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Abstract. In this paper a method based on kernel principal component analysis (KPCA)
and mixed kernel least square support vector machine regression (MKLS-SVM) for online
quality prediction in atmospheric distillation column is presented. Firstly, the KPCA is
employed to reduce the input vector’s dimensions of the multiple-input multiple-output
(MIMO) soft sensor and created the data set which required training the MKLS-SVM.
Then, considering that the characteristics of kernels have great impacts on learning and
predictive results of LS-SVM, LS-SVM based on mixed polynomial kernel and RBF ker-
nel is adopted to build the soft sensor model. The parameters of the MKLS-SVM are
adaptively selected by the real-cord multi-population genetic algorithm (GA) with elitist
strategy, migration operator, self-adaptive mutation and crossover operator. The mod-
eling process is described with emphasis on data preprocessing and variables selection.
Finally, the simulation results show that the MIMO soft sensors have good abilities of
model generalization and the predicted values are in good agreement with lab measure-
ments.
Keywords: Kernel principal component analysis, Least square support vector machine,
Genetic algorithm, Distillation column, Soft sensors

1. Introduction. The purpose of the industrial distillation process in refinery is to pro-
duce qualified products, and then the quality control of products becomes the core prob-
lem. In addition, in order to improve economic benefit of the industrial distillation process,
the important process variables related to product quality should be strictly controlled.
However, in most industrial distillation process, hardware sensors of such quality vari-
ables are not available. For example, dry point and flash point are very important quality
values for the aviation kerosene which is one of the important products in the crude oil
distillation units (CDU). The online analyzer and the lab measurement are available for
measuring the aviation kerosene’s quality. However, the online analyzer usually has signif-
icant time lag, high investment and maintenance costs. The test in lab is even slower and
less frequent. The best way to solve this problem is building the composition estimators
[1-3] or soft sensors [4]. The soft sensor has some merits like rapid response, continuously
providing the information of the quality variables, low investment and maintenance costs.

Many approaches have been proposed to build the soft sensor for quality prediction
online. We may summarize these methods into two categories. One method is to build
the soft sensors from the mechanism model of the distillation column, such as equilibrium
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stage model and nonequilibrium stage model of distillation column [5]. However, it is often
difficult in refineries, due to the complexity of industrial distillation processes. Physical
modeling can be very time-consuming and significant parameters are generally unknown.
The other method is adopting empirical model or the black-box model for the soft sen-
sors. There are many algorithms which have been proposed to build the soft sensor in
this way, including using multivariate regression analysis [2,6,7], support vector machine
(SVM) regression [8,9], artificial neural networks [10], etc. Among the techniques, neural
networks and multivariate linear regression have been widely employed to develop such
data-driven models. However, there are no guarantees of avoidance of local minima, the
overfitting phenomenon and the number of hidden units in general neural networks are
usually difficult to choose [9].
SVM regression is a newly developed method based on statistical learning theory and

is widely used in nonlinear function regression [11]. Compared with the neural networks,
SVM does not require defining the number of hidden neurons, and overcomes the local
minimizing and inadequate statistic problem. By solving a set of linear equations instead
of quadratic programming, LS-SVM has a good performance of nonlinear modeling. Using
the same samples, LS-SVM has better abilities of model approach and generalization than
traditional neural networks and less running time than traditional SVM regression method
[12]. LS-SVM regression method has such good characteristics as simple computation,
high approaching speed and excellent generalization. Taking the LS-SVM method to build
the soft sensor online is an interesting problem [13].
The selection of parameters plays an important role in the efficient performance of

the LS-SVM model. Most of the researchers use the cross validation for the tuning of
parameters. The other optimization techniques such as genetic algorithm (GA), simulated
annealing, Bayesian regularization, heuristic method, hybrid approach are widely used in
industrial process optimization [9,14]. These methods are different in terms of speed,
accuracy and computational complexity. Considering the global optimization, in this
paper, we use the real-cord multi-population GA to select the parameters for the soft
sensors.
It is well known that the satisfactory performance of soft sensors is likely to be achieved

if only those secondary variables that are most sensitive to the primary variables are
employed [15]. The traditional PCA is a kind of well-known linear method for feature
extraction. By calculating the eigenvectors of the covariance matrix of the original inputs,
PCA linearly transforms a high-dimensional input vector into a low-dimensional whose
components are uncorrelated. A lot of redundant information is eliminated by transform-
ing the original data set to principal components [15]. However, the traditional PCA fails
to extract the complex nonlinear structure from input data set. Nonlinear PCA has been
developed by using different algorithms. Specifically, KPCA firstly maps the original in-
puts into a high-dimensional feature space using the kernel method and then calculates
PCA in the high-dimensional feature space. The linear PCA in the high-dimensional fea-
ture space is corresponding to a nonlinear PCA in the original input space. The KPCA
almost ensures principal components model with arbitrary precision by extracting more
principal components than PCA [13,16].
A soft sensor modeling mainly focuses on multiple-input single-output system (MISO),

while the study about multiple-input multiple-output system (MIMO) is little [17]. How-
ever, there are many correlated qualities variables which should be estimated in distillation
processes online. The correlated qualities variables are coupled and correlative with each
other, thereby establishing the MISO soft sensor model of the quality variable firstly and
then combining the individual models into a final MIMO model is unnecessary.
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From the above discussion, it appears that a systematic approach for MIMO soft sensors
in distillation column is still lacking. In this paper, we focus on the MIMO soft sensors for
the atmospheric distillation column and adopt multiple KPCA-MKLS-SVM regression to
establish the model for estimation of aviation kerosene quality; we use the real-cord multi-
population GA to select the parameters. The simulation results show that the method
not only has simple structure but also provide the necessary accuracy of estimation.

The remainder of this paper is organized as follows. In Section 2, the KPCA algorithms
are discussed. In Section 3, the MKLS-SVM regression algorithm is described. In Section
4, the outlier detection and data smoothing algorithm are presented. In Section 5, the
performance of the MIMO soft sensors are discussed. Finally, summary and discussion
are given in Section 6.

2. Kernel Principal Component Analysis. Given a set of centered input data set xi,∑m
i=1 xi = 0, i = 1, 2, . . . ,m, xi ∈ Rn. The general idea of KPCA is firstly to perform a

non-linear transformation via a non-linear function ϕ to map the original input vector to
a high dimensional feature space F , and then calculates linear PCA in ϕ(xi). We assume
that we are dealing with the centered data, that is

∑m
i=1 ϕ(xi = 0).

The covariance matrix of the sample in feature space F as follows:

C̄ =
1

m

m∑
i=1

ϕ(xi)ϕ(xi)
T (1)

The corresponding eigenvalue problem is

λV = C̄V (2)

where λ is nonzero eigenvalues set of C̄; V is the corresponding nonlinear eigenvector set.
V lies in the span of ϕ1, . . ., ϕm. So, we can establish an equation as

λϕ(xi) · V = ϕ(xi) · C̄V (3)

The corresponding eigenvector V can be represented as

V =
m∑
i=1

αiϕ(xi) (4)

For all k = 1, 2, . . . ,m, we get

λ

m∑
i=1

αiϕ(xk)ϕ(xi)
T =

1

m

m∑
i=1

αi

(
ϕ(xk)

m∑
j=1

ϕ(xj)

)
(ϕ(xj)ϕ(xi)) (5)

Defining a kernel function by

Kij = ϕ(xi)ϕ(xj) (6)

Equation (5) can be transformed to the eigenvalue problem as

mλαi = Kαi (7)

where αi is the corresponding eigenvector of K. According to (4), the eigenvector V can
be calculated using αi.

Finally, for arbitrary vector x of the original space, the principal components can be
calculated by

V · ϕ(x) =
m∑
i=1

αiϕ(xi) · ϕ(x) =
m∑
i=1

αi ·K(xi, x) (8)

In order to eliminate different impact due to the dimension and range of different
variables, raw data should be standardized. In addition, for making the sample input
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vectors in ϕ(xi), centered
∑m

i=1 ϕ(xi) = 0 in (8), the kernel matrix on the training set K
and on the testing set Kt are respectively, modified by

K̃ = K − (I/m) ·K −K · (I/m) + (I/m) ·K · (I/m) (9)

K̃t = K − (It/mt) ·Kt −K · (I/m) + (It/mt) ·Kt · (I/m) (10)

wherem andmt is respectively the number of training data points and testing data points.
I and It is m×m and mt ×m matrix whose elements are all ones, respectively.
From (8), it can be found that the maximal number of principal components in KPCA

is m (the number of training data) while n (the number of variables) in PCA. KPCA
almost ensure principal components model with arbitrary precision by extracting more
principal components than PCA.

3. Mixed Kernel LS-SVM Regression Algorithm.

3.1. LS-SVM regression. LS-SVM is based on structural risk minimization principle
and has shown powerful ability in learning with limited samples, nonlinear, high dimension
and so on practical problems [12,18]. The algorithm of function approximation based on
LS-SVM regression algorithm is described as follows. Let training sample data:

D = (xi, yi) | i = 1, 2, · · · , n, xi ∈ Rn, yi ∈ R (11)

where xi is input data; yi is output data. The optimization problem in weight ω space
can be described as

min J(ω, e) =
1

2
ωTω +

1

2
γ

n∑
k=1

e2i

s.t. yi = ωTψ(xi) + b+ ei (12)

in which ψ(·) : Rn → Rnh is kernel space mapping function, weight vector ω ∈ Rnh , error
variable ei ∈ R, b is the bias, losing function J is the sum of SSE error and regularized
variable, and γ is adjusted constant. The kernel mapping function is to extract characters
from origin space, and map the sample in origin space to a vector in the high dimension
characters space.
According to optimization (12), it defines Lagrange function as

L(ω, b, e, α) = J(ω, e)−
n∑

i=1

αi

[
ωTφ(xi) + b+ ei − yi

]
(13)

in which Lagrange factor (viz. support vector) αi ∈ R. We can do optimization compu-
tation on the above equation:

∂L

∂ω
= 0 −→ ω =

n∑
i=1

αiφ(xi)

∂L

∂b
= 0 −→

n∑
i=1

αi = 0

∂L

∂ei
= 0 −→ αi = rei

∂L

∂αi

= 0 −→ ωTφ(xi) + b+ ei − yi = 0 (14)
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Eliminating ω, e, we can get the matrix equation[
0 lT

l Ω + 1
γ
I

] [
b
α

]
=

[
0
y

]
(15)

where l = [1; 1; · · · ; 1] ∈ Rn, Ω = φ(xi)
Tφ(xj).

According to Mercer condition, it exists mapping function φ and kernel function K(·, ·),
satisfying

K(xi, xj) = φ(xi)
Tφ(xj) (16)

The function approximation of LS-SVM is

y(x) =
n∑

i=1

αiK(x, xi) + b (17)

There are some typical kernel functions [11]: 1) polynomial kernels: Kpoly(x, xi) =

(x · xi + 1)q; 2) radial basis function kernels: Krbf (x, xi) = exp
(
−‖x−xi‖

2p2

)
; 3) sigmoid

kernels: Ksig(x, xi) = tanh(v(x, xi)+ c), where q is degree of polynomial function; p is the
width parameter of the Radial basis function; v is scale, c is offset.

3.2. MKLS-SVM regression. As known that kernel method provides a way of avoiding
the difficulty of dimensionality, but how to select a right kernel function or use proper
kernels to construct a more effective kernel is another problem should be solved. According
to structural risk minimization principle, the VC dimension of a function set is the most
important criterion for evaluating the generalization ability of a learning machine. By
adjusting the different nuclear parameters, implicitly change feature space dimension.

The above kernel functions possess their respective merits and have different effects
on LS-SVM performance. Among these kernel functions, RBF kernel function is a local
kernel function with a stronger learning ability but weaker ability. However, polynomial
kernel function is a global kernel function which has a better dissemination ability and
weaker learning ability. According to the theory of structural risk minimization, we should
think about both the ability of learning and dissemination. If choose a Poly kernel and
RBF kernel to make up a new kernel, it will make an improvement on LS-SVM [19,20].
We use the mixed kernel as follows:

Kmix(x, xi) = ρKpoly(x, xi) + (1− ρ)Krbf (x, xi) (18)

where 0 ≤ ρ ≤ 1. According to Mercer theorem and the above linear superposition
formula, it can be known that the mixed Kmix is also a Mercer kernel. Based on the
mixed kernel Kmix, the MKLS-SVM method has four parameters needed to be selected,
penalty factor r, RBF kernel parameter p, Poly kernel parameter q, 0 ≤ ρ ≤ 1.

4. Data Smoothing and Filtering. The collected sample data needed for soft sensing
should be true signal, while the actual signal can potentially corrupted by various types
of noises. Modeling with low precision measurement data or outliers may result in greatly
decreasing of soft sensor measuring performance, even the failure of soft sensing.

Many types of filters are available for filtering or smoothing the noise, such as limiting
filtering, median filtering, arithmetic mean filter, and moving average filtering. Some
of them are not very much effective and some of them destroy the characteristics of raw
objective data during filtering process. The Savitzky-Golay (S-G) filter is one of the filters
which can smoothen out the signal without much destroying its original properties [21].
This method can retain distribution characteristics of signal such as relative maximum,
minimum values and width.
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S-G filtering principle is described as follows:
Filter the data with an unweighted linear least squares fit using a polynomial of the

specified degree. Assume that 2m+1 data points are positioned symmetrically about the
origin (i.e., midpoint)

x = [x−m, x−m+1, · · · , xm]T (19)

Now, use an n (n ≤ 2m+ 1) order polynomial to fit the set of data points

fi =
n∑

k=0

bnki
k = bn0 + bn1i+ bn2i

2 + · · · bnnin (20)

According to least-squares technique, coefficients bn1, bn2, · · · , bnn are needed to define
in order to keep error squares minimum. It describes as follows:

minE =
m∑

i=−m

[fi − x(i)]2 =
m∑

i=−m

[
n∑

k=0

bnki
k − x(i)

]2
(21)

Use convolution coefficients of Savitzky-Golay polynomial convolution table to calculate
the coefficient bn1, bn2, · · · , bnn. This method is convenient and fast [22].

5. MIMO Soft Sensor for Product Quality Predicting.

5.1. The atmospheric distillation column. The schematic diagram of the atmo-
spheric distillation column is shown in Figure 1 which is one unit of the crude oil distilla-
tion units (CDU). B is the atmospheric distillation column and the fractionation occurs
on the trays, separating the crude oil into desired fractions according to their boiling
points, from lighter to heavier. The gasoline, aviation kerosene, light diesel oil, heavy
diesel oil and other products are trapped out of the atmospheric distillation column and
then steam stripped to remove light hydrocarbons. The aviation kerosene is got from the
B1 stream in Figure 1.
The dry point and flash point are very important quality value for the aviation kerosene

which cannot be online measured by hardware sensors. They can be got from the lab mea-
surements which need a long time. As the quality parameters can not be measured, the
indirectly control scheme is adopted in the refinery. The temperature and the flow con-
stitute the cascade control to control the aviation kerosene quality in Figure 1. However,
it is difficult to keep the aviation kerosene quality at its set-point by using this control
scheme. So building the dry point and flash point soft sensors and realizing prediction
online would be beneficial to help the control room personnel to make timely adjustment
to the process to keep the control variables within limits.

5.2. Selection of the secondary variables and data collection. The choice of the
secondary variables is one of the key techniques of soft sensing. Proper secondary variables
choice can make the soft sensing be built based on the right relation of the input and
output sample data. The fractionation occurs on the trays, separating the crude oil into
desired fractions according to their boiling points, from lighter to heavier. The pressure
and temperature of the trays is the main factors influence boiling point of liquid. So,
the selection of the secondary variables should focus on temperature and pressure. In
addition, the fluctuation of flow can also influence the working state of the distillation
process through changing the related temperature, such as the backflow in the top of the
atmospheric distillation column and the intermediate reflux. From the above discussion,
in order to design the required soft sensor, the 23 secondary variables have been chosen.
The considered 23 secondary variables are listed in Figure 1.
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The control system of the atmospheric distillation column is the DeltaV distributed
control system (DCS), which is made by Fisher-Rosemount, Emerson enterprise. DeltaV
DCS has the function of OLE for Process Control (OPC). The sample data collection of
the 23 secondary variables is reading the real-time data through OPC software. By the
way, the aviation kerosene dry point and flash point is gotten from the lab which measured
every 8 h in this factory. We collected the 80 groups of sample data which sorted by time
order. Figure 2 is the sample data of the 23 secondary variables. Figure 3 shows the dry
point and flash point values of aviation kerosene.
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Figure 1. Schematic diagram of the atmospheric distillation column
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Figure 2. The original data of the 23 secondary variables
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Figure 3. The dry point and flash point values of aviation kerosene
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Figure 4. Secondary variables values by sig-sigma rule

5.3. Data handling. Firstly, the sig-sigma rule was used to detect outliers and remove
it form the sample data. Using the method, most outliers can be removed and complex
computation can be avoided, the 68 groups of data are left. Figure 4 is the 23 secondary
variables values processed by sig-sigma rule. Then the S-G filter was used to reduce
the noise. In contrasting, the moving average filtering method is also used. Figure 5
and Figure 6 are original data and smoothed data of flash point and dry point values.
The simulation results show that S-G filter can smoothen out the signal without much
destroying its original properties and more effective than moving average filtering.

5.4. Dimension reduction using KPCA. The secondary variables selection should be
based on the principle of downsizing. Some of the secondary variables may be interrelated,
thus they cannot be directly input variables for the soft sensor model. KPCA was applied
to choose the nonlinear principal component of the model in input data space; the effective
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Figure 5. Original data and smoothed data of flash point values
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Figure 6. Original data and smoothed data of dry point values

information was extracted to eliminate redundancy variables. The results of KPCA are
shown in Figure 7.

The first five principal components cumulative contribution percent of variance is
87%>85% which can be drawn from Figure 7. Thereby, the 23 secondary variables as
input vector of the MIMO soft sensors have been reduced to the 5 variables which are
uncorrelated.

5.5. Parameters optimization based on multi-population GA. The GA is to
mimic the natural selection principle of survival of the fittest and make an evolution-
ary computing strategy to explore the relevant search space in order to find an optimal
solution. The GA is not limited by the type of the objective function. Unlike many
traditional optimization algorithms, there is no requirement for the objective function
to be differentiable or continuous. GA is often trapped into local optimums during the
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Figure 7. Principal components contribution percent of variance

optimization procedure [23,24]. To prevent premature convergence and to obtain near
global optimal solutions, the real-cord multi-population GA with elitist strategy, migra-
tion operator and self-adaptive mutation and crossover operator is adopted to optimize
the parameters in MKLS-SVM.
A multi-population GA divides a single population into smaller subpopulations. Each

subpopulation evolves by genetic operations in parallel with the other, while maintaining a
limited but powerful interaction between all subpopulations. The most important advan-
tage of subpopulations is to enhance diversity among the subpopulations [24]. A migration
mechanism, which exchanges chromosomes among the subpopulations, exchanges infor-
mation during the joint optimization to maintain diversity and thus avoid a systematic
premature convergence toward a single local optimum.
GA consists of five main stages: evaluation, selection, crossover, mutation and migra-

tion, which called genetic operations, embody the particular property of GA. The main
process of parameters optimization is described in the following.
1) Parameters coding
To reflect the property of problem, floating point numbers are applied to code the gene.

Moreover, floating point number code has higher precision, larger scope for search and
avoids decoding and coding repeatedly which binary code need. For a real coded GA,
a chromosome corresponds to a vector of real parameters, a gene corresponds to a real
number, and an allele corresponds to a real value.
2) Population initialization
The genetic operators and the parameters used for the GA for evolving each individual

population are as follows:
Number of subpopulations Nsubpop = 8; Number of individuals per subpopulation

Nchild = 30; Generation gap Ggap = 0.8; Maximum number of generations Maxgen =
300; Value for termination Vter = 1e-4; Insertion rate INSR = 0.7, how many of the
offspring are inserted due to INSR; Migration rate between subpopulations Migr = 0.2.
Optimum parameter scope γ ∈ [0.001, 1000], p ∈ [0.001, 1000], q ∈ [0.1, 100], ρ ∈

[0.01, 1] in MKLS-SVM.
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Setting the genetic operators and the parameters, randomly generate an initial popu-
lation of chromosomes which present the values of parameters in MKLS-SVM.

3) Fitness function setting
Each resulting MKLS-SVM is trained and its performances are evaluated by the mean

of a root mean squared error (RMSE) calculated on a validation set. Parents of the
next generation are selected according to a fitness function that depends on the RMSE.
Individuals with larger fitness value have greater possibility of being selected as parents.
The RMSE and the fitness function is defined as

RMSE(γ, p, q, ρ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)

yi

2

(22)

fitness =
1

RMSE(γ, p, q, ρ)
(23)

where yi and ŷi represent the actual and validation values respectively; n is the number
of validation set.

4) Genetic operation
a) Selection operation: Populations are sorted by fitness values in descending order. Se-

lect excellent chromosomes with higher fitness values as transitional generation by means
of stochastic universal sampling. According to the generation gap make sure individ-
ual number of selection. Filter out individuals with lower fitness and retain the best
individuals. If the ith individual’s fitness is fi, then its probability of selection becomes
Pi = fi(

∑m
k=1 fk)

−1, m represents the population size.
b) Crossover operation and mutation operation: In contrast to GA, the researchers have

recently been proposing new adaptive approaches in the GA for the mutation and crossover
operators to increase the probability of capturing the global optimum, to enhance the
performance of the GA and to relieve the user from the burden of having to determine
sensitive parameters existed in the GA [25]. The adaptive approaches for mutation and
crossover operator of the GA are as follows [25]:

pc =

{
(fmax − f ′)/(fmax − fave); f ′ ≥ fave

1.0; f ′ < fave
(24)

pm =

{
0.5(fmax − f)/(fmax − fave); f ≥ fave
(fmax − f)/(fmax − fmin); f < fave

(25)

Here, f is the fitness of individual, fave is average fitness value of the population. fmax,
fmin are maximum and minimum fitness value of the population respectively. f ′ is the
larger of the fitness values of the solutions to be crossed. The adaptive approaches are
able to adjust themselves automatically during the evolutionary process. Therefore, the
algorithm does not need any predefined parameters.

We use multiple-point crossover of discrete recombination to recombine selected individ-
uals. For real-coded GA, discrete recombination is the process in which exchange variable
value between individuals, then produce new chromosome. Set a crossing point in any two
adjacent genes of chromosome. Crossing points is set to 3, so that generate all possible
individuals which produced by the parent recombination. For each variable of offspring,
select the father which contributes to offspring according to crossover probability pc. Two
individuals exchange each variable between them.

Gaussian mutation has usually been used to produce offspring for the real-coded GA.
A Gaussian mutation operator requires two parameters [26]: the mean which is often set
to zero, and the standard deviation σ which can be interpreted as the mutation step size.
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Figure 8. The complete network structure of migration

Then, mutations are realized by replacing components of the vector x by vi
′ = vi+N(0, σ),

where N(0, σ) is a random Gaussian number with mean zero and standard deviation.
c) Reinsertion (Elitist strategy): To restore population size, insert best transition gen-

eration replacing worst parents after calculating every individual’s fitness f . The Insertion
rate defines the insertion number. Through reinsertion the optimal individuals of father
generations have been reserved.
d) Migration mechanism: Select randomly some individuals (the number is Nchild∗

Miggen) from one subpopulation and replaced by the best individuals of other subpopu-
lations based on individual’s fitness f .
All subpopulation will repeat the process. Figure 8 is the complete network structure

diagram of migration.
The evolutionary process continues until stop conditions are satisfied. When a termina-

tion criterion is met, the individual having the best fitness defines the optimal parameters.

5.6. MIMO soft sensor modeling. The MKLS-SVM based on polynomial kernel and
RBF kernel is adopted to build the MIMO soft sensors. The 61 groups of data are used
for training samples, the other 7 groups are used for testing samples in the soft sensing.
The hyper-parameters are adaptively evolved by multi-population GA according to the
training samples and testing samples. Figure 9 and Figure 10 are the prediction results
of KPCA and MKLS-SVM soft sensors for training data and testing data.
In order to contrast the performance of the MKLS-SVM method, the LS-SVM based

on RBF kernel, the BP neural network and the RBF neural network methods are also
adopted. We use the root mean square error (RMSE) as the performance criteria of these
models. The results of these models with the optimal selected parameters obtained by
multi-population GA for flash point and dry point are summarized in Table 1 and Table
2 respectively. The considered optimal selected parameters of models are also listed in
Table 1 and Table 2, where DF is the number of the hidden neurons; HN is the number
of Hidden layer, Goal is the performance indicators of training error.
Next, we present a comparison between the PCA and the KPCA method based soft

sensors. Table 3 and Table 4 respectively showed the performance of the four correspond-
ing PCA combined models with the optimal parameters for flash point and dry point.
The considered parameters of models are also listed in Table 3 and Table 4.
Simulation result indicates that the KPCA-MK-LS-SVM regression has better abilities

of approach and generalizing overhead than KPCA-LS-SVM, KPCA-BP, KPCA-RBF
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Figure 9. KPCA-MKLS-SVM method for the flash point data
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Figure 10. KPCA-MKLS-SVM method for the dry point data

Table 1. KPCA combined models for flash point values

Training volume Testing volume Optimal selected parameters
MKLS-SVM 0.11123 0.25533 γ = 0.01848, p = 0.01, q = 5.6, ρ = 0.966
LS-SVM 0.36395 0.41426 γ = 0.03, p = 0.315
RBF 0.47431 0.55026 DF = 26, p = 1, Goal = 0.3
BP 0.55123 0.59307 DF = 6, HN = 1, Goal = 0.001

methods. The soft sensor’s computation errors of training and generalization can be
controlled well based on MK-LS-SVMmethod. Comparisons between the PCA and KPCA
based models are shown in Tables 1-4, the simulation results show that KPCA own more
powerful ability in choosing the nonlinear principal component of the model input data
space and feature extraction.

In summary, the accuracy of soft sensors based on MKLS-SVM method is higher than
that based on LS-SVM with RBF kernel under the same condition. Compared with LS-
SVM with RBF kernel, MKLS-SVM possesses the better dissemination ability and ap-
proach ability by absorbing the advantages of RBF kernel and polynomial kernel function.
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Table 2. KPCA combined models for dry point values

Training volume Testing volume Optimal selected parameters
MKLS-SVM 0.13286 0.26503 γ = 0.01548, p = 0.01, q = 25.2, ρ = 0.966
LS-SVM 0.3967 0.96414 γ = 0.00087, p = 0.25
RBF 0.44929 1.1762 DF = 41, p = 0.8, Goal = 0.07
BP 0.7765 0.92075 DF = 15, HN = 1, Goal = 0.003

Table 3. PCA combined models for flash point values

Training volume Testing volume Optimal selected parameters
MKLS-SVM 0.35805 0.45389 γ = 0.002, p = 4.2848, q = 1, ρ = 0.9666
LS-SVM 0.37283 0.59881 γ = 0.15, p = 3.1848
RBF 0.45955 0.60492 DF = 18, p = 8.5, Goal = 0.3
BP 0.3802 0.66558 DF = 6, HN = 1, Goal = 0.001

Table 4. PCA combined models for dry point values

Training volume Testing volume Optimal selected parameters
MKLS-SVM 0.11251 0.84632 γ = 0.015, p = 0.01, q = 1, ρ = 0.9666
LS-SVM 0.41385 1.0248 γ = 0.01, p = 2.71
RBF 0.6434 1.2561 DF = 54, p = 1.6, Goal = 0.01
BP 0.78841 1.3338 DF = 20, HN = 1, Goal = 0.003

Using appropriate kernel functions, the methods based on KPCA show better performance
than the methods based on PCA. The computational complexity has nothing with the
dimension of input variable, so soft sensor model combined with KPCA methods will have
better performance than PCA methods.

6. Conclusions. This paper does research on MIMO soft sensor for aviation kerosene
quality prediction based on KPCA and MKLS-SVM regression. The simulation results
show that this method has good abilities of model generalization and the predicted values
are in good agreement with lab measurements. In addition to modeling, additional factors
such as the selection of secondary variables, data pretreatment and model parameters
optimization make a big difference to realize the soft sensors successfully.
In this paper, the mechanism analysis combined with KPCA is adopted to select the

secondary variables. Compared with the traditional statistical methods PCA, KPCA
used nonlinear extraction method shows good effect in fast speed of feature extraction
and sufficient feature information retained. The S-G filter method is used to smooth and
filter the original data, S-G filter can smoothen out the signal without much destroying
its original properties and more effective than moving average filtering. Because the
GA shows efficient global parallel search ability and it is especially suitable for solving
optimization problems of complex systems with multi-target and nonlinear. To prevent
premature convergence and to obtain near global optimal solutions, the real-cord multi-
population GA with elitist strategy, migration operator and self-adaptive mutation and
crossover operator is adopted to optimize the parameters in MKLS-SVM.
Further research in this direction may be needed, to gain better understanding of the

number of the historical datasets, the noise distribution of the sample data, the real-
time performance of the model and the number of the input variables. In particular, the
number of the relevant input variables may be optimized to provide superior generation
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performance. In summary, successful installation of the soft sensing in a refinery will
ensure better product quality control with higher productivity.
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