78.6 78.6 0.57 77.1 77.1 77.1 0.54 82.1 77.1 87.1 0.64 72.9 72.9 72.9 0.46

f1-f2-f3-f4-f5 78.6 74.3 82.9 0.57 78.6 80.0 77.1 0.57 78.6 78.6 78.6 0.57 79.3 81.4 77.1 0.59 73.6 75.7 71.4 0.47

f1-f3-f4-f5-f6 77.9 72.9 82.9 0.56 78.6 77.1 80.0 0.57 77.9 77.1 78.6 0.56 78.6 80.0 77.1 0.57 77.1 77.1 77.1 0.54

f1-f2-f4-f5-f6 78.6 75.7 81.4 0.57 78.6 77.1 80.0 0.57 80.7 82.9 78.6 0.61 81.4 77.1 85.7 0.63 77.9 75.7 80.0 0.56

f1-f2-f3-f5-f6 77.1 75.7 78.6 0.54 77.9 77.1 78.6 0.56 81.4 80.0 82.9 0.63 80.7 81.4 80.0 0.61 72.9 71.4 74.2 0.46

f1-f2-f3-f4-f6 78.6 75.7 81.4 0.57 78.6 80.0 77.1 0.57 77.1 75.7 78.6 0.54 80.0 75.7 84.3 0.60 76.4 80.0 72.9 0.53

f2-f3-f4-f5-f6 77.9 75.7 80.0 0.56 79.3 78.6 80.0 0.59 77.9 74.3 81.4 0.56 79.3 75.7 82.9 0.59 70.7 61.4 80.0 0.41

f1-f2-f3-f4-f5-f6 76.4 75.7 77.1 0.53 77.9 78.6 77.1 0.56 81.4 82.9 80.0 0.63 79.3 75.7 82.9 0.59 73.6 72.9 74.3 0.47

Averages 74.9 75.6 74.2 0.50 75.4 74.7 74.7 0.51 76.2 75.1 77.4 0.53 76.4 75.0 77.8 0.53 70.6 72.8 68.4 0.41
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Table 2. Performances of the classifiers for Data Set Ia

Features
k-NN SVM LDA NB DT

CA SE SP κ CA SE SP κ CA SE SP κ CA SE SP κ CA SE SP κ

f7-f8 74.1 75.5 72.6 0.48 76.1 67.4 84.9 0.52 69.6 51.0 88.4 0.39 69.6 51.0 88.4 0.39 62.5 63.3 61.6 0.25

f7-f9 64.9 55.1 74.7 0.30 71.3 68.0 74.7 0.43 66.9 49.7 84.3 0.34 65.9 46.9 84.9 0.32 59.0 56.5 61.6 0.18

f8-f9 71.0 85.0 56.9 0.42 66.2 70.1 62.3 0.32 69.6 66.0 73.3 0.39 70.3 57.1 83.6 0.41 65.5 70.8 60.3 0.31

f7-f8-f9 71.8 83.7 59.6 0.43 74.7 80.3 69.2 0.50 72.4 60.5 84.3 0.45 72.0 55.8 88.4 0.44 62.1 72.8 51.4 0.24

Averages 70.5 74.8 66.0 0.41 72.1 71.5 72.8 0.44 69.6 56.8 82.6 0.39 69.5 52.7 86.3 0.39 62.3 65.9 58.7 0.25

Table 3. Average computational times of the classifiers

Stage k-NN SVM LDA NB DT
Training 5 27 0.005 0.005 0.04
Testing 0.02 0.04 0.005 0.005 0.02

Table 4. Winner of the classifiers

Data set CA SE SP κ CT Winner(s)
BCI Competition Data Set III NB k-NN NB LDA&NB LDA&NB NB
BCI Competition Data Set Ia SVM k-NN NB SVM LDA&NB SVM&NB

based on the average values of performance metrics as given in Table 4, we conclude that
the NB and the SVM classifiers are shown to be good candidates for pattern classification
for low dimensional feature vectors. However, it can obviously mention that DT provides
the worst performance.

The experiments also showed that if a classifier has any tune parameter, it becomes
time consuming especially in training phase. Compared with the other classifiers, based
on the results from Table 3, although low-dimensional feature vectors are used, SVM takes
much more time to be trained. The testing times of the k-NN and the SVM classification
algorithms are 4 and 8 times longer than those of the LDA and the NB algorithms,
respectively.

In our approach, we have selected the classifiers which are often used in BCI appli-
cations. We believe that this is a significant contribution in the field of classifier for
BCI.
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Appendix. Leave-One-Out Cross-Validation. In LOOCV technique, the training
phase is performed using T-1 trials, where T is the total number of trials, and the val-
idation is carried out using the excluded trial. If this trial is misclassified an error is
counted. This is repeated T times, each time excluding a different trial. On the other
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hand, because we had 140 trials for Data Set III, for 140 times, 1 of the trial-data was
chosen as the validation trial and the classifier was trained by the remaining 139 trials,
and then the trained classifier was applied on the 1 validation data. The same procedure
was also applied for Data Set Ia.

We used LOOCV technique to estimate the most appropriate classifier parameter, which
provides the highest average value of the four metrics (CA, SE, SP and κ) result on
validation set. Average of the four metrics was computed as follows:

PerformanceAvg =
CA+ SE + SP +Kappa× 100

4
. (13)

We utilized LOOCV, since it makes the best use of the available data and avoid the
problems of random selections.


