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ABSTRACT. This paper deals with the problem of robust H., filtering for the class of
two dimensional (2-D) continuous systems that are described by a Roesser state space
model with delays. A sufficient condition to have an Ho, noise attenuation for these
2-D systems is given in terms of a linear matriz inequality. The optimal Hyo filter is
obtained by solving a convex optimization problem. A simulation example is also given
to illustrate the effectiveness of the proposed result.

Keywords: 2-D continuous systems, State delay, H., filtering, Linear matrix inequality
(LMI)

1. Introduction. The main objective of H,, filtering is to design an estimator that
minimizes the H,, norm of a filtering error system, in order to ensure that the Lo-induced
gain from the noise signals to the estimation error is smaller than a prescribed level.
One of the most popular ways to deal with the filtering problem is the celebrated Kalman
filtering approach, which provides an optimal estimation of the state variables in the sense
that the covariance of the estimation error is minimized [1]. H,, filtering was introduced
in 1989 [2], by assuming that the input signal is energy bounded. Many results on the H,
filtering have been proposed in the literature, for both the deterministic and stochastic
contexts: see, e.g., [3-6], and references therein. When parameter uncertainties affect a
system, the corresponding robust H, filtering has also been investigated, and some results
on this topic have been presented: see, e.g., [7,8], and references therein. Note that all
these mentioned H,, filtering results are obtained in the context of one-dimensional (1-D)
system. The study of two-dimensional (2-D) systems has received much attention in past
decades: [9-13]. For example, the 2-D H, filtering problem for Roesser models was solved
in [9] in the absence of uncertainties and delayes. The corresponding results for the 2-D
Fornasini-Marchesini second model were reported in [11,12]. We point out that the H,
filtering results in [9,12] are obtained for 2-D discrete parameter systems. In the study of
distributed parameter systems, partial differential equations actually correspond to 2-D
or n-D continuous systems [10]. Therefore, the study of 2-D continuous systems is of
both practical and theoretical importance. Although many stability analysis and control
results for 2-D continuous and discrete-time systems have been reported in the literature
[10,14-18], for such systems, however, we can just cite [13], concerning the H, filtering.
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These previous results ignored the effect of delays. Unfortunately, delays of signal

transmissions are frequently encountered in practical problems, specially in engineering
and biological systems. Examples of 2-D systems with significant delays include the ma-
terial rolling process [19] and in general, systems described by delayed lattice differential
equations [20] and partial difference equations [21]. In addition, certain 2-D systems con-
taining digital processors that need finite numerical computation time [22,23] display also
the delay phenomenon. These delays are known to be a frequent source of instability
and poor performance. Therefore, for one-dimensional (1-D) state-delayed systems, there
have been much literature on the stability and robust filtering that have offered various
schemes (see, e.g., [24-31], and references therein). In contrast, most results for the 2-D
filtering problem focus on systems without delays; although for specific stability and con-
trol problems of uncertain 2-D discrete state-delayed systems research results are given in
[23,32], the H,, filtering problem for 2-D continuous state-delayed systems has not been
fully investigated, which motivates the present study. Thus, we propose in this paper a
method to deal with the robust H, filtering problem for 2-D continuous systems described
by a Roesser model with delays. A sufficient condition for such a 2-D system to have a
specified H., noise attenuation is first presented via the LMI approach. Furthermore, a
convex optimization problem with LMI constraints is formulated to design a 2-D filter
such that, for all admissible uncertainties, the filtering error dynamics is asymptotically
stable, and a prescribed H,-norm performance level is achieved. The simulation results
demonstrate the effectiveness of the proposed method.
Notations: Throughout this paper, for real symmetric matrices X and Y, the notation
X > Y (respectively, X > Y) means that the matrix X — Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with appropriate dimension. The
superscript T represents the transpose of a matrix; diag{...} denotes a block-diagonal ma-
trix; her(S) stands for S+ST. The symbol 0.y (.) denotes the spectral norm of a matrix.
The symmetric term in a symmetric matrix is denoted by *, e.g., }Z/ = [ ;,(T }Z/ ]
Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2. Problem Formulation. Consider a 2-D continuous system described by the following
Roesser state-space model with delays:

(X)) @t te) = (A4+ AA)x(ty, to) + (Ag + AAg)x(ty — 71, ta — To)

+(B + AB)w(t1, t2) (1)
y(ti,t2) = (C1 + ACY)x(t1,t2) + (Cra + AC1)x(ty — 71, t2 — T2)

+(Dy 4+ ADq)w(ty, t2) (2)
2(t1,te) = Cx(ty,ts) + Dw(ty, t2) (3)

with I(O,tg) = f(tg) for ¢, 86 [—7'2,0], .'L’(tl,O) = g(tl) for ¢; € [—Tl,()], I(tl,tQ) =

h O ph(t,,t h(t, —
|l | st = [ Jmt st =t = [0 T0)
where z"(t;,15) € R™ and z"(t;,1,) € R™ are the horizontal and vertical states, respec-
tively, y(t1,t2) € RP is the measured output, z(¢;,t3) € R" is the signal to be estimated,
w(ty, ta) € R™ is the exogenous input, and 71, 75 > 0 are constant time delays. Matrices
A, Aq, B, C, Ci, D and D, are known constant real matrices. The uncertainties are
assumed to be of the form

{AA AAy AB]

_ | M
AC, ACy,, AD, —[ }F[Nl Na N | (4)

M>
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where M;, M,, Ny, N; and N, are known real constant matrices, and F' € R**! is an
unknown real matrix, that satisfies

FTF <. (5)

The uncertainties AA, AAy;, AB, ACy, ACiq and AD;, are said to be admissible if
both (4) and (5) hold. In this paper, we consider the following 2-D continuous filter, in
order to estimate z(ty,t2):

(y): ié(th to) = Asz(ti,ta) + Bry(ti, ta) (6)
é(tl, tg) - Cfi‘(tl,tQ) (7)
“h
where Z(t1,t5) = ﬁvgii’zz; ], with 27(t;, ;) € R™ and 3%(t;,t,) € R™ the horizontal

and vertical states of the filter, respectively, and Z(¢;,t3) € R" the estimate of z(t1,t2).
The matrices Ay, By and (Y, are to be selected using the procedure developed later.
Denote

h(ty, ta) = [ (t1, t2)T 2P (th, t) )T, T0(t, te) = [2°(t1, ta)T  2V(E1, E2)T]T,
h v

~h . . X (tl — Tl,tg) ~v . . s (tl,tg — 7'2)

Pl —mt) = [:@h(tl Sty |0 Tl T = G ) |
z

(t1,t2) = z(t1, t2) — 2(t1, t2), E(tr, ta) = [#"(t1, )T &0 (t1, 1) "7,
Ii’h(tl — 71, tg)

z
E(tl,t2) = [#"(t1, t2)T B (t, )", g(tl — Tty —To) = F(t by — ) } .

Then the filtering error dynamics from the systems (X) and (X) can be written as
follows:

(Be): &ty ty) = (1Zl + AA)g(th ty) + (Ad + AAd)g(tl —Ti,ty — Ty)

Z(ty,ty) = CE(ty, ty) + Dw(ty, ty) (9)
where
A=0A;0", Ay=dAy0", B=3B;, C=C;d", D=D, (10)
AA = @AAJ@T, AA,; = @AAdf(IDT, AB = ®ABy,
and the augmented matrices are given by:
~ A 0 ~ B
Af_[Bfol Af]’ Bf_{BfDl]’
- Ay 0 .
~ AA 0 ~ AB = AA, 0
Adr= [BfAcl A, ] BBy = [BfAD1 } o Ay = {BfAcld 0 } »(12)
I,, 0 0 0
B 0 0 I, O
® = 0 I, O 0 (13)
0 0 0 I,

The robust H,, filtering problem to be addressed in this paper can be formulated as
follows: Given a scalar v > 0 and the 2-D continuous system with delays (X), find an
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asymptotically stable filter (X) in the form of (6) such that the filtering error system
(3.) is asymptotically stable and the transfer function of the error system given as

Tso(s1,52) =C[I(51,52) — (A + AA)

(gt AAI(e e ™ (B 4 AB) + D, 14
satisfies
[ Tz0lloe <, (15)
for all admissible uncertainties and with null initial conditions, where
I(01,02) = diag(o11n,,0215,) (16)
and
[Tz (51, 52) |00 = SUP  Omax[T5 (761, 02)]- (17)

01,02€R

3. Main Results. In thissection, an LMI approach will be developed to solve the Robust
H, filtering problem formulated in the previous section. Before giving the main results,
we present some stability conditions that will be used in the following developments.

3.1. Stability issues. This section discusses the stability of the following free 2-D con-
tinuous system:
i‘(tl,tQ) = A!L’(tl,tg) +Ad!L’(t1 —Tl,tg —Tg). (18)
To test the stability of system (18), the following condition, based on the characteristic
polynomial, can be used:
C(s1,82) #0 for (s1,s2) € D?, D? ={(s,55) : Re(s1,s7) >0} (19)
where
C(s1,82) = det[I(sy,s2) — A — Agl(e 17 e 27)). (20)

This condition is difficult to use in practice for the stability problem, so an alternative
will be used, based on Linear Matrix Inequalities (LMI).

Lemma 3.1. The 2-D continuous system with delays (18) is asymptotically stable if there

exist matrices P = diag(Py, P,) > 0 and Q = diag(Qn, Q,) > 0 satisfying the following
LMI:

ATP 4+ PA+Q PAy

ATP —Q

Proof: We prove Lemma 3.1 by contradiction. Suppose that although the conditions
of Lemma 3.1 are satisfied, the 2-D continuous system (18) is unstable. Then, there exists
(s1,52) € D? such that

< 0. (21)

det[I(sq,s9) — A — Agl(e™°1™,e72™)] =0 (22)
Hence, there exists a vector v # 0 such that
I(Sl, 82)?} = [A + Ad[(eislﬁ, 6752T2)]U. (23)

It is easy to see that
v [PI(s1,82)" + I(s1,82) Plv = 2v*diag(Re(s1), Re(s2))Plv (24)

v [P(A+ Agl(e '™ e 52™)) 4 (A + Agl (e '™, e *>™))*Plv
= v [ATP + PA+ PAI(e 5™ e7%2™) 4 [(e™51™ e™52™)* AT Plu. (25)
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From (23), (24) and (25) we obtain the following result
2v*diag(Re(s1) Py, Re(s2)Py)v = v*[ATP + PA
b PAG (e e ) 4 I(e 5 e %) ATy,
By applying the Schur Complement Formula to (21) we obtain
ATP+PA+Q+ PAQ "ATP <0. (27)
It follows from @ > 0 and (s, s7) € D? that
[Q — PAJ(e~™, e=)]Q ' [Q — PAU (™™, ™) > 0,
which then implies
PAGI (e e72) + [(e™"1™ e 27) Ay P
< Q+PAddmg( “2Re(s1)m (1 o ~2Re(s2)2 () -1) AT P
<Q+PAQ 'AIP. (28)

This, together with (27) and v # 0, means that the right-hand side of (26) is negative.
On the other hand, (s, sp) € D? and the positive definiteness of P, and P, implies that
diag(Re(s1) Py, Re(soP,) > 0; therefore, the left-hand side of (26) is nonnegative, leading
to a contradiction, which completes the proof.

Introduce now the following Lyapunov-Krasovski functional [24].

V(ty,ta) = Vi(ty, ta) + Va(t, ta), (29)
Vi(th tg) = l'h(tl, tg)TPhl'h(tl, tg) +/ xh(ﬁ,tQ) th' (0 t2) 0 (30)
t1—71
‘/2(t17 t2) - xv(tla tZ)Tvav(tla tZ) +/ xv(tla ) Qv (t27 ) 01 (31)
ta—T72

with the associated unidirectional derivative of V(¢1,t5) in (29) defined as [15]
a‘/l (tla t?) + a%(tla t2)

oty oty
where P, > 0, P, > 0, @5, > 0 and @), > 0. Then, we have the following result:

Vu(tl,tg) = (32)

Lemma 3.2. The 2-D continuous system with delays (18) is asymptotically stable if
Vi(t, ta) < 0. (33)
Proof: By using the calculus given in [24], we obtain

Vit 1) = &(tr,1)" h”(if}*Q " g]f(tl,tz),

where

E(trt) = [t 1) 2ty —m,te — 7).

her(PA)+@Q PAy

Now, for any &(t,t2) # 0, Vu(tl,tQ) < 0 requires that [ ATP —0

< 0, so
the proof is completed, by simply using Lemma 3.1.

Lemma 3.3. [33] Let D, S and F be real matrices of appropriate dimensions with F
satisfying FTF < I. Then, for any scalar e > 0

DFS + (DFS)" < 'DD" 4 ¢87'S.
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Remark 3.1. The proof of Lemma 3.2 given in [24] is not justified since in 2-D sys-
tems, until the moment, there are no results proving the stability by Lyapunov-Krasovsk:
functional. On the other hand, in this paper the stability proof is obtained as a direct
consequence of the results of Lemma 3.1, which itself is established by manipulating the
characteristic polynomial. Therefore, our result validates the previous unproved results in

[24].

Remark 3.2. Lemma 3.1 provides an LMI condition for the 2-D continuous system with
delays (18) to be asymptotically stable. Lemma 3.1 can be regarded as an extension of the
existing results on asymptotic stability for 1-D continuous systems with delays [34], to the
2-D case.

Remark 3.3. It is clear that setting Ay = 0 Lemmas 3.1 and 3.2 yields precisely some
results in [14,15,18,35]. Hence, Lemmas 3.1 and 3.2 here can be viewed as extensions of
the existing results on asymptotic stability for 1-D continuous systems to 2-D continuous
system with delays.

3.2. Bounded realness. We consider now the nominal system (X,) of (X), which is
given by

(Zo) 1 &(t1,t2) = Ax(t, t2) + Agx(t — 71, t2 — T2) + Bw(ty, t2) (34)
2(ty,te) = Cx(ty,ts) + Dw(ty, t2) (35)

where the transfer function matrix is given as
T.(51,82) = C[I(s1,82) — A — Agl(e * ™, e ™) 'B + D. (36)

Now, we give the bounded realness for 2-D continuous system with delays and no
uncertainties (), which plays a key role in solving the robust H,, filtering problem
investigated in the next section.

Theorem 3.1. Given a scalar v > 0, the continuous system with delays (X¢) is asymp-
totically stable and satisfies the Hy performance |T,u|lc0 < 7 if there exist matrices
P =diag(Py, P,) >0 and Q = diag(Qn, Qy) > 0 such that the following LMI holds:

ATP+PA+Q PA; PB CO7T
* —Q 0 0
* x —yI DT
* * x* =l

<0. (37)

Proof: First, from (37), it is easy to see that
ATP+PA+Q PA,
ATP —Q
which, by Lemma 3.1, gives that system (18) is asymptotically stable. Next, we show the
H,, performance: by applying the Schur Complement Formula to (37), we obtain

V:=71-D"D>0

<0

and
(ATP+ PA+Q+~'CTC + PA,Q *ALP)
+[PB+~7'CT"DIVTBTP +~y7'D"C] < 0.
Multiplying this inequality by I yields
[her (AT (yP)) + (vQ) + CTC + (YP) Ay(vQ) *AZ (vP)]
+[(vP)B + CT"DIV BT (vP) + D"C] < 0. (38)
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Let P =P > 0 and Q = vQ > 0; then, (38) can be rewritten as
[her(ATP) + Q4+ CTC + PA,Q 'ATP)+ [PB +CTD|V '[BTP 4+ DTC] < 0.
Therefore, there exists a matrix U > 0 such that
—her(ATP) —Q — CTC — PAQ 'ATP > [PB+CTDIV Y BTP + DTC] + U. (39)
Define
Q(50y, j02) = 1(j0y,50;) — A — Agl(e 9™ e 3%272),
2(jb1,j05) = PAJI(e 70T 7102,
Recalling that for any matrices Ky, K, and K3 of appropriate dimension, with Ky > 0,

KiKs+ KiK| < KI KoK, + KiK' K. (40)
Therefore,
2(j01,302) + 2(j61, jb2)" < PAQT'AGP + Q. (41)
Then, it can be verified that
PI(j0y,765) + I(—3561, —j6s)T P = 0. (42)

By (39), (41) and (42), we have that
Q(—j61,—j02)" P+ PQ(j61,j0) — CTC
= — her(ATP) — 2(jy, j6s) — 2(j6:, j65)* — CTC (43)
>(PB+CTD)V YBTP + DTC) 4+ U.
Since system (X)) is asymptotically stable, we have that
det(I(j01, j0s) — A — Agl (™% e71%2)) £ 0,
for all 6,0, € R. Therefore, Q(j6y, j0s) ! is well defined for all #;,6, € R. Now, pre- and
post-multiplying (43) by BTQ(jb,, j0:) T and Q(j6,, j05) B, respectively, we have that
for all 0,0 € R the following holds:
BTQ(j61,705) T [Q—3561, —j0.)" P + PQ(j0y,j6) — CTCIQ(j6;, j05) ' B
> BTQ(j6,, 05) " TAQ(6,, j0,) ' B (44)
where
A= (PB+C"D)WV™Y(B"P+ D"C) +U.
Then, by noting (36), we have
721 - Tzw(—j91, —j92)TTzw(]91,j92)
=71 — [BTQ(—jby, —j62) TCT + DT|[CQ(j6;, j62) ' B + D]
=7*T — D"D + BYQ(—j6,, —j0s) T[PQj6y, j05)
+ =01, —j02)" P — CTCI(561, j62) ' B (45)
— BTQ(—j6,, —j6,)"T(PB 4+ CTD) — (B"P + D"C)Q(j6,, j6,) ' B
>V 4+ BTQ(—56,, —j0,) TAQ(j6,, j0,) ' B
— B"Q(—j6,,—j6,)""(PB+ CT"D) — (B"P + DTC)Q(j6,, j0,) ' B
By using the relation (40), we obtain
VI — Tou(—j01, —j02) " Tou(j01, j02) >V — (BTP + DTC)A"Y(PB+CTD).  (46)
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Now, observe that
A= (PB+CTD)W YBTPDTC)=U >0
Then, by the Schur Complement Formula, we have that
v B"P+D'C
PB+C"D A
which, using again the Schur Complement Formula, gives
V — [B"P + DT"C]A~'[PB +C"D] > 0. (47)
Then, it follows from (46) and (47) that for all 6,0, € R
VA — Ty (=601, —50) T, (561, j65) > 0. (48)
Hence, by (48), we have ||T,,||~ < 7, which completes the proof.

> 0,

Remark 3.4. The delay is a source of instability and poor performance; Theorem 3.1
provides a sufficient condition for the 2-D continuous system with delay (Xo) to be asymp-
totically stable and satisfy a specified Hy performance level. This condition can be tested
easily by resorting to some standard numerical algorithms, with no tuning of parameters
involved [36]. Moreover, taking Aq = 0 in Theorem 3.1, our results reduce to Theorem
3.1 in [13]. Hence, Theorem 3.1 here can be viewed as an extension of the existing results
on the bounded realness condition for 2-D continuous systems to 2-D continuous systems
with delays. It is also worth pointing out that in the case when system (X) reduce to a 1-D
continuous system with delays, Theorem 3.1 coincides with the bounded realness condi-
tion for 1-D continuous systems with delays [34]. Therefore, Theorem 3.1 can be regarded
as the extension of existing results on bounded realness for 1-D continuous systems with
delays to the 2-D case.

Now, we are in a position to present the solvability condition for the robust H, filtering
problem with delay.

3.3. Robust H, filtering. Extending Theorem 3.1 to the uncertain 2-D system (%)
yields the following robust H,, filtering criterion.

Theorem 3.2. Given a scalar v > 0, the 2-D robust Hy, filtering problem is solvable if
the 2-D system (X) is asymptotically stable with v performance. That is, if there exist a
scalar € > 0 and matrices Z, O, ¥, X = diag(Xp, X,) > 0, and Y = diag(Y},Y,) > 0
with Xy, Y, € R" and X,, Y, € R™ satisfying the following LMIs:

[ Ji1 Ji2 YAj+eN[ Ny YA;j+eNINy YB+eN[ Ny Jig Y M,
* J22 J23 J23 J25 CT XM1 + \IIMQ
$ % —Y +eNIN; Y +eNJNy NJ Ny 0 0
£ * —S+eNTN;  eNIN, 0 0 <0, (49)
k% * * eNI'Ny — 41 DT 0
k% * * * —I 0
R * * * * —el ]
X-Y >0, (50)
S—Y >0, (51)
where
Jiu=her(YA) +Y +eNINy, Jyp=YA+ ATX + CTOT + ZT + Y + eNI'Ny,
J16:CT—@T, JQQZhGT(XA—F\I/Cl)—FS—l—GNlTNl,

J23:XAd—|—\chld—|—6N1TNd, J25:XB—|—\I/D1+€N1TN2
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In this case, a desired 2-D continuous filter in the form of (Xf) can be chosen with
parameters as follows:

Ap = X' ZY YR (52)
By = X'V (53)
Cr =0y 'yy" (54)
where
Xip = [ X812 X(ju ] , Yo = [ Y}(l)m Yq?n ] , Sz = [ 5812 5312 ] ) (55)
wn which Xp12, Xo12, Yai2,Ye12, Shio and Syia are nonsingular matrices satisfying
XpYh=T—-XY ' SpYL=I-Sy* (56)
Proof: Let Y, =Y, ', Y, = Y1, Y = Y~!. Then, the relations (50) and (51) can be
written as
[)I( §]>0, [}gé]>0 (57)

By the Schur Complement Formula, it follows from (57) that
V-X1>0, VY -S1>0
which implies that 7 — XY and I —SY are nonsingular. Therefore, by noting the structure

of X, Y and S we have that there always exist nonsingular matrices Xp12, Xy12, Y12,
Y12, Spi2 and Sy12 such that (56) is satisfied; that is,

XpoYiho =T — X3V,  SpieYi, =1 — SpYa, (58)
XUIZK?;Q =1 Xv}_/va SUIQ}/Q),I;Q =1- Svy;n (59)
Set
_ Y, [ _ Y, I I X
M= |yt o] = [V o] me= {5 ]
. ¢ T S S,
H02—|:0 X£2:|, Hh3—|:0 Si:fl?:|, Hv3—|:0 51";112:|a
| Oy 0 | e O | s O
m—{o nm} m‘{o nm} m_{o Hw}
Then, by some calculation, it can be verified that
_ P, 0 _ Q 0
P = H2H1 1 = |: Oh PU :| ; Q = H3H1 1 = |: Oh Qv :| (60)
where
" XhT12 XhT12(Xh - Yh)_thIZ ’ ! X£2 XuT12(Xv - Y;J)_IXUIZ ,
Qh — Sh Sh12 P — Sv S’U12
Slj;l2 Si:zru(sh - Yh)flshn ’ ! ngpu 552(Sv - Yv)flsvm

Observe that
Xp — X2 X715 (Xp — Vi) ' X ' X =V >0,
S — S12[Sh19(Sh = Ya) 'Sa] 'Siha = Yi > 0,
Xy = Xio[ X5 (Xy = Vo) 7' Xyna] 7' X1, = ¥, > 0,
Sy — 512[5:{12(511 — K,)’lSuu]’15312 =Y, >0.
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Therefore, it is easy to see that P, > 0 and P, > 0. Now, pre- and post-multiplying
(49) by diag{Y,I,Y,I,I,I,1}, we obtain

(YJY Yo Y(YAy+eNIN)Y Y(YAq+eN{ Ny) Y(YB +eN[ No) Y.Jig My ]
* Joo JosY Jo3 Jos ct Jy
%  Y(=Y +eNIN)Y Y (=Y +eNIN) €Y NI N, 0 0
* * * —S+eNIN, eNT Ny 0 0 |<0(61)
* * * * eNg No—yI DT 0
* * * * * —-I 0
| x * * * * x  —el |

which, by the Schur Complement Formula, implies

[ her(AY) + Y Mlg AdY Ad B YC’T - }/120? 1
Xx M22 M2_3 XAd + XlngCld XB + X12BfD1 CT
* x =Y -1 0 0
* * * -S 0 0
* * * * —~I DT
* * * * * —vI
R ] o . e J
M, M, Y N{ Y N{
XM, + X12Bf M, XM, + X12Bf M, NlT NlT
o ATT o ATT
+e ! 8 8 +e Y]\][?%d Y]\][?%d <0 (62)
0 0 N, N,
L 0 1L 0 ] L 0 1L 0 |

where
My, = A+ YA"X + YOI B X, + Yis ATXT, + 1,
J27 :XMl + \IJMQ,
Moo =XA+ ATX + XIQBfCI + ClTB?XITZ + S’
M23 = XAdY + \chldya
and Ay, By, C; are given in (52)-(54). By (60), the inequality (61) can be rewritten as

her(®'TI] PR A 07T ®) + &'TIT QI & "I PRPA,P" T, &'TI] POB, &'TI] C;o”

% —oTrlQme 0 0
* * —~I DT
% * * —~I
-~ . - AT
oTTpor, | [ Tl ponr, 1" oTuToNT | [oTnloNT
Tl & T Tl & T
b 0 0 Lo | Tu{eny || etu{eNy | _ (g3
0 0 Ny Ny
0 0 0 0

where ® is given in (13), and
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Pre- and post-multiplying (63) by diag(II;"®T  11;"®~7 I, 1) and diag(®~'II;"', &~ !
I1,%,1,1) results in

her(PA) . .
+Q
Agp -Q * *
BTP 0 I o«
C 0 D —I (64)
~ ~ - N
por, 1 [ pon 17 ONT 7 [ eNT
S o 0 oNT | | ONT
+ € 0 0 +e€ N2T NQT <0
0 0 0 0

where the relationship ®7 = & ! is used, and A, Ay, B, C and D are given in (10). Now,
noting that

[Azzlf Afidf ABf]:MlF[NI Nd N2]7

and using Lemma 3.3, we have

her(POAADT) + x P&, PO M,
@Aﬁg}@TP 0 * = <! 0 0
ABTOTP 0 0 x| = 0 0
0 0 00 0 0
oNT ] [ oNT 17
ONT ONT
+ L . < 0.
oA || W
0 0
This, together with (64), gives
PA+AAD) +(A+AADTP+Q * = x
(Ag + AP —Q x * <0
(B+ AB)TP 0 —I =x '
C 0 D —I

Finally, by Theorem 3.1, it follows that the error system (X.) is asymptotically stable,
and the transfer function of the error system satisfies (15), which completes the proof.

Remark 3.5. Theorem 3.2 provides a sufficient condition for the solvability of the robust
H, filtering for 2-D continuous systems with delays. A desired filter can be constructed
by solving the LMIs in (49)-(51) and computing X5 and Y12 such that (56). These LMIs
can be solved efficiently, and no tuning of parameters will be involved [36].

Remark 3.6. From Theorem 3.2, it is easy to see that the minimal value of the Hy, norm
v > 0, which satisfies the LMIs in (49)-(51), can be determined by solving the following
optimization problem:
minimize y
,S,X,Y,Z,0,U
subject to
e>0, S>0, X>0, Y>0, (49), (50), (51).

In the case when there is no parameter uncertainty in system (X), by Theorem 3.2, we
have the following corollary.
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Corollary 3.1. Consider the 2-D continuous system when there is no parameter uncer-
tainty in system (X). Then, the Hy, filtering problem for this system is solvable if there ex-
ist matrices 7, ©, ¥, S = diag(Sh, S,) > 0, X = diag(X,, X,) > 0,Y =diag(V,Y,) >0
with Sp, Xp, Yy, € R™ | and S,, X,,, Y, € R™ satisfying the LMIs in (65)-(67) with the de-
sired 2-D continuous filter (X) chosen with parameters as given in (52)-(54).

i YA+ ATY +V * % * ]
ATY + XA+ VO, +Z+Y her(XA+UC)+S *  x *
ATY ATX + CT T -Y x * * <0, (65)
ATY ATX + CT T -Y -5 * ’
B'Y BTX + DIT\IIT 0 0 —yI
| C -0 C 0 0 D —~I |
X -V >0, (66)
S—Y >0 (67)

Remark 3.7. Theorem 3.2 provides an LMI technique to investigate the robust stability
and Hy, performance of the filtering error system (X.). When there are no state delays
in the system, this theorem reduces to Theorem 2 in [13]. The condition (51) implies that

S Y . . 0o I][S Y][o I o
VY } > 0, which can be rewritten as [ 70 ] [ vV v } [ 70 ] > 0, that implies
i Y Y ©1

v S ] > 0, pre- and post multiplying (49) by ¢ and T, with ¢ = | @2 |, @1 =
~ ¥3

598 883E§ w_{oo OOO[O]w-—F)OIO 00 0

y W2 — y V3 —
0000700 000O0O0O0T1I 00077000

n

and using the Schur Complement Formula, we reproduce the result in Theorem 2 of [13].

Remark 3.8. Suppose that the LMIs (19)-(51) admit a feasible solution given by X, Y,
Z, ¥, and ©. Then, the computation of an Hy filter that solves the H, filtering problem
of the 2-D continuous system (X) can be carried out by following these steps:

1. By (58) and (59) we have that

Xpi2 r | Yn—Xy | o Xyi2 r | Yo—X, |
Rt Rl e R Bl R b R

2. Compute Xp12, Xy12, Yaie, Yoi2, Spi2 and Sy1o using the Singular Value Decomposi-
tion (SVD) in (68).

3. Construct a positive definite matriz X12 > 0 and Y12 > 0 of the form (55).

4. Then, by (52)-(54), compute the filter parameters Ay, By and Cy.

4. Numerical Example. This section presents an example that illustrates the effective-
ness of the proposed results. For this, consider an uncertain 2-D continuous system ()
with the following parameters:

-1 02 ] —-05 0.3 —04 0.1 —0.2 0.2
0.6 —2 02 0 4| 03 04 08 0
—03 07 | =23 06 |’

A - ‘

-0.2 0.3 -09 03 |’
—-0.1 0.2

0.1 -1.8 —-0.4 08 0.1 -0.8
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06 1" 08 05 1" 02 01 1" 0.2
0.1 —0.9 —0.3 —0.8 —0.6 —0.5
¢= 08 | ’ Cr = 0.2 0 » Cra = 0.4 03 | B = —0.8 |’
0.5 —0.1 0.5 0.2 0.1 0.3
0.1
0.1 0.3 0.2
D, = {0.3},]\@:[0.6 03 | =04 08], My = {0_1],1\41: 05|
—0.1

Ny=1[02 01 | =02 03], D=0.5 N, =0.2.

To the best of our knowledge, there is no previous result dealing with the H,, filtering
problem for 2D continuous systems with delays, so a direct comparison is not possible.
The purpose of this example is to find matrices Ay, By and C} of the filter ¥ such that
the system 3, is asymptotically stable and satisfies a prescribed H,, performance level 7,
which is assumed to be 0.6 in this example.

Then, we resort to Matlab to solve the LMIs in (49) and (50); the solution is the

following:
Y — dia 2.7096 0.9646 2.5271 0.6081
- aiag 0.9646 2.5763 |’ | 0.6081 2.0549

v — 1.2111 0.0629 1.3419 0.5932
— W9\ 0.0629 1.7058 || 0.5932 1.7888

2.5031  0.2804 —0.8957 —0.8750

0.2498  2.2700  0.9368 —1.7046

—1.6468 —0.1829 7.4111 —1.8855
| —0.2420 —0.8398 —0.9728 1.9107

[ -0.1255 —3.0194 —3.2943 1.9751 |
~ | —1.8908 3.6880  8.7438 —2.2558
0= [ 0.8064 —0.6856 —1.5351 0.5141 ] , € = 0.2587.
To construct the desired filter, using the steps discussed in Remark 3.8, we have that

~1.0386  0.2170 1.1315 —0.1704
Kz = { —0.6840 —0.3199 ] Yz = { 0.5405  0.3567 ] ’ (69)

—1.0156 —0.0458 1.0092  0.1243
Koiz = { 0.1084 —0.3647 ] Yoz = { —0.3447 0.3638 ] ' (70)

It can be verified that the matrices Xj12, Xy12, Ya12 and Y12 chosen in (69) are non-
singular and satisfy (56). Then, from Theorem 3.2, the corresponding filter parameters

are

7 =

—1.2581 0.0636 —0.4664 1.8546 1.4466  —0.4067

A, — 0.9566 —9.1271 ‘ —3.9566  3.2678 B, — 6.3460 —10.6605
= 0.9321 —1.4224 | —7.2548 26707 |’ 1~ 3.4417  =8.7709 |’

1.0795  2.0964 ‘ 25319 —6.3226 —4.3932  3.5793

Cr=[0.3482 —1.7253 | —1.5584 0.6711 ].

We note here that Theorem 3.2 is valid for any time varying perturbation matrix
F(t,t2) that verifies (5). For simulation only, we fix F' = 0.8: the corresponding responses
EM(ty,ty), EM(t1,t5) of the error system are shown in Figures 1 and 2, respectively, whereas
Figure 3 gives the response of the error Z(¢;,ts). The frequency response of the error
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FIGURE 1. Response of £(t,, ;)
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100

FIGURE 2. Response of gg(tl, ts)

system is given in Figure 4; the achieved H,, norm is 0.4838, which compares well with
the proposed value v = 0.6. In summary, the simulation results show the effectiveness of
the designed filter.

5. Conclusions. This paper has proposed a methodology to design H,, filters, for 2-
D continuous systems described by a Roesser state-space model with state delays and
norm-bounded parameter uncertainties in the state and measurement equations. More
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FIGURE 3. Filtering error response of Z(ty, )
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FIGURE 4. Frequency response of error system

precisely, an LMI approach for designing a 2-D continuous filter has been developed,
to ensure asymptotic stability and H,, performance of the 2-D filter. In addition, an
optimization problem for optimizing the H,, performance is given. A numerical example
has shown the effectiveness of the proposed method.
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