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Abstract. Obstructive sleep apnea not only affects sleep quality, it can also be life-
threatening. For diagnosis and treatment, most clinicians use a patient’s sleep data
recorded by polysomnography. However, the amount of overnight sleep data is massive,
which makes efficient and comprehensive data interpreting extremely challenging. Nu-
merous detection methods have been developed; however, the accuracy of these methods
must be improved. This work transforms electroencephalogram signals from the left and
right hemispheres using a novel obstructive sleep apnea (OSA) detection system, and
extracts signal features of delta waves using a bandpass filter, empirical mode decompo-
sition, and Hilbert-Huang transformation. The start or end time of an incomplete OSA
event is predicted based on the relationship between the time and frequency variation of
detected complete OSA events. Experimental results demonstrate that the proposed sys-
tem is accurate in detecting the frequency and duration of incomplete OSA events, and
system performance is better than that of existing detection methods. The proposed sys-
tem will provide useful auxiliary diagnostic data for physicians and technicians at sleep
centers.
Keywords: Obstructive sleep apnea, Electroencephalogram, Frequency variation, In-
complete obstructive sleep apnea event, Start or end time prediction

1. Introduction. Obstructive sleep apnea (OSA) is a syndrome characterized by inter-
ruption of airflow for 10 s to 2 min or obstruction of the upper respiratory tract. Once
the brain senses that the oxygen supply is insufficient, the brain is aroused and instructs
the body to move around or wake up to resume breathing. Notably, OSA affects the sleep
quality of countless people. People with OSA are often unaware that they have OSA, even
though their breathing is interrupted numerous times while sleeping, adversely affecting
their sleep, resulting in lethargy during waking hours and poor concentration [2,11,21,35].
Over the long term, OSA affects cardiopulmonary functions and may cause sudden unex-
pected nocturnal death syndrome [1]. Symptoms of OSA have garnered much attention
from the medical community in recent years. Common indicators for sleep disorders in-
clude the apnea index (AI), respiratory disturbance index (RDI), and apnea and hypopnea
index (AHI) [2,30].
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Human brainwaves, which generate spontaneous and event-related electroencephalo-
gram (EEG) signals, facilitate observations of various sleep signals [3,13,19,20,25,27,34].
Brainwave features are utilized when diagnosing various sleep disorders. Basically, the
major spectrums of a sleep EEG are delta (0-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), and
beta (16-32 Hz) signals. Delta and theta signals provide useful data for identifying OSA
events [30]. Currently, common methods for OSA event detection using EEG signals in-
clude statistical, time-frequency, and frequency variation approaches [2,22,23,29,30]. The
statistical approach uses statistical characteristics, such as mean and standard deviation,
to identify correlations among various spectrum features. However, features of brainwaves
are extremely complex, and identifying effective transient variations in the brain is diffi-
cult. Additionally, identifying pathological correlations using a large number of statistical
computations is a very complex process [10]. Therefore, precisely detecting the duration
of an OSA event is a significant challenge. The time-frequency approach uses non-linear
signal features to quantify time-frequency relationships such as approximate entropy and
complexity calculations. The disadvantage of the time-frequency approach is that only a
portion of each band of brainwave can be observed. Additionally, this approach cannot
manage transient variations in brainwaves during OSA events and effectively detect the
duration of OSA events [29,30]. By exploiting the sensitivity of delta waves in a sleep
cycle, the frequency variation approach transforms the frequency ratio of delta wave in
sleep signals into frequency variations. This approach accurately estimates the start and
end times of OSA events rather than simply classifies information into different categories.
However, the principal drawback of the frequency variation approach is that it can only
detect the duration of complete OSA events, not the start and end time points of incom-
plete events [15]. Additionally, the approach may also misclassify a single OSA event as
multiple events, or vice versa.
The relationship between the human left and right brain is sustained by biological path-

ways that deliver messages and maintain close connections between the two hemispheres
[2]. The functional asymmetry of the brain has attracted significant interest in recent
years, and discoveries made by recent studies have been applied to different diseases such
as Alzheimer’s disease and epilepsy [2,10,12]. The EEG spectral energy in the transition
from non-rapid eye movement (NREM) to rapid eye movement (REM) varies for certain
bands [35]. Abeyrantne et al. utilized interhemispheric signals to identify correlations
between the interhemispheric synchrony index (IHSI) and RDI [2]. However, the IHSI
must be converted according to the whole data of each case, hindering detection of the
duration of each OSA event. Moreover, the time resolution for an OSA event is low and
detecting its precise time of occurrence is difficult. Therefore, OSA events cannot be
identified effectively.
This work uses the brainwaves features of the left and right hemispheres to estimate the

duration of incomplete OSA events. By detecting changes in EEG signals from the left and
right hemispheres during OSA events, the start and end time of incomplete OSA events
can be inferred based on the detected duration of complete OSA events. Experimental
results show that the proposed approach substantially improves the accuracy of OSA
event detection in terms of the aspects of time and the performance of overall system.
The remainder of this paper is organized as follows. Section 2 reviews related work of

feature extraction and interhemispheric analysis of EEG signals. Section 3 introduces the
architecture of the proposed system. Section 4 discusses experiment results. Section 5
gives conclusions.
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2. Feature Extraction and Interhemispheric Analysis of EEG Signals. Exist-
ing EEG feature extraction approaches can be classified into statistical and frequency-
space approaches [7-9,19,24,26,28,40,41]. Statistical approaches usually combine neural
networks with statistical features to determine whether variations among samples are
apparent based on deviations in statistical calculations. These approaches analyze the
relationships among numerous unknown nonlinear and decision variables through neu-
ronal interactions processed by neural networks [31]. For example, Subasi extracted the
wavelet coefficient as features to detect epileptic seizures using dynamic fuzzy neural net-
works [32]. Subasi further extracted wavelet coefficients by transforming EEG signals
through the discrete wavelet [33]. Subasi then applied the extracted wavelet coefficients
to calculate statistical features, such as the mean absolute value of coefficients, average
power of wavelet coefficients, standard deviation of coefficients, and ratio of absolute mean
values of adjacent sub-bands. The acquired values were subsequently used to analyze the
correlation between awake and sleep states. Ubeyli, who also used EEG signals to ex-
tract discrete wavelet coefficients, employed the wavelet coefficient to calculate statistical
features, such as mean absolute value of wavelet coefficient, absolute maximum value
of wavelet coefficient, average power, standard deviation, ratio of absolute mean values
of adjacent sub-bands, comparisons of distortions in the distribution coefficient [37], and
maximum, minimum, mean, and standard deviation to detect epilepsy through multilayer
perceptron neural networks (MLPNNs) [38,39]. Kurt used EEG signals to identify stages
0 and 1 in sleep cycles [18]. The signals of EEGs, electrooculograms, and electromyograms
were first transformed by a discrete wavelet, filter, and the filtered frequency spectrum.
Data obtained were subsequently analyzed using MLPNNs to identify the correlation be-
tween awake and sleep states. Guo, who used the frequency variation and amplitude of
signals as a line length feature, employed the length of the delta wave line in EEG signals
to detect epilepsy, Alzheimer’s disease, and Parkinson’s disease [10].

The approach using frequency-space relationships quantifies the frequency and space
features of various abnormal brainwaves using EEG signal-frequency-related features or
time and space features. For example, Ocak et al. detected epilepsy using approximate
entropy and discrete wavelet coefficients extracted from EEG signals as features [29]. Hsu
extracted the delta, theta, alpha, and beta waves using discrete wavelet transformation,
and obtained normalized EEG signal features, such as time lag, embedding dimension,
correlation dimension, and the largest Lyapunov exponent, and subsequently detected
the duration of an epileptic fit using a support vector machine [14]. Yildiz et al., who
calculated the approximate entropy of EEG signals, evaluated changes from the awake to
sleeping state using an adaptive neuro fuzzy inference system [41]. Ko et al. extracted
EEG signal features using the fast Fourier transform (FFT) and principle component
analysis, followed by cross-validation using linear regression, radial basis function neu-
ral networks, and support vector regression to estimate the correlation between motion
sickness and EEG signals [17]. Aris et al. performed data partitioning and developed a
linear regression model using signals from the right and left hemispheres to extract the
features of slope and relative average power [5]. Fuzzy C-mean analysis was then applied
to categorize brain activity and recognition and management behaviors.

Interhemispheric signals are analyzed by extracting brainwave features using correlation
and statistical analysis to determine the interhemispheric connection or synchrony of the
cerebral cortex [2,6,35]. Abeyratne et al. extracted delta, theta, alpha, and beta waves
and the time series of interhemispheric asynchrony (IHA) by transforming EEG signals
in the C3/A1 and C4/A2 regions using the FFT approach [2]. Abeyratne et al. then
calculated the mean, standard deviation, variance, skewness, and kurtosis of each wave to
distinguish between NREM and REM. Finally, principal components were analyzed and
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crucial feature vectors were screened to calculate the IHSI values and RDI correlation.
Khandoker et al. calculated the power spectral density of various waves during and after
OSA events using an EEG and electrocardiogram (ECG), and identified the correlation
between each factor using coherence analysis [16]. To examine differences in airflow and
blood oxygen level (SaO2) of OSA patients, Alvarez et al. also utilized coherence analysis
[4]. Hsu and Chiu applied analysis of variance to analyze EGG signal features, including
the spectral profile, energy ratio, interhemispheric alpha coherence, and intrahemispheric
alpha coherence, to determine changes in brainwaves of Alzheimer’s patients [13]. Hidasi et
al. identified a correlation between Alzheimer’s disease and the theta wave by identifying
differences between long and short ranges and each region of the left and right hemispheres
using relative frequency spectra, the FFT, and synchrony analysis [12]. Sezgin and Tagluk
calculated the quadratic phase coupling of each wave in EEG signals of OSA patients using
bispectral analysis, and determined the phase coupling phenomenon using the MLPNNs
[30].

3. System Architecture. Figure 1 shows the architecture of the proposed incomplete
OSA event detection system. This system has two modules: a feature extractor, and OSA
discriminator. The former extracts frequency variations from EEG brainwaves between
the left and right hemispheres, while the latter determines the time-frequency of incom-
plete OSA events based on brainwaves of the left and right hemispheres. The functionality
of each module is discussed as follows.

Figure 1. System architecture

3.1. Feature extractor. The feature extractor calculates frequency variation, slope, and
mean variance of brainwave signals in the left and right hemispheres (i.e., C3-A1 and C4-
A2) of OSA patients. Frequency variation (V) detects the delta wave frequency variation
of delta waves in the left and right hemispheres by calculating the frequency variation of
delta waves at the start and end of OSA events.

V =

∣∣∣∣∣
∑i=Tend

i=Tstart
(yi+1 − yi)

Tend − Tstart − 1

∣∣∣∣∣ (1)

where y, Tstart, and Tend are the ratio of the delta wave, start time, and end time of an
OSA event, respectively. The start time is the time when the delta wave curve begins
declining to the time when this decline stops. End time is the time the next delta wave
cycle begins declining. The proportion of the delta wave is determined by extracting 0-32
Hz signals using bandpass filters, followed by removing the ratio of the delta waveform
from the alpha, beta, theta, delta, and sigma waves via empirical mode decomposition
and the Hilbert-Huang transformation (Figure 2) [15].
Slope (S) is the declining slope value of the delta wave from the start to the end of an

OSA event.

S =
YT1 − YT2

XT1 −XT2

∗ 100 (2)

where (XT1 , YT1) represents the start time of OSA within the delta waveform, and (XT2 , YT2)
represents the time point when waveform decline terminates (Figure 3).
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Figure 2. The ratio of each band in an EEG

Figure 3. Start and end time of an OSA event

The average variation (A) calculates the average variation of the delta waveform in
brainwaves from the left and right hemispheres during an OSA event.

A =
∑j=Tstart

j=Tend

√
(Yj − Yj−1)2 + 1 (3)

where Yj, Tstart, and Tend are the amplitude of the delta wave at time j, and start and
end time of an OSA event, respectively.



710 C.-C. HSU, Z.-G. CAI, H. MEI, H.-C. CHIU AND C.-M. LIN

3.2. OSA discriminator. The OSA discriminator detects the time at which an OSA
event occurs and adjusts the time at which an incomplete OSA event happens. The start
and end time points of OSA events are detected by monitoring the frequency variation of
delta waves.

Tstart = if V ≤ Threshold1 (4)

Tend = if V ≥ Threshold2 (5)

where Tstart, Tend and V are the start time of an OSA event, end time of an OSA event,
and frequency variation, respectively. Threshold1 and Threshold2 are used to determine
whether frequency variation is above or below the threshold value. The incomplete time
adjustment is used to estimate the start or end time of an incomplete OSA event when
only the end or start time is detected.

Tstart = Tend − T or Tend = Tstart + T (6)

where T is the average duration of OSA events. The function of average duration is used
to determine the relationship between average time and frequency variation in all detected
OSA events of a patient.

T = CV +K − |S − S ′| ×W (7)

K =
k1 + k2

2
(8)

where C, V , W , S, S ′, k1, and k2 are the slope of duration time regarding frequency
variation, frequency variation of incomplete OSA events, weight, slope of incomplete
OSA events, average slope of the average displacement of known OSA events, maximum
displacement during OSA events, and minimum displacement during OSA events, re-
spectively. Notably, T1 and T2 are parallel lines formed by connecting the uppermost
and bottommost duration versus frequency variation points in all detected OSA events;
T is the parallel line formed by connecting the average displacement of the uppermost
and bottommost duration time versus frequency variation. The optimized weights are

Figure 4. Relationship between average time and frequency variation dur-
ing OSA events
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the weights adjusted by a genetic algorithm to find the minimal error between detected
duration and a patient’s practical duration of all OSA events.

4. Experimental Results. Experimental data were obtained from the sleep center at
Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan. The brainwave data of
the left and right hemispheres (i.e., C3-A1 and C4-A2) were collected from all-night sleep
records of OSA patients. All patients had severe OSA, and were aged 31-72 (Table 1).

4.1. Feature extractor. Figures 5 and 6 show original EEG signals of the left and right
hemispheres of case 11, respectively. Figures 7 and 8 show the EEG signals and their
delta wave ratios between the left and right hemispheres processed by feature extractors,
respectively.

Table 2 lists the OSA events of case 11. Figures 9 and 10 show the delta wave ratios
and waveforms of case 11, respectively. The start time point of an OSA event is 9358 s,

Table 1. Example cases

Age Sex OSA RDI
Case 1 58 Male 38 36.3
Case 2 40 Female 122 75.8
Case 3 72 Male 24 47.8
Case 4 48 Male 66 47.2
Case 5 51 Female 27 30.4
Case 6 58 Male 11 45.4
Case 7 60 Male 18 63.2
Case 8 31 Male 142 61.8
Case 9 66 Male 27 36.2
Case 10 45 Male 68 63.9
Case 11 49 Male 11 63.9

Figure 5. Example of the original EEG signal of the left hemisphere
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Figure 6. Example of the original EEG signal of the right hemisphere

Figure 7. Delta wave ratio of the left hemisphere

and the end point is 9379 s. The maximum amplitude of delta wave frequency variability
is 0.23, and minimum amplitude is 0.14. The calculated frequency variation, slope, and
average variation of case 11 are 0.0045, −0.4267, and 0.0041, respectively. Figure 11
displays the start time of the delta wave (9358, 0.23) and the time when the waveform
stops declining (9379, 0.14) during OSA events.

4.2. OSA discriminator. The main task of the OSA discriminator is to identify the
time duration of OSA events; Threshold1 and Threshold2 are defined as 0.01 and −0.01,
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Figure 8. Delta wave ratio of the right hemisphere

Table 2. Data points of the OSA event in Figure 9

Time (s) Value
9358 0.23
9359 0.23
9360 0.23
9361 0.23
9362 0.22
9363 0.22
9364 0.22
9365 0.22
9366 0.22
9367 0.22
9368 0.21
9369 0.21
9370 0.20
9371 0.19
9372 0.18
9373 0.17
9374 0.17
9375 0.16
9376 0.15
9377 0.14
9378 0.14
9379 0.14
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Figure 9. An OSA event in the right hemisphere of case 11

Figure 10. Frequency variation of the delta wave

respectively. The duration and frequency variation of complete OSA events in brainwaves
of the left and right hemispheres of all cases are marked (Figures 12 and 13). The slope
of time versus frequency variation is 0.86. The maximum displacement of k1 is 22.48 and
minimum displacement of k2 is −12.52. Thus, duration displacement is 4.98 during the
OSA event.
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Figure 11. Start and end time of an OSA event in the delta wave

Figure 12. Average time versus frequency variation of OSA events in the
left hemisphere

Figure 14 shows the left and right hemisphere signals of case 11. For the left hemisphere
signal, the slope of incomplete OSA events is−1.35; average slope displacement of a known
OSA event is −1.01; and average duration of a complete OSA event is 46 s. The value of
W , T , and Tend are 26, 6.48, and 3260, respectively. For the right hemisphere signal, the
slope of the incomplete OSA event is −0.43; average slope displacement of an OSA event
is known to be −1.01; and the average duration of a complete OSA event is 13 s.

Table 3 shows the number of complete and incomplete OSA events in the left hemi-
sphere. Tables 4, 5, and 6 show the detected frequency of a complete OSA event in the
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Figure 13. Average time versus frequency variation of OSA events in the
right hemisphere

Figure 14. Start time of an incomplete OSA event

left hemisphere, average error of the start and end time of detected OSA events, and
experimental results for duration of incomplete OSA events in the left hemisphere. Table
7 shows the number of complete OSA events and incomplete OSA events in the right
hemisphere. Tables 8, 9, and 10 show experimental results for the time-frequency of com-
plete OSA events, average error of the start and end time of detected OSA events in the
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right hemisphere, and experimental results for the number of incomplete OSA events in
the right hemisphere.

Comparisons of signals from the left and right hemispheres for feature extraction and
OSA discrimination indicate that estimations of the start and end time of detected OSA
events based on the left hemisphere were more accurate than those based on the right
hemisphere. The accuracy for the number of OSA events for the left and right hemispheres
is 95.45% and 93.45%, respectively. The accuracy for the duration of OSA events for the
left and right hemispheres is 88% and 83%, respectively. Therefore, the left hemisphere
is the more helpful brainwave signal feature for detecting OSA events.

4.3. Comparisons. This work uses patient data to compare variations among similar ap-
proaches, namely, approaches used by the frequency variation method, and by Abeyratne
et al., and Guo [2,10]. The frequency variation method uses the Hilbert-Huang transform
to determine the ratio of each band in brainwaves, and monitors the trend of frequency
variation of the delta wave to detect the time an OSA event occurs. Figure 15 and Tables
11 and 12 show the detected power spectral density and accuracy. Abeyratne used the

Table 3. Number of complete and incomplete OSA events in the left hemisphere

# of complete
OSA event

# of incomplete
OSA event

Case 1 33 5
Case 2 89 33
Case 3 17 7
Case 4 53 13
Case 5 22 5
Case 6 10 1
Case 7 15 3
Case 8 109 33
Case 9 19 8
Case 10 41 27
Case 11 8 3

Table 4. Experimental result for complete OSA events in the left hemisphere

# of OSA
event

# of detected
OSA event

# of the same
OSA duration

# Accuracy
of detected
OSA event

Case 1 38 36 33 94.73%
Case 2 122 120 89 97.36%
Case 3 24 23 17 98%
Case 4 66 65 53 98.48%
Case 5 27 26 22 98%
Case 6 11 10 10 99%
Case 7 18 17 15 98%
Case 8 142 138 109 97.88%
Case 9 27 25 19 92.59%
Case 10 68 64 41 94.11%
Case 11 11 8 8 81.81%
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Table 5. Average error of start and end time in the left hemisphere

Average error
of start time

Average error
of end time

Case 1 5.82 5.5
Case 2 4.97 4.33
Case 3 5.55 4.95
Case 4 5.12 4.05
Case 5 5.74 3.42
Case 6 5.95 6.09
Case 7 6.13 6.65
Case 8 5.06 4.18
Case 9 3.9 5.95
Case 10 4.49 8.17
Case 11 4.83 7.88

Table 6. Experimental result for incomplete OSA events in the left hemisphere

# of incomplete
OSA event

Weight
Time

accuracy
Case 1 5 36 80%
Case 2 33 22 82%
Case 3 7 0.25 84.88%
Case 4 13 38 86.26%
Case 5 5 21 94.90%
Case 6 1 0.25 90.46%
Case 7 3 14 86.82%
Case 8 33 25 90.51%
Case 9 8 16 80.98%
Case 10 27 26 92.83%
Case 11 3 0.25 90%

Table 7. Number of complete and incomplete OSA events in the right hemisphere

# of complete
OSA event

# of incomplete
OSA event

Case 1 33 5
Case 2 91 31
Case 3 19 5
Case 4 51 15
Case 5 18 9
Case 6 8 3
Case 7 13 5
Case 8 103 39
Case 9 27 0
Case 10 58 10
Case 11 3 8
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Table 8. Experimental result of complete OSA events in the right hemisphere

# of OSA
event

# of detected
OSA event

# of the same
OSA duration

# Accuracy
of detected
OSA event

Case 1 38 37 33 98%
Case 2 122 121 91 98.18%
Case 3 24 23 19 93.83%
Case 4 66 64 51 96.97%
Case 5 27 25 18 96.92%
Case 6 11 10 8 94%
Case 7 18 17 13 95%
Case 8 142 139 103 97.59%
Case 9 27 25 27 94.37%
Case 10 68 64 58 94.11%
Case 11 11 10 3 90.9%

Table 9. Average error of start and end time in the right hemisphere

Average error
of start time

Average error
of end time

Case 1 5.75 4.66
Case 2 5 4.26
Case 3 5.45 4.84
Case 4 5.32 3.54
Case 5 3.7 5.65
Case 6 6.55 3.56
Case 7 6.77 4.81
Case 8 4.88 4.13
Case 9 4.41 6
Case 10 4.31 6.96
Case 11 8 5.8

FFT approach and calculated the synchronized time series of the left and right hemi-
spheres. Abeyratne then calculated various waves and used principal component analysis
to screen crucial components for the feature vector. He also calculated the IHSI value
to identify the severity of the corresponding RDI. Finally, IHSI was used as an indicator
to identify the OSA event. Events lower than the threshold of 700 were considered OSA
events (Figure 16). Guo used wavelet transformation to extract brainwave signal features.
The length of the line was regarded as a feature criterion. Next, an MLPNN was used to
detect OSA events, 50% of which was used for MLPNN training and 50% was used for
MLPNN tests (Figure 17). The approaches used by Guo, Hsu & Shih, and Abeyratne were
applied in this study to conduct similar experiments. The experimental results show that
though the approaches used by frequency variation method, Guo, and Abeyratne were
unable to determine the time at which an OSA event occurred, the proposed approach
achieved relatively high accuracy (Table 13).

Table 14 shows previous EEG-based OSA detection systems and compares these systems
with the proposed system. Abeyratne used the interhemispheric signals of C3/A1 and
C4/A2 to classify the patients into OSA and non-OSA classes. However, the IHSI cannot
detect the duration of each OSA event. Tagluk and Sezgin used the C3/A2 signal to
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Figure 15. Detected power spectral density of delta waves

Figure 16. IHSI comparison
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Table 10. Experimental result of incomplete OSA events in the right hemisphere

# of incomplete
OSA event

Weight
Accuracy of detected

OSA duration
Case 1 5 35 93.98%
Case 2 31 25 81%
Case 3 5 22 80.97%
Case 4 15 22 83.06%
Case 5 9 25 83.38%
Case 6 3 0.25 93.09%
Case 7 5 0.25 83.25%
Case 8 39 21 84.56%
Case 9 0 0 74.77%
Case 10 10 21 97.30%
Case 11 8 0.25 47.19%

Table 11. Experimental results for the left hemisphere

# of OSA
event

# of detected
OSA event

Accuracy of
detected

OSA event

Maximal Accuracy
of detected
OSA event

Case1 38 33 88.73% 94.73%
Case2 122 110 90.36% 97.36%
Case3 24 20 85% 98%
Case4 66 60. 91.48% 98.48%
Case5 27 24 92% 98%
Case6 11 9. 90.45% 99%
Case7 18 16 89.54% 98%
Case8 142 130 91.55% 97.88%
Case9 27 22 81.48% 92.59%
Case10 68 60 88.23% 94.11%
Case11 11 9 81.81% 81.81%

Table 12. Experimental results for the right hemisphere

# of OSA
event

# of detected
OSA event

Accuracy of
detected

OSA event

Maximal Accuracy
of detected
OSA event

Case 1 38 35 91% 98%
Case 2 122 108 88.18% 97.18%
Case 3 24 22 90.83% 93.83%
Case 4 66 59 89.39% 96.97%
Case 5 27 25 91.92% 94.92%
Case 6 11 10 92.54% 94.00%
Case 7 18 15 83% 95.00%
Case 8 142 127 89.59% 96.59%
Case 9 27 24 90% 92.37%
Case 10 68 60 88.23% 93.11%
Case 11 11 10 88.9% 89.49%
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Figure 17. Wavelet transformation of delta waves

Table 13. Comparison of OSA detection methods

Researchers Left hemisphere Right hemisphere
Proposed method 95.78% 92.32%

Hsu & Shih 89.18% 87.09%
Abeyratne 72%

Guo 78% 74.23%

classify the OSA and non-OSA patients by bispectral analysis and backpropagation neural
network [36]. Although Tagluk extracts the signals of alpha, beta, delta, theta, and
gamma from OSA events as the features to train the neural network, it cannot detect the
duration of each OSA event from all-night brain signals. Hsu & Shih used the frequency
variation approach to detect the duration of each OSA event. The system can only detect
the duration of complete OSA events. However, it cannot handle incomplete OSA events.

5. Conclusions. This work proposes a system for determining the duration of incomplete
OSA events using brainwave frequency in the interhemispheric region. The proposed
system has two modules: the feature extractor, and OSA discriminator. Delta waves
in the left and right hemispheres (i.e., C3-A1 and C4-A2) are extracted by a bandpass
filter, and the signal features, such as frequency variation, slope, and average frequency
variation, are then calculated. The OSA discriminator uses the relationship between
average time and frequency variation of OSA events to search for durations of OSA events,
and determines the correct start or end time via effective feature extraction methods to
obtain the durations of complete OSA events.
The proposed system has the following advantages over existing approaches. First, the

proposed feature discrimination method for assessing OSA events is better than previous
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Table 14. OSA related systems comparison

Proposed system Abeyratne Tagluk Hsu & Shih
Brain
channel

C3/A1, C4/A2 C3/A1, C4/A2 C3/A2 C3/A2

Brain
signals

Delta
Alpha, beta,
delta, theta,

Alpha, beta,
delta, theta,

gamma
Delta

Detection
method

Signal features IHSI

Bispectral
analysis,
Neural
network

Signal features

OSA
diagnosis

Event duration
Event

occurrence
Event

occurrence
Event duration

methods that analyzed features statistically. For extracting crucial brainwave features,
this work uses the signal waveform of the delta wave to search for the duration of OSA
events. Apparent OSA events are subsequently identified by analyzing brainwave features
of OSA events, such as frequency variation, slope, and average frequency variation. The
ability to identify OSA events specifically and ability to determine the duration of OSA
events allow the system to detect the complete duration and adjust the duration of an
incomplete OSA event. To detect incomplete OSA events, the correct start or end time
is determined to identify the complete duration of an OSA event, and to establish an
accurate and comprehensive detection system. The proposed system can be applied for
medical diagnoses to improve the accuracy of OSA event identification.
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