International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 6, June 2012 pp. 4407—4420

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS
RENDERING IN REAL-TIME

GANG WANG!, ZHENZHOU JI' AND ZEXU ZHANG2*

1School of Computer Science and Technology
2Deep Space Exploration Research Center
School of Astronautics
Harbin Institute of Technology
No. 92, West Da-Zhi Street, Harbin 150001, P. R. China
gmkwangg@gmail.com; jizhenzhou@hit.edu.cn
*Correspondence Author: zexuzhang@hit.edu.cn

Received March 2011; revised November 2011

ABSTRACT. In this paper we discuss instance as a novel approach to render large scale
volumetric clouds in real-time. Firstly, a layered geometry model based on LOD (Level
of Detail) was proposed. Instance technique was applied to the model, which effectively
improves the performance of rendering volumetric cloud. Secondly, the 2D textures were
used to modulate of cloud appearance, cloud shadow, city glow, which provides additional
flexibility. Thirdly, the lighting such as multiple forward scattering was computed in ad-
vance. The results were stored in a 3D texture, which simplifies the lighting computation
at runtime. Finally, the algorithm was implemented by means of GPU (graphics process-
ing unit). The algorithm proposed is suitable for rendering the cloud covering part or all
of the sky, which was applied to a helicopter flight simulator successfully.

Keywords: Volumetric rendering, Real-time rendering, Texture mapping, Geometry
model, Lighting computation

1. Introduction. Cloud is such a type of natural phenomena which is computationally
expensive to render, especially for clouds cover part or all of the sky. To render such a
large scale volumetric cloud in real-time, the following issues must be addressed: the first
is simulation, which includes cloud dynamics, shading and illumination, such issues are
always computationally intensive; the second is modeling, a variety of geometry models
have been proposed which often involved a large number of vertices and primitives; the
third is rendering, the methods must be flexible enough to simulate detail animation
of clouds. Furthermore, special effects related to clouds should be taken into account.
Therefore, simple and efficient methods which maintain the visually convincing results
are required. This paper proposes such methods rendering vivid large scale volumetric
cloud in real-time which address most of the above issues. We assume that cloud particles
are static relative to each other even when the wind blows them. These assumptions enable
us to simplify the computation of cloud lighting.

This paper is focused on rendering of large scale volumetric clouds in real-time. The
rest of the paper is organized as follows. In Section 2, we describe related works. Section
3 describes the shading of clouds. In the next three sections, we describe cloud modeling,
rendering details and relative special effects. The last two sections are the results and
conclusions.

2. Related Works. Much research work has been done on the simulation of volumetric
clouds. [1] has divided the research results into three categories: (1) simplifying physics of

4407

4408 G. WANG, Z. JT AND Z. ZHANG

cloud simulation and modeling, (2) photorealistic or special effects rendering, (3) efficient
or real-time rendering. The brief review on the simulation, geometry modeling, and
rendering of clouds is given as follows.

There are two categories to simulate the gaseous motion like clouds. One is to simulate
the physical process of fluid dynamics. The other is a heuristic approach.

Physical methods use numerical solutions of computational fluid dynamics equations.
Generally, the result of numerical simulation is cloud density distribution in 3D space,
which can be rendered in various ways. In the work of [2-5], a staggered grid discrimination
of the velocity and pressure equations is proposed. In the above papers, pressure, temper-
ature and water content are defined at the center of voxels while velocity was defined on
the faces of the voxels. Stam [6] developed a fast simulation method by simplifying fluid
dynamics and demonstrated the real-time animation of smoke on a high-end workstation,
but the rendering of clouds was not discussed. Moreover, the phenomenon known as
phase transition was not taken into account. Kajiya et al. [7] developed a method of the
phase transition effects with digital solution of computational dynamics and ray tracing
algorithm which was so complex as to require of computation time. Dobashi et al. [§]
proposed a simplified method based on cellular automaton. However, it can only simulate
cumulus due to its extremely simplified physical model. Physics-based cloud simulation
has the virtue of visual convincing, but it was not suitable to cloud rendering in real-time
for its expensive in computation.

Most of heuristic approaches include fractals [8-11], procedure modeling [12-17] and
stochastic modeling [18] and so on. The methods are computation inexpensive and much
easier to implement. However, users have to adjust many parameters by trial. A fast and
simple method of large scale volumetric cloud rendering was proposed and applied in a
flight games in [19]. The rendering of cloud in real-time was presented by means of the
partial differential equations of fluid motion, buoyant forces, water phase transitions and
“flat 3D textures” simulations on the GPU [5]. Although the above two algorithms can
deal with large scale clouds in real time, it is hard to simulate detail animation of clouds.

Since the cloud lacks of well defined boundary, it is fairly difficult to build a static
geometry model. Therefore, geometry model of cloud is one of the important issues in
the process of clouds rendering. The particle system and impostors [5,19], volume with
meatball [8,20-23] and image based modeling [22,23] are three main methods.

The simplest rendering method is to use texturing algorithms to realize the rendering
of clouds [10]. To be realistic, the scattering and absorbing effects within clouds, multiple
scattering of light and skylight must be taken into account [8]. Ray tracing [7], photons
map [24] and procedural texturing [10,25-27] are common techniques for such purposes.
However, it is difficult for them to satisfy real-time clouds rendering.

In this paper, a novel layered geometry model based on LLOD is proposed. Compared
with the particle system and impostors, this model has the advantage of greatly reducing
amount of the vertices. Then, the 2D texture is used to modulation of cloud appearance,
cloud shadow and city glow. The lighting such as multiple forward scattering and skylight
is computed in advance. The results computed are stored in a 3D texture, which simplifies
the lighting computation at runtime. Moreover, coverage, density, wind and special effects
such as shadow, city glow and lightning were also discussed.

3. Lighting Model. The light passes through a cloud will be absorbed and scattered
by the particles in clouds. The lighting model involves the computation of the transport
and change of the light in the cloud. Lighting model used in this paper was based on the
algorithm in [5]. We divided the algorithm into two steps in this study. The first step
is pre-computation of illumination, and the computed results are stored in a 3D texture.

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4409

The 3D texture storing the lighting results can reduce the complexity of illumination
computation of clouds at runtime. This texture can be stored on disk. Applications can
load it before start to render. Thus this step can be offline. The second step is to use
the results of first step to render the cloud. Lighting computation is one of the main
bottlenecks of volumetric cloud rendering in real-time. Using pre-computed results can
significantly improve the runtime performance.

Scattering illumination models simulate the emission and absorption of light by a
medium as well as scattering through the medium. Our lighting model includes scat-
tering model and skylight. Although we chose a LOD based layered geometry model
representation for our clouds, it is important to note that both our shading algorithm and
our fast rendering system are independent of the cloud representation, and can be used
with any model composed of discrete density samples in space.

3.1. Scattering model. According to the direction of scattering, the scattering model
can be divided into single scattering and multiple scattering models. The single scattering
models simulate scattering through the medium in a single direction which usually points
to the view point. Simulations based on the multiple scattering models usually sample N
directions on a sphere. Each additional order of scattering will multiply N to the number
of simulated paths. It is shown in [28] that the contribution of most of these paths is
insignificant except the first and second order. [5] approximated multiple scattering only
in the light direction (multiple forward scattering) and anisotropic single scattering in
eye direction. We use of multiple forward scattering model instead of multiple scattering
model.

3.1.1. Multiple forward scattering. Given the amount of incident light at each position P
from direction [, the light I(P,) is composed of all direct light from direction [that is
not absorbed by intervening particles, plus light scattered to P from other particles

I(P,w) = Ij(w) - exp —/T(t)dt +/g(s,w)-exp —/T(t)dt ds (1)

where Iy(w) is the illumination intensity of light in direction of w outside the clouds
(i.e., skylight). s is path length of the incident light. 7(¢) (In units of 1/length) is the
extinction coefficient of the cloud at depth ¢. Dp is the depth of P in the cloud along the
light direction.

g(z,w) = /r(x,w,w')[(x,w')dw' (2)

represents the light from all directions w’ scattered into direction w at the point x.
r(z,w,w’) is the bi-directional scattering distribution function, which determines the per-
centage of light incident on x from direction w’ that is scattered in direction w. The
r(z,w,w’) can also expand to as follows:

r(z,w,w) =a(z) 7(x) - Flw,w') (3)

where a(z) is the albedo of the medium at z, and F(w,w’) is the phase function indicating
the directional characteristics of scattering.

A full multiple scattering algorithm must compute this quantity for a sampling of all
light flow directions. We simplify the approximation to compute only multiple forward
scattering in the light direction, so w = [and w’ = —[in Equation (3). There is only small

4410 G. WANG, Z. JT AND Z. ZHANG

solid angle v around the forward direction. The value of v is small enough to suppose
that r and I are constant over . Therefore, Equation (2) reduces to

g(x,0) = (2,0, —1) - I(z, ~1) - % (4)

If split the light path from 0 to Dp into discrete segments s; (j =1,..., N), where N is
the number of cloud particles along the light direction from 0 to Dp. By approximating
the integrals with Riemann Sums, we got the light intensity I, at position P.

N N N
=1 [[em+Y g [e™ (5)

j=1 7j=1 k=j+1

where Ij is the intensity of light incident on the edge of the cloud. In discrete form of
g(z,1).

y
g; = a7 F(L=0) - Ij -~ (6)

We assume that albedo and optical depth are represented at discrete samples (particles)
along the path of light. In order to easily transform (5) into an algorithm that can be
implemented in graphics hardware, we cast it as a recurrence

. < k<
I — { %}:—1 + Ty - Ijy, i;l; <N (7)

where T, = e~ is the transparency of particle pr. This equation simply says that starting
outside of the cloud, as we trace along the light direction the light incident on any particle
P is equal to the intensity of light scattered to py from pi_; plus the intensity transmitted
through p_; (as determined by its transparency, Tj_1).

3.1.2. Eye scattering. Eye scattering is a type of single scattering towards the viewer as
in [8]. The recurrence for it is subtly different as follows:

Ey=Sy+Te By, 1<k<N (8)

This equation represents the energy of light E) exiting any particle pj. is equal to the
light incident on it that it does not absorb, T} - Ey_1, plus the light that it scatters, S,
which can be replaced by Sy = ay, - 71, - Fl(w, —1) - i—’;r, where w is the view direction.

3.1.3. Phase function. The characteristics of scattering are dependent on the size of par-
ticles and it is a powerful forward scattering. This means that the intensity of scattering
is only 10% of that in 0° scattering angle when the scattering angle is greater than 10°.
The phase function F'(w,w’) mentioned above determines the distribution of scattering
for a given incident light direction. The phase function is a sum of the phase function of
particles in every scale is as

F(0) = wi- Fi(0) 9)

where K is the number of types of functions and w; is the weight for phase function . 6
is the scattering angle. [29] improved the function of Henyey-Greenstein and the results
were closed to the physics, which express as

3(1— f? 1+ cos? 0
e it/ S

22+ f?) (1+ f2—2fcosb)
where 6 is the scattering angle. f is an asymmetry factor which is determined by the

cloud condition and the wave length. Equation (10) considers Rayleigh scattering and
Mie scattering uniformly. If f = 0, this function is equivalent to the Rayleigh scattering.

(10)

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4411

For scattering due to clouds the spectrum of scattering is not much influenced compared
with that of air molecules. Thus color of clouds depends on spectrum of incident light.

3.2. Scattering results. Armed with recurrences (7) and (8) and a standard graphic
APIT such as OpenGL, computation of cloud illumination is straightforward. Our algo-
rithm is similar to the one presented by [5]. The key to the implementation is the use
of hardware blending and pixel read back. Blending operates by computing a weighted
average of the frame buffer contents (the destination) and an incoming fragment (the
source), and storing the result back in the frame buffer. This can display as

Cresult = fsrc ' Csrc + fdest ' C1dest (11)

If we let Cresur = I, fsrc =1, Core = Gk—1, fdest = Tj—1 and Cgest = Iy, then we
see that (7) and (11) are equivalent if the contents of the frame buffer before blending
represent Iy. To solve the recurrence for a particle pg, we must know how much light is
incident on particle p,_; beforehand. To do this, we employ pixel read back.

The procedure described by the pseudo code in Figure 1 is used to compute (7) and
(8). As shown in the pseudo code, the light incident on pj from a small solid angle 7 is
found by reading back the color of a small square of pixels centered on the projection of
pr. before it is rendered. The number of pixels needed to sample 7 is computed using the
distance of p, from the projection plane of the camera. I is computed by multiplying
this result by the light intensity, and is used to compute multiple forward scattering in
(7) and eye scattering in (8).

The results of the pseudo code are not used directly. Normal vectors with the length of
which set to the results of the pseudo code is used as the final results. These vectors are
easily created through similar methods creating bump mapping texture. This additional
step allows us to approximately simulate directional light and time of day effects at
runtime by directly using the results. In this paper, an 8 bit 3D texture with RGBA
channels is used to store the results. The resolution of the texture is 256 x 256 x 32. The
negative values of the normal vectors are stored as n' = % + 0.5, where n’ is the result
stored in the 3D texture, n is the result of our algorithm. In fragment shader the vectors
is further used to compute the intensity of a light source. Figure 2 shows slices of the final
results stored in the 3D texture. The result of farthest layer of clouds from light source
is stored in the first slice and up vector is (0, 0, 1).

source blend factor = 1; [px has extinction Ty, albedo ay, and alpha]
dest blend factor =1 — src_alpha; compute # pixels n p to cover solid angle y;
texture_mode = modulate; read n, pixels in square around projected center
[= direction from light; of p:
w=-l; i) = Average imtensity of n,, pix;
view cloud from light source; W = Pg.position — view_position;
clear frame buffer to white; pr-color =ay * Ty * i}, - y/4m - phase(w, 1);
sort particles in ascending order by distance to pr-alpha=1— e 7k;
light; render py;
y = solid angle of pixels to read. endfor
foreach layer read frame buffer back;

foreach particle py, endfor

FIGURE 1. Pseudo code for cloud shading

4412 G. WANG, Z. JT AND Z. ZHANG

g

(a) The 4" slice (b) The 15" slice (c) The 27" slice
FI1GURE 2. Lighting results stored in the 3D texture

Only intensity of the light source is stored, the color properties of which are set at
runtime. This choice is important for runtime tuning these properties to get desired
lighting effects such as skylight described bellow. Further more, this algorithm can be
implemented offline.

3.3. Skylight. When it is on sunrise or sunset, the most awe-inspiring images of clouds
would spread in the sky. These clouds are often illuminated by skylight — sunlight that is
scattered by the atmosphere. This scattering is stronger than that of daytime. Algorithms
described before are not well adaptable for our dynamic lighting. Since illumination has
additive effects, this scene can be easily achieved through adding a light source and
modifying the lighting model slightly. This additional light source is used to compute the
illumination of clouds. This method is better than an ambient contribution, since it is
directional and therefore would be more realistic.

4. Geometry Model. The geometry model is an important issue for rendering of vol-
umetric cloud. The results and the performance of rendering are heavily depend on the
choice of the geometry model. Topological structure and amount of vertices in the ge-
ometry model hold the consumptions of the CPU, memory and GPU. The rendering of
volumetric cloud are applications consume resources critically. Thus real-time perfor-
mance should take advantage of the geometry model as simple as possible on the premise
of the realistic visual effects.

A novel layered geometry model based on LOD and particle system is proposed in this
paper. This geometry model is very simple as described later and no further works need
to be done at runtime compared with that of impostors ones.

A common use case in modern rendering engines is to be able to draw the same object,
or groups of similar objects that share vertex data, primitive count and type, multiple
times. Instance technique of modern GPU provides a means of accelerating such use cases
while restricting the number of API calls, and keeping the amount of duplicate data to a
minimum. Each of these objects has a constant unique instance ID in GPU shader. Our
layered model especially adapted this technique. Taking advantage of instance, the model
need only to store the data of one layer, data of other layers can be the duplication of
this through instance.

A two level LOD geometry model was used in this paper. LODy is at the center of
LOD;. Viewpoint is always at center of the geometry model on the horizontal. This
means no LOD switch which decreases the management consumption of runtime.

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4413

1

1\

1\

1

1

1 1

11

-
(a) Instance of LOD, (b) Result of LOD,

= W
— = =

(c) Instance of LODg (d) Result of LODg

FIGURE 3. Geometry model

LOD; is the low level of LOD which was a multilayer annulus model. The number of
layers is related to the thickness of clouds and has the effects on the results and efficiency
of rendering. The more layers the model has, the better the visual effects is. Though
lesser layers improve the performance of the rendering, gaps will appear when the viewing
angle is small. If the number of layers is N, the base height of the cloud is Hp,s and the
Thickness stands for the thickness of clouds, then, the height H; of the ith layer is

H. = Hypyy + i - LH0CKRESS 0y N—1 (12)
N -1

Particle system or billboards was adopted in LOD,. Differing from the methods in
[5,19], the particles (billboards) are uniformly distributed in the area of LODy. The
width W), and the height H), of a given particle are

P 2¢/12 = (pa— 0.5 X p)?, pa >0 (13)
i Thickness
— a. T A7 4 $
» = max N _1 P

where 7 is the radius of LODy, py is the distance of the particle center to the layer center
of LODy, ps is the space between two adjacent particles, Thickness is the thickness of
the cloud, and N is the number of layers.

4414 G. WANG, Z. JT AND Z. ZHANG

The properties except the illumination and position of each particle are approximately
constant thus are easy to implement on GPU [30]. According to the above geometry
model and lighting model, the rendering results are shown in Figure 4.

L ‘ .
-
S |
& 2
b - & .- -~
[] X -
(a) Repeat wrap mode (b) Eye scattering (c) Skylight

FIGURE 4. Rendering results

Figure 4(a) is the results of the proposed methods. Because the wrap mode of the
texture is repeating, tiling effect can be seen obviously. To emphasize the tiling effect,
tile period of the 3D texture is set to 1600 database units instead of 16000 database units
using in actual applications. Figure 4(b) shows the cloud scene of the eye scattering.
Where the viewpoint is under the cloud layer and the light source is above the cloud
layer. Figure 4(c) shows the cloud layer on sunrise or sunset, and the most awe-inspiring
image of clouds are presented. These clouds are illuminated by the skylight or sunlight
through the atmosphere.

5. Cloud Rendering. With the lighting intensity stored in the 3D texture and the LOD
based layered geometry model, the large scale volumetric clouds rendering is straightfor-
ward.

5.1. Appearance. The cloud will have a uniform thickness appearance if only the geom-
etry model and the pre-computed lighting results are applied without other efforts. The
alpha channel of the 3D texture can be used to simulate the variation of the cloud thick-
ness or areas where the cloud particles reside in. The tiling effect is inevitable as shown
in Figure 4(a) due to the repeat wrap mode of the 3D texture. To solve this problem, a
single channel 2D texture is used to modulate the alpha channel of the 3D texture. The
result can be express as

a = max(Tsp.c — Top.1,0.0) (14)

where T3p.« is the alpha channel in 3D texture. Typ.r is the color of the single channel 2D
texture. The 2D texture and the results modulated are shown in Figure 5(a) and Figure
5(b) respectively. Tile period of the 2D and 3D texture are 400000 and 16000 database
units. Comparing Figure 4(a) with Figure 5(b), the tiling effect becomes inconspicuous.

The 2D texture used to modulate the alpha channel of 3D texture eliminating tiling
effects acts a crucial role of the flexibility of our methods. Details of clouds such as
coverage, density even wind speed effect can be simulated with the 2D texture. Effects
related to the appearance of cloud such as cloud shadow can be implemented with this
2D texture too.

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4415

(a) 2D texture for modulation (b) Modulated results

FI1GURE 5. Rendering results by 2D texture modulation

5.2. Coverage. The sky areas occupied by clouds are always varying. In order to simu-
late this phenomenon, coverage C' is introduced to modulate o further

a =max(Tzp.a — (Top.r +1—C),0.0) (15)

It can be seen that Equation (15) is in accord with Equation (14) when C' = 1. The
area covered by cloud will decrease when C' < 1. The rendering results with C' =1 and
C' = 0.6 are shown in Figure 6(a) and Figure 6(b).

(¢) C=0.6and D=0.3

FIGURE 6. Rendering results with different properties

5.3. Density. Density is another important characteristic of clouds. A density factor of
D is introduced to describe it. Equation (15) therefore changed into

a =D - -max(Tsp.a — (Top.r + 1 —C),0.0) (16)

The density of clouds will be changed if D < 1. Figure 6(c) shows that cloud density
is decreased than that of Figure 6(b).

5.4. Eye scattering. Using the algorithm described in Section 3.1.2 to compute eye
scattering is physical accurate. When position of light source or viewpoint is changed,
the result should be recomputed. To simplify the computation of eye scattering at runtime,
we use the following

dot(nye, 1) — cos AH
Ie = Ie) Pe e’ [T 1. 71 L. 1
0 X max <0 1~ cosp) X <f camp (Thz‘ckness ! > i 0>)

4416 G. WANG, Z. JT AND Z. ZHANG

where I, is the result of the eye scattering intensity. I is the max intensity of the eye
scattering. mn,, is the normalized vector of a point in the cloud converted to the eye space.
[is the direction of light source. ¢ is the desired scattering angle. f. is the proportionality
coefficient. AH is the height difference of a point in the cloud and the bottom height of
the cloud in world space. T'hickness stands for the thickness of clouds.

5.5. Wind effect. The wind is caused by the atmospheric pressure difference of areas.
Therefore, the effects of wind on clouds are various, such as the position, the height and
the appearance. Only the motion of winds on the horizontal direction is considered in
this study. The height of clouds is kept in constant. Also, only the effects on the 2D and
3D texture coordinate are taken into account. The texture coordinate T.(t) at a given
time ¢ is

Te(t) =Te + 1 X vy (18)

where T, is the start value of T,(¢) which is relative to the tile period of textures. v,, is
the velocity vector of wind. Since the 2D and 3D texture coordinate could be computed
respectively, the changes of the clouds’ position and appearance etc caused by wind can
be well simulated.

6. Special Effects. The following special effects are not necessities of volumetric cloud
rendering. Scenes with these effects are more realistic than the ones without. These
effects are treated on ad-hoc ways. As described below, the special effects can be obtained
through simple ways. This is further demonstrating the flexibility of methods proposed
in this paper.

6.1. Shadow of clouds. Most of the sunlight pass through the clouds is absorbed by
the particles and cast shadow on terrain. It is more realistic with shadows in simulation
scenes. Since the formation of shadows related with the absorbing ability of particles in
clouds, a 2D texture is built as shadow texture Ts for simplifying the calculation. This
texture is related to the alpha channel of the 3D texture mentioned above. According to
the shadow texture and the modulated texture, the factor S for the calculation of shadows
is defined as follows:

S=1-D - -max(Ts.r — (Tepr+1—C),0.0) (19)

The shadow on the terrain would achieve through the multiplication of S to the ren-
dering results of the scene. Moreover, the shadows and the covered area of clouds would
have proper location relationship. The rendering results are shown in Figure 7(a).

6.2. City glow. The city glow is caused by the particles in fog, cloud or pollution that
scattering various illumination of city which often appears in the night. The area yielded
the glow can be stored in the other color channels of the 2D modulation texture, such
as the green channel. Assume AH is the height difference of a point in the cloud and
the bottom height of the cloud in world space. The glow of a point can be calculated as

follows:
fe- AH
[=Ts5p. 1—-¢cl — 0.0, 1.0 20
grow 2D-9 X (camp <Thickness’ ’ (20)

where clamp is a clamp function and f. is proportionality coefficient. Their values can
be chose based on the thickness of clouds. Thickness stands for the thickness of clouds.
The rendering result is shown in Figure 7(b).

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4417

(a) Shadow of clouds (b) City glow (c) Lightning

FIGURE 7. Special effects

6.3. Lightning. Lightning is a discharge phenomenon between clouds with different
charge and it is a common natural phenomenon in rainy day. Dobashi et al. [28] studied
the rendering of lightning taking the scattering into account. Though their result was
more physical accurate, the frame rate was too low for real-time rendering. In this paper,
the lightning is simply treated as a point light. Suppose the intensity of lightning is I
and the distance of a point in the cloud to the center of lightning is D,, Ip, is the light
intensity of a point P in cloud without lightning, the light intensity Ip at point P with
lightning is as the following

Ip =1Ipo+ Alp
I (21)

where Alp; is the light intensity change caused by lightning. The rendering result is
shown in Figure 7(c).

7. Results. The algorithms rendering volumetric clouds are mainly implemented on
GPU. The simulating computer is a standard PC with a Pentium D 3.0 GHz CPU,
1GB memory and an NVIDIA GTX260+ display card. The screen resolution is set to
1280 x 1024.

Vertex program and fragment program are used to implement the rendering. Figure 8
shows the pseudo code of these programs. Instance is used to create the layered geometry
model of this paper.

On the simulating computer, the field of view is set to 60° x 45°. The tile period of the
3D texture and the 2D texture are set to 16000 and 400000 database units respectively.
When the far clip plane and cloud extent are set to 20000 database units, the average
frame rate is up to 390 fps. If the far clip plane and cloud extent are adjusted to 100000
and 90000 database units respectively, the average frame rate is still exceeding 350 fps.

The high frame rates are mainly relying on the pre-computation of illuminations and
the layered geometry model. The layered model is suitable utilizing instance technique of
modern GPUs. Compared with the previous works, normal vectors with which length set
to the lighting intensity stored in 3D texture is capable of approximately deal with the
position change of light source; LOD based layered geometry model and using of instance
technique significantly decrease memory consumption and simplify geometry modeling;
Using the 2D texture to modulate alpha channel of the 3D texture further improves the
rendering flexibility. The rendering results with different viewpoints’ position are shown
in Figure 9.

4418 G. WANG, Z. JT AND Z. ZHANG

A real-time large scale volumetric cloud rendering in a certain helicopter simulator was
realized based on the method proposed above. Using the experimental PC above, with
the screen resolution of 1400 x 1050, the simulation can be at a steady interactive frame
rate of 60 fps, in which a complex scene with world wide database, kinds of 3D entities
and special effects, etc. were rendered.

8. Conclusion. The method of rendering large scale volumetric cloud in real-time is
studied in this paper. Our contributions include:

(1) The lighting computed in advance was stored in a 3D texture, which significantly
simplifies the complexity of lighting computation at runtime. The skylight and eye scat-
tering, etc. were also studied.

(2) A novel layered geometry model based on LOD (Level of Detail) was proposed. This
method did not require accurate geometry model of clouds and could improve performance
by means of instance technique.

(3) The appearance of clouds was modulated by 2D texture and the tiling effect was
eliminated. The 2D texture further provided the flexibility of our algorithm. Moreover,
the coverage, density and the effects of wind were also studied. The special effects such
as shadows, city glow and lightning were also discussed.

The experimental results indicate that the method proposed can render large scale
volumetric cloud with complex scene in the extent of 90km and achieve vivid visual
effects.

Methods and algorithms of this paper can be used in flight simulators’ visual systems,
games and applications which need large scale volumetric clouds rendering in real-time.

/I Compute layer height using of InstancelID
height = Hpqse + InstancelD
X Distance between layers

if lightning

get vector from lightning position to the vertex
litnvec;
endif
if cityglow

compute cityglow parameter;
endif
if eye scattering

compute eye scattering parameter
endif
compute texture coordinate of 3D texture consider
wind;
compute texture coordinate of 2D texture consider
wind;
convert vertex position from world space to

homo geneous space;

(a) Pseudo code of vertex program

compute a with Coverage and Density;
/I Compute light intensity /it
lit = dot(light position, (T;4.rgbh — 0.5) * 2);
if lightning
lit+=
lightning intensity/dot(litnvec, litnvec);
endif
if cityglow
lit+= T,p. g X cityglow parameter;
endif
if eye scattering
lit+= I, X eye scattering parameter;
endif
color = lit X light color;
1f sky light
skylit = dot(sky lig/t position, (Tsg.7gb —
0.5) * 2):
color+= skylit x skylight color;
endif

(b) Pseudo code of fragment program

FiGURE 8. Pseudo code of GPU

USING INSTANCE FOR LARGE SCALE VOLUMETRIC CLOUDS RENDERING 4419

= SRR
e g R e
[1
T\ N
(a) Viewpoint under cloud (b) Viewpoint in cloud (c) Viewpoint above cloud

F1GURE 9. Rendering results of large scale scene

Acknowledgements. This work was funded by National Basic Research Program of
China (973 Program) under Grants 2012CB720000. The authors also gratefully acknowl-
edge the helpful comments and suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] H. S. Liao, J. H. Chuang and C. C. Lin, Efficient rendering of dynamic clouds, Proc. of the 2004
ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in
Industry, Singapore, pp.19-25, 2004.

[2] N. Foster and D. Metaxas, Modeling the motion of a hot, turbulent gas, Proc. of the 2{th Annual
Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, pp.181-188,
1997.

[3] R. Fedkiw, J. Stam and H. W. Jensen, Visual simulation of smoke, Proc. of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, pp.15-22, 2001.

[4] M. Griebel, T. Dornseifer and T. Neunhoeffer, Numerical simulation in fluid dynamics: A practical
introduction, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

[5] M. J. Harris, W. V. Baxter III, T. Scheuermann and A. Lastra, Simulation of cloud dynamics
on graphics hardware, Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, San Diego, CA, USA, pp.92-101, 2003.

[6] J. Stam, Stable fluids, Proc. of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, Los Angeles, CA, USA, pp.121-128, 1999.

[7] J. T. Kajiya and B. P. V. Herzen, Ray tracing volume densities, Proc. of the 11th Annual Conference
on Computer Graphics and Interactive Technigques, Minneapolis, MN, USA, pp.165-174, 1984.

[8] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita and T. Nishita, A simple, efficient method for realis-
tic animation of clouds, Proc. of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, New Orleans, LA, USA, pp.19-28, 2000.

[9] R. Voss, Fourier synthesis of Gaussian fractals: 1/f noises, landscapes, and flakes, Proc. of the 21th
Annual Conference on Computer Graphics and Interactive Techniques: Tutorial on State of the Art
Image Synthesis, Detroit, Michigan, 1983.

[10] G. Y. Gardner, Visual simulation of clouds, Proc. of the 12th Annual Conference on Computer
Graphics and Interactive Techniques, San Francisco, CA, USA, pp.297-304, 1985.

[11] T. Nishita, T. Sirai, K. Tadamura and E. Nakamae, Display of the earth taking into account at-
mospheric scattering, Proc. of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, Anaheim, CA, USA, pp.175-182, 1993.

[12] N. L. Max, Light diffusion through clouds and haze, Graphics and Image Processing, vol.13, no.3,
pp-280-292, 1986.

[13] D. S. Ebert and R. E. Parent, Rendering and animation of gaseous phenomena by combining fast
volume and scanline A-buffer techniques, Computer Graphics, vol.24, no.4, pp.357-366, 1990.

[14] D. S. Ebert, W. E. Carlson and R. E. Parent, Solid spaces and inverse particle systems for controlling
the animation of gases and fluids, The Visual Computer, vol.10, no.4, pp.471-483, 1990.

[15] D. S. Ebert, Volumetric modeling with implicit functions: A cloud is born, ACM SIGGRAPH Visual
Proceedings: The Art and Interdisciplinary Programs of SIGGRAPH’97, pp.147-147, 1997.

4420 G. WANG, Z. JT AND Z. ZHANG

[16] D. S. Ebert, Procedural volumetric cloud modeling and animation, SIGGRAPH’99 Course Notes,
vol.26, no.5, pp.1-52, 1999.

[17] N. Max, R. Crawfis and D. Williams, Visualizing wind velocities by advecting cloud textures, Proc.
of the 3rd Conference on Visualization’92, Los Alamitos, pp.179-184, 1992.

[18] J. Stam, Stochastic rendering of density fields, Proc. of Graphics Interface’94, Banff, Alberta, pp.51-
58, 1994.

[19] N. Wang, Realistic and fast cloud rendering in computer games, Proc. of ACM SIGGRAPH Sketches
& Applications, San Diego, CA, USA, 2003.

[20] J. Stam and E. Fiume, A multiple-scale stochastic modeling primitive, Proc. of Graphics Interface’91,
Calgary, Alberta, pp.24-31, 1991.

[21] J. Stam and E. Fiume, Depiction of fire and other gaseous phenomena using diffusion processes, Proc.
of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA,
USA, pp.129-136, 1995.

[22] Y. Dobashi, T. Nishita, H. Yamashita and T. Okita, Using metaballs to modeling and animate clouds
from satellite images, The Visual Computer, vol.15, no.9, pp.471-482, 1998.

[23] Y. Dobashi, Y. Shinzo and T. Yamamoto, Modeling of clouds from a single photograph, Computer
Graphics Forum, vol.29, no.7, pp.2083-2090, 2010.

[24] H. W. Jensen and P. H. Christensen, Efficient simulation of light transport in scenes with partici-
pating media using photon maps, Proc. of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, Orlando, FL, USA, pp.311-320, 1998.

[25] D. S. Ebert, Procedural volumetric cloud modeling and animation, Proc. of ACM SIGGRAPH’00
Course Notes, vol.25, no.5, pp.1-55, 2000.

[26] K. Perlin, An image synthesizer, Proc. of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, San Francisco, CA, USA, pp.287-296, 1985.

[27] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling, Academic
Press Inc, Orlando, FL, USA, 1998.

[28] Y. Dobashi, T. Yamamoto and T. Nishita, Efficient rendering of lightning taking into account scatter-
ing effects due to clouds and atmospheric particles, Proc. of the 9th Pacific Conference, pp.390-399,
2001.

[29] W. M. Cornette and J. G. Shanks, Physical reasonable analytic expressions for the single-scattering
phase function, Applied Optics, vol.31, no.16, pp.3152-3160, 1992.

[30] S. Drone, Real-time particle systems on the GPU in dynamic environments, ACM SIGGRAPH
Course Note, pp.80-96, 2007.

