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Abstract. Maximum a posteriori (MAP) adaptation is currently one of the most widely
used speaker adaptation techniques. However, the effectiveness of MAP relies signifi-
cantly on the quality and quantity of adaptation data. Although an FCMAP approach
that incorporates a fuzzy logic controller (FLC) into MAP could avoid performance degra-
dation that is caused by a poor MAP estimate resulting from relatively small amounts of
adaptation data, the performance of FCMAP cannot be maintained in a situation where
the quality of the acquired adaptation data is low. To address the issue of FCMAP,
this research proposes a support vector machine (SVM)-embedded FLCMAP method
that improves the fuzzy controller in the conventional FCMAP. The developed SVM-
embedded FLCMAP determines the quality of adaptation data by using an SVM. The
SVM-estimated data quality information, together with the data quantity, can then be
used to drive the fuzzy inference operations of the FLC. The proposed SVM-embedded
FLCMAP provides a method to ensure the robustness of FCMAP against data infe-
riority. The experimental results show that an SVM-embedded FLCMAP outperforms
FCMAP, especially when encountering substandard data. The proposed SVM-embedded
FLCMAP performs more efficiently than hybrid SVM-FLC MAP and is more flexible for
adaptive data utilization.
Keywords: Speaker adaptation, Maximum a posteriori, Adaptation data, SVM, FLC

1. Introduction. Automatic speech recognition (ASR) processing has recently received
increasing attention [1-6]. A speech recognition system that can always maintain a sat-
isfactory recognition performance during adverse conditions has been a challenging issue
in the field of ASR. During the process of speech recognition, the mismatch between the
pre-established reference templates and the testing template from a new speaker (or from
a speaker known to the system but in poor “vocal form”) disrupts the recognition system
and significantly compromises recognition performance. Speaker adaptation (SA), also
referred to as model-based adaptation, is the countermeasure that addresses this issue.
SA is a process that adapts a complete speaker-independent (SI) model into a speaker-
dependent (SD) one. This achieves an SD-like performance, although it requires a fraction
of the speaker-specific training data.

There are currently three primary categories of SA techniques [3]: 1) maximum a poste-
riori (MAP) adaptation [7,8], which represents Bayesian-based adaptation; 2) maximum
likelihood linear regression (MLLR) adaptation [9,10], which represents transformation-
based adaptation; and 3) eigenvoice-based adaptation [11-15]. The eigenvoice-based adap-
tation category is a relatively novel SA technique that first appeared around 2000. It is
also known as a speaker-clustering-based adaptation process where an SD speech model
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is established for every member in a group of speakers. Feature vectors (eigenvoices) are
extracted through principal component analysis (PCA) to build the eigenvoice speech
model. Prior to the advent of the eigenvoice approach, MAP and MLLR adaptation were
the most common techniques for speaker adaptation. They are still used in the majority
of speech recognition systems. MAP adaptation is provided with local but specific effects
of adaptation, in contrast to MLLR adaptation, which brings about an overall and yet
somewhat coarser speech model adaptation with the same adaptation samples.
This research focuses on MAP adaptation, which updates only the speech model asso-

ciated with the adaptation samples, whereas the remaining models are unchanged. The
principle of “direct model adaptation” supporting MAP adaptation is shown in Figure 1.
The mean vectors that are not adapted (µ4 and µ5) have no adaptation samples acquired
from the speaker’s adaptation utterances, whereas the mean vectors (µ1, µ2 and µ3) with
the respective adaptation samples N1, N2 and N3 available are adapted. The quality of
MAP adaptation is determined significantly by the quantity and characteristics of the
utterances acquired from adapted speakers. Insufficient or inadequate adaptation data
would probably result in an unreliable speech model adaptation that inevitably jeopar-
dizes recognition performance.
To address the issues caused by the scarcity of adaption data, the FCMAP variant of

MAP [16] adheres to the principle that adaptation should not deviate significantly from
prior speech model means when adaptation data are limited. In FCMAP, the frame-
work of a fuzzy logic control (FLC) mechanism is incorporated into MAP to resolve the
unreliable adaptation resulting from insufficient training samples. FCMAP has proven
its reliability by achieving superior recognition rates while addressing adverse conditions
of adaptation data scarcity. However, although FCMAP enhances MAP and is effective
when the available adaptation data are limited, FCMAP performance cannot be main-
tained when the quality of the acquired adaptation data is low. Previous research [1]
has explored a validation scheme of FCMAP adaptation data that enhances the quality
of FCMAP adaptation, despite the inferiority of adaptation samples. A hybrid support
vector machine (SVM)-FLC MAP adaptation approach was developed to use an SVM
classifier [17,18] that verifies the appropriateness of adaptation data before performing
FCMAP adaptation. The hybrid SVM-FLC MAP method may provide an immediate so-
lution to the problem of unreliable FCMAP adaptation caused by inadequate adaptation
data. However, hybrid SVM-FLC MAP encounters significant difficulty when the major-
ity of adaptation data are unacceptable. The SVM classifier design of hybrid SVM-FLC
MAP adopts a direct “hard classification” scheme that classifies each adaptation utter-
ance from the speaker as valid or invalid. Only utterances verified as valid are re-sent
to the following adaptation procedure. This adaptation process is questionable: only a
slight adaptation occurs, or possibly, no adaptation at all. Therefore, speech recognition
performance would not be improved.
This study proposes a scheme for MAP adaptation (SVM-embedded FLCMAP adapta-

tion) that follows the same principle as FCMAP adaptation by regulating the adaptation
according to the quality and quantity of adaptation data under an FLC mechanism. This
addresses the undesired effect of poor hybrid SVM-FLC MAP adaptation resulting from
the inflexible design of accepting or rejecting adaptation data completely. Compared with
FCMAP, the fuzzy controller of the proposed SVM-embedded FLCMAP is an enhanced
version that considers one key issue on the quality of adaptation data in addition to the
quantity of adaptation data; the fuzzy control mechanism in SVM-embedded FLCMAP
would be regulated in a novel manner that allows speaker adaptation to be implemented
entirely when adaptation data are both sufficient and highly qualified, and the adaptation
speed would be adjusted to be as slow as possible if poor and substandard adaptation
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data are encountered. Furthermore, in contrast to the “hard classification” of hybrid
SVM-FLC MAP for determining the quality of adaptation data to be only acceptable or
unacceptable, SVM-embedded FLCMAP offers a “soft classification” scheme that is more
flexible by using the SVM to estimate the degree of availability of adaptation data. Fuzzy
theory has been used in the SVM classifier (Fuzzy SVM, FSVM) [19], where the method
of employing the fuzzy mechanism was completely different to this research. The design
of the FLC mechanism’s fuzzy inference being driven by SVM-derived information has
rarely been attempted and is therefore an interesting issue to be explored in this research.
FLC is a popular modeling technique [20-22] and has been used in a wide range of suc-
cessful applications [23-25], including speaker adaptation applications in previous studies
[1,2,16]. In summary, the proposed SVM-embedded FLCMAP adaptation method in this
research has several advantages compared with those without:

• robustness against both the scarcity and the inappropriateness of adaptation data,
• an improved adaptation method with an enhanced FLC as compared with previously
developed FLC-based speaker adaptation methods that neglect the quality of adap-
tation data in FLC design (e.g., FCMAP [16] and FLC-MLED eigenvoice adaptation
[2]), and

• improved flexibility and greater performances, compared with those with rigid veri-
fication schemes of adaptation data (e.g., hybrid SVM-FLC MAP adaptation [1]).

The remainder of this research is organized as follows. Section 2 details the theoret-
ical formulation of FCMAP and hybrid SVM-FLC MAP adaptation methods. Section
3 introduces the concept that a confidence factor parameter derived from SVM is used
for indicating the quality of adaptation utterances, followed by the formulation of the
fuzzy control mechanism of the developed SVM-embedded FLCMAP for model adapta-
tion in this research. Section 4 presents the experiment results where the effectiveness and
performance of SVM-embedded FLCMAP are demonstrated, compared with the conven-
tional MAP, FCMAP, and hybrid SVM-FLC MAP. Finally, Section 5 provides concluding
remarks.

2. FCMAP and Hybrid SVM-FLC MAP. As discussed, MAP adaptation is a type
of direct model adaptation that attempts to re-estimate the model parameters directly
[8]. However, MAP adaptation re-estimates only a portion of the model parameter units
associated with the adaptation data. Therefore, MAP adaptation usually requires a
significant amount of data. The recognition performance is improved as the adaptation
data increase and the adaptation gets covering the model space. When a sufficient amount
of data is available, the MAP estimation yields recognition performances equal to those
obtained using maximum-likelihood estimation [7]. As shown in (1),

µ̂k =
Nk

τ +Nk

ȳk +
τ

τ +Nk

µk (MAP adaptation formula), (1)

the MAP estimate of the mean is essentially a weighted average of the prior mean (µk)
and the sample mean (ȳk), and the weights are functions of the number of adaptation
samples (Nk) if τ is fixed.

2.1. FCMAP. The MAP adaptation formula in (1) shows that when Nk is equal to zero
(i.e., no additional training data are available for adapting the kth Gaussian), the estimate
is simply the prior mean of the kth Gaussian (e.g., µ4 and µ5 in Figure 1). Conversely,
when a large number of training samples are used for the kth Gaussian (Nk → ∞, as an
extreme example), the MAP estimate in (1) converges asymptotically to the maximum
likelihood estimate (i.e., the sample mean parameter with the kth Gaussian, ȳk). If Nk
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Figure 1. Rationale behind MAP adaptation

is fixed, the parameter τ controls the interpolation balance between the ȳk-term and the
µk-term, (as Nk does). This is referred to as the “adaptation speed parameter” in [26,27]
and allows the adaptation speed to be increased or decreased by choosing a small or a
large value of τ , respectively. Parameter τ is also known as a “prior density parameter”
because it determines which side of and the proximity to ȳk or µk that the MAP-estimate
of µ̂k would be.
The robustness of MAP adaptation against relatively small training samples N should

not be overlooked either, and as yet in conventional schemes for MAP adaptation (e.g.,
[27-29]), a common value of τ was used for all the Gaussians of a given state, or for all
states of an HMM, or even for all HMMs. To improve MAP, Juang et al. [16], in their
proposed FCMAP adaptation, developed the concept that µ̂k should remain in proximity
to µk when N is relatively small (as defined by a large τ value) to avoid performance
degradation caused by a potentially poor estimate of ȳk. Conversely, when N is large
enough, the adaptation should move quickly toward ȳk (as defined by a small τ value).
Stating this concept as simple rules leads to the following statements [16]:
Rule 1: If N is small, then τ should be large, so that µ̂k remains in proximity to µk.
Rule 2: If N is medium, then τ should be medium, so that µ̂k is between ȳk and µk,

accordingly.
Rule 3: If N is large, then τ should be small, so that µ̂k converges toward ȳk.
FCMAP incorporates an FLC into MAP to adjust the value of τ according to the

value of adaptation samples N . The method for formulating statements of uncertain
linguistic terms in quantized forms for subsequent computations is shown in [16]. However,
the quality is more critical than the quantity of adaptation data for speaker adaptation
techniques including MAP. The primary weakness of FCMAP is that the crucial issue of
the quality of adaptation data is not considered in the FLC design of FCMAP.

2.2. Hybrid SVM-FLC MAP. Although FCMAP may be effective when limited adap-
tation data are available, FCMAP performance cannot be maintained in a situation where
the quality of the acquired adaptation data is low. Previous studies have addressed this
issue by developing a validation scheme of adaptation data for the FCMAP adaptation
framework [1]. The issue of unreliable adaptation caused by inadequate training data was
addressed, and a hybrid scheme of a support vector machine and fuzzy logic control for
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Figure 2. An example to show “hard classification” of adaptation data
by hybrid SVM-FLC MAP

MAP adaptation (SVM-FLC MAP) was proposed. The hybrid SVM-FLC MAP approach
incorporated an SVM classifier into the adaptation process to verify if the data are ap-
propriate for adaptation before model parameters were adjusted by FCMAP adaptation
[1]. If the adaptation data from the speaker were invalid, the data were rejected and
the adaptation was not performed. Otherwise, the FCMAP adaptation procedure would
start and the FLC of FCMAP would regulate the value of τ according to the amount of
adaptation data.

Figure 2 shows an example of a Chinese name “ ” (Wang, Jian-Ming) to detail how
the hybrid SVM-FLC MAP approach decides to accept or reject adaptation data. For a
human name database keyword-spotting speech recognition system, each keyword pattern
has its own HMM speech model [30] and SVM determination model. A keyword-spotting
procedure is used to extract a keyword pattern of the input speech utterance in this
system. The HMM state sequence of the keyword pattern is then analyzed [30]. The SVM
determination model of the keyword pattern then follows the analysis of the HMM speech
model. Assume that the input speech utterance is recognized as the Chinese name “ ”
after the keyword-spotting procedure is completed. The pattern “ ” has its own HMM
state sequence corresponding to the speech utterance, and the SVM determination model
of “ ” is then selected. The SVM determination model of “ ” has a separating
hyperplane that has been trained in advance using training patterns. The separating
hyperplane of the SVM determination model of “ ” can be used to determine if the
input speech signal matches “ ”. If the input speech signal is in the “ ” side
of the separating hyperplane, the input speech signal has the meaning of “ ” and is
then accepted as valid data for FCMAP adaptation. Otherwise, the FCMAP adaptation
process does not occur until the valid adaptation data have been produced.

Nevertheless, one key issue has been neglected in the presented hybrid SVM-FLC MAP
scheme from the perspective on the prohibition of the overall adaptation activity. In
the extreme circumstance that all adaptation utterances from the speaker are declared
as invalid data and prohibited from the following FCMAP adaptation, no adaptation is
performed and the performance and FCMAP effectiveness is restricted.

3. The Proposed SVM-Embedded FLCMAP. To address the issue of an unreliable
adaptation in FCMAP caused by the absence of a verification scheme for the quality of the
acquired adaptation data and avoid the occurrence of the phenomenon of no any adapta-
tion works conducted in hybrid SVM-FLC MAP, a more flexible adaptation framework,
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Figure 3. Adaptation frameworks of the proposed SVM-embedded FLCMAP

SVM-embedded FLCMAP, is developed and shown in Figure 3. The concept support-
ing the proposed SVM-embedded FLCMAP is that each adaptation utterance should
be considered when performing MAP adaptation, regardless of the quality of the adap-
tation utterance. Compared with hybrid SVM-FLC MAP adaptation, SVM-embedded
FLCMAP adaptation is a compromise for bringing in the impact of each adaptation utter-
ance. To evaluate the attribute of total adaptation data from a new speaker, a confidence
factor (cf) parameter is calculated to estimate the quality of each adaptation utterance
according to its corresponding SVM model (Figure 3). By accumulating the values of
each cf parameter, a representative value of total confidence factors is then derived for all
adaptation utterances. Finally, the fuzzy inference engine of the FLC of SVM-embedded
FLCMAP performs the reasoning of τ values for MAP adaptation based on two input
signals: the calculated value of the cf parameter and the total amount of adaptation data
(N).

3.1. Derivation of confidence factor (cf) parameter. This section uses the SVM
model to determine the cf value of each adaptation utterance. The SVM model is widely
used because it is conceptually simple [17,18]. SVM classifies new input data by using a
separating hyperplane. Assume that a set of labeled training points is {(x1, y1), (x2, y2),
. . ., (xn, yn)}. Each training point xi belongs to either of two classes and is given a label
yi, yi ∈ {−1, 1}, for i = 1, 2, . . . , n. From these training data, the hyperplane is

w · x+ b = 0, (2)

and is defined by the pair (w, b). Point xi can be separated according to the following
function:

f(xi) = sign(w · xi + b) =

{
1, if yi = 1
−1, if yi = −1

. (3)

For the ith adaptation utterance from a new speaker, a keyword-spotting ASR system
extracts the keyword speech segment from an utterance and recognizes it as the keyword
pattern k [30]. According to the recognized keyword pattern k, a trained SVM hyperplane
with label k is selected to verify the ith adaptation utterance. An index cfi (confidence
factor of the ith adaptation utterance) that governs the degree of availability of the ith
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adaptation utterance is devised as follows:

cfi =

{
1, if ith utterance classified as pattern k by kth SVM

exp
(

−di,k
f

)
, if ith utterance classified as not pattern k by kth SVM

, (4)

where di,k indicates the distance between the extracted keyword segment from the ith
adaptation utterance and the kth SVM separating hyperplane corresponding to the rec-
ognized keyword pattern; f denotes the weight control parameter.

The index cfi varies depending on the amount of confidence in the quality of the ith
adaptation utterance. The rationale supporting (4) is that the adaptation utterance
should be set as the larger cf value when its quality is superior, i.e., the adaptation
utterance is more confident to perform adaptation; conversely, a small cf value would be
suitable for a low-grade adaptation utterance to avoid endangering the system.

When checking the validity of adaptation data by SVM, the extracted keyword seg-
ment from the ith adaptation utterance has the meaning of the keyword pattern k. Its
availability for adaptation is then verified by the SVM hyperplane with label k. The
separating hyperplane of the SVM model of the keyword pattern k classifies the input
extracted keyword segment as “keyword pattern k” or “not keyword pattern k”. If the
input speech signal falls on the side of keyword pattern k of the separating hyperplane, the
input speech signal is identified as having the meaning of keyword pattern k. This means
that the speech signal is of sufficient quality and qualifies for adaptation. Therefore, the
cf value of the input speech signal is undoubtedly set to 1. Conversely, if the input speech
signal falls on the side of “not keyword pattern k” of the separating hyperplane, the input
speech signal does not match the meaning of keyword pattern k completely. This would
be significantly problematic when performing a complete adaptation. There is a tendency
to be more conservative when using imperfect training data to adapt the system, i.e., the
effect of the adaptation should be restricted in this case, so that the degree of adaptation
should be considered by the data relying on the similarity between the data and keyword
pattern k.

Figure 4. Rationale behind the devised confidence factor (cf) index
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Nevertheless, one key issue has been neglected in the preceding hybrid SVM-FLC MAP
adaptation scheme [1] from the perspective of the degree of availability of the faulty
adaptation utterance. For the adaptation utterance that falls on the incorrect side of
the SVM separating hyperplane, hybrid SVM-FLC MAP would reject it and not adopt
it for adaptation. In this research, however, the cf value of the adaptation utterance
could be viewed as a reference index for adaptation. As shown in (4), the cf value of the
ith adaptation utterance could be determined purely geometrically by the distance dik =
‖µi − µk‖, together with a tuning parameter f if the adaptation utterance is classified
as “not keyword pattern k”. When the quality of ith adaptation utterance is in doubt
because of falling on the side of “not keyword pattern k” of the SVM hyperplane and the
distance from the hyperplane is large (i.e., dik is large), then cfi should be small. When
the ith adaptation utterance is reliable, cfi should be set as 1 in instances where the
utterance is categorized as part of keyword pattern k, or cfi should be set larger if the
utterance still falls on the incorrect side of the SVM hyperplane but is in proximity to
the hyperplane (i.e., dik is small). Figure 4 shows the “phenomenon” implicated by (4).
With the cf of each adaptation utterance, what degree to the value of each confidence

factor should be considered for all adaptation data? An average of all cfi’s as shown in
(5), cf , is an obvious selection.

cf =

P∑
j=1

cfj

P
, (5)

where cf is the averaged estimate of confidence factors of total P adaptation utterances.
The value of cf denotes the quality of all adaptation data collected from a new speaker.
A higher cf value indicates greater reliability of adaptation data.

3.2. MAP under SVM-embedded FLC regulation. As discussed, MAP adaptation
performance is significantly dependent on the attributes of the adaptation data. As shown
in (1), FCMAP enhances MAP by incorporating a fuzzy controller to adjust the value
of τ according to the adaptation data size [16]. However, FCMAP does not consider
the quality of adaptation data when developing the fuzzy controller. In this research,
an SVM-embedded fuzzy logic control scheme with an index cf derived from SVM is
proposed for MAP adaptation. The developed FLC considers the quantity and quality of
data.
Consider the influence of the variation of both the total amount of adaptation data (N)

and the quality of total adaptation data (cf) on the performance of MAP adaptation.
When N and cf are large (i.e., available adaptation data are sufficient and appropriate
for adaptation), adaptation should be fast by setting a small value for τ . Otherwise,
a large value of τ should be set to prevent the adapted mean vector µ̂k from diverging
significantly from the prior mean µk. A rule base with four fuzzy implications is given
to govern the regulation of τ under the circumstance of two antecedents (N and cf), as
follows:

Rule 1: If cf is small and N is small, then τ is set to be large,
Rule 2: If cf is small and N is large, then τ is set to be rather large,
Rule 3: If cf is large and N is small, then τ is set to be rather small,
Rule 4: If cf is large and N is large, then τ is set to be small.

Let A1(cf) and A2(cf) be the membership functions associated respectively with small
and large values of cf, and B1(N) and B2(N) be the membership functions associated
respectively with small and large amounts of adaptation data available, as shown in
Figures 5 and 6.
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Figure 5. Membership functions associated with cf

Figure 6. Membership functions associated with N

In addition, let the functions f1(cf,N), f2(cf,N), f3(cf,N) and f4(cf,N) set large,
relatively large, relatively small, and small values of τ respectively in each of the four
cases. The previous set of rules can then be further clarified as

Rule 1: If cf is A1(cf) and N is B1(N), then τ = f1(cf,N),
Rule 2: If cf is A1(cf) and N is B2(N), then τ = f2(cf,N),
Rule 3: If cf is A2(cf) and N is B1(N), then τ = f3(cf,N),
Rule 4: If cf is A2(cf) and N is B2(N), then τ = f4(cf,N),

where

A1(cf) =


1 cf ≤ cf1,
cf2−cf
cf2−cf1

cf1 < cf < cf2,

0 cf ≥ cf2,

A2(cf) =


0 cf ≤ cf1,
cf−cf1
cf2−cf1

cf1 < cf < cf2,

1 cf ≥ cf2,

B1(N) =


1 N ≤ N1,
N2−N
N2−N1

N1 < N < N2,

0 N ≥ N2,
B2(N) =


0 N ≤ N1,
N−N1

N2−N1
N1 < N < N2,

1 N ≥ N2,
(6)

along with the implication functions

fi(cf,N) = ai · cf + bi ·N + ci, i = 1, 2, 3, 4, (7)
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and the final system output, as follows [20]:

τ =

4∑
i=1

wi · fi(cf,N)

4∑
i=1

wi

, (8)

where

w1 = A1(cf) ·B1(N), w2 = A1(cf) ·B2(N),

w3 = A2(cf) ·B1(N), w4 = A2(cf) ·B2(N). (9)

The system now has 16 hyperparameters (a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4,
cf1, cf2 N1, N2) to be fixed. The following iterative process is developed to set these
hyperparameters.
Step 1: An initialization setting for parameters is done in the first step here. Let

cf1 : cf2 = 1 : 3 and N1 : N2 = 1 : 3. And initialize parameters cf1 and N1.
Step 2: Estimate the parameters a1, b1 and c1 under the conditions, cf ≤ cf1 and

N ≤ N1, where

A1(cf) = B1(N) = 1, A2(cf) = B2(N) = 0,

w1 = 1, w2 = w3 = w4 = 0 and

τ = f1(cf,N) = a1 · cf + b1 ·N + c1.

In this case, i.e., the amount of adaptation data N ≤ N1 and the confidence factor
cf ≤ cf1, the appropriate values of a1, b1 and c1 are determined by using the try-and-
error experimental method that would maximize the recognition performance P i,

P i = speech recognition(τ = a1 · cf + b1 ·N + c1, tunning utterances),

where the function speech recognition(·) is used to return the recognition performance
of the proposed SVM-embedded FLCMAP adaptation with the parameter τ controlled
by selecting a1, b1 and c1 for the testing data set tunning utterances, and P i denotes the
returned recognition performance after performing the i-th iteration. Note that the try-
and-error procedure for fixing the 3 hyperparameters of FLC would thus finally return an
overall recognition rate that is better than the baseline P 0. The procedure for fixing a1,
b1 and c1 is explained in the following algorithm:

BEGIN
Input a1, b1 and c1, of untrained hyperparameters.
Initialize i = 0, and the values of a1, b1 and c1.
Increment a1.
Increment i.
Calculate P i using the function speech recognition(·).
IF (P i > P i−1) THEN

DO UNTIL (P i ≤ P i−1)
Increment a1.
Increment i.
Determine P i using the function speech recognition(·).

END DO UNTIL
ELSE

DO UNTIL (P i ≤ P i−1)
Decrement a1.
Increment i.
Determine P i using the function speech recognition(·).
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END DO UNTIL
END IF
Increment b1.
Increment i.
Calculate P i using the function speech recognition(·).
IF (P i > P i−1) THEN

DO UNTIL (P i ≤ P i−1)
Increment b1.
Increment i.
Determine P i using the function speech recognition(·).

END DO UNTIL
ELSE

DO UNTIL (P i ≤ P i−1)
Decrement b1.
Increment i.
Determine P i using the function speech recognition(·).

END DO UNTIL
END IF
Increment c1.
Increment i.
Calculate P i using the function speech recognition(·).
IF (P i > P i−1) THEN

DO UNTIL (P i ≤ P i−1)
Increment c1.
Increment i.
Determine P i using the function speech recognition(·).

END DO UNTIL
ELSE

DO UNTIL (P i ≤ P i−1)
Decrement c1.
Increment i.
Determine P i using the function speech recognition(·).

END DO UNTIL
END IF

END

Step 3: Estimate the parameters a2, b2 and c2 under the conditions, cf ≤ cf1 and
N ≥ N2, where

A1(cf) = B2(N) = 1, A2(cf) = B1(N) = 0,

w2 = 1, w1 = w3 = w4 = 0 and

τ = f2(cf,N) = a2 · cf + b2 ·N + c2.

The values of a2, b2 and c2 are fixed using the same process as for a1, b1 and c1 with
the initial condition P 0 = P i from Step 2.

Step 4: Estimate the parameters a3, b3 and c3 under the conditions, cf ≥ cf2 and
N ≤ N1, where

A2(cf) = B1(N) = 1, A1(cf) = B2(N) = 0,

w3 = 1, w1 = w2 = w4 = 0 and

τ = f3(cf,N) = a3 · cf + b3 ·N + c3.
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The values of a3, b3 and c3 are fixed using the same process as for a1, b1 and c1 with
the initial condition P 0 = P i from Step 3.
Step 5: Estimate the parameters a4, b4 and c4 under the conditions, cf ≥ cf2 and

N ≥ N2, where

A2(cf) = B2(N) = 1, A1(cf) = B1(N) = 0,

w4 = 1, w1 = w2 = w3 = 0 and

τ = f4(cf,N) = a4 · cf + b4 ·N + c4.

The values of a4, b4 and c4 are fixed using the same process as for a1, b1 and c1 with
the initial condition P 0 = P i from Step 4.
Step 6: Re-estimate both the parameter sets {a1, b1, c1} and {a2, b2, c2} again under

the conditions, cf ≤ cf1 and N1 ≤ N ≤ N2, where

A1(cf) = 1, A2(cf) = 0, B1(N) =
N2 −N

N2 −N1

, B2(N) =
N −N1

N2 −N1

,

w1 = B1(N), w2 = B2(N), w3 = w4 = 0 and

τ =
w1 · f1(cf,N) + w2 · f2(cf,N)

w1 + w2

=
N2 −N

N2 −N1

· (a1 · cf + b1 ·N + c1) +
N −N1

N2 −N1

· (a2 · cf + b2 ·N + c2).

With the initial condition P 0 = P i from Step 5 and the initial values of {a1, b1, c1}
and {a2, b2, c2} already separately determined at Steps 2 and 3 respectively, both the
parameter sets {a1, b1, c1} and {a2, b2, c2} could be re-calculated with determined initial
values through the same tuning process as in Step 2 for best recognition rate too.
Step 7: Re-estimate the parameter set {a4, b4, c4} again under the conditions, cf1 ≤

cf ≤ cf2 and N ≥ N2, where

A1(cf) =
cf2 − cf

cf2 − cf1
, A2(cf) =

cf − cf1
cf2 − cf1

, B1(N) = 0, B2(N) = 1,

w1 = w3 = 0, w2 = A1(cf), w4 = A2(cf) and

τ =
w2 · f2(cf,N) + w4 · f4(cf,N)

w2 + w4

=
cf2 − cf

cf2 − cf1
· (a2 · cf + b2 ·N + c2) +

cf − cf1
cf2 − cf1

· (a4 · cf + b4 ·N + c4).

With the initial values of {a4, b4, c4} already individually determined at Step 5 and the
values of {a2, b2, c2} already re-estimated at Step 6, new values for {a4, b4, c4} can now
be acquired by tuning for a higher P i value than in Step 6.
Step 8: Re-estimate the parameter set {a3, b3, c3} again under the conditions, cf ≥ cf2

and N1 ≤ N ≤ N2, where

A1(cf) = 0, A2(cf) = 1, B1(N) =
N2 −N

N2 −N1

, B2(N) =
N −N1

N2 −N1

,

w1 = w2 = 0, w3 = B1(N), w4 = B2(N) and

τ =
w3 · f3(cf,N) + w4 · f4(cf,N)

w3 + w4

=
N2 −N

N2 −N1

· (a3 · cf + b3 ·N + c3) +
N −N1

N2 −N1

· (a4 · cf + b4 ·N + c4).
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Since initial values of {a3, b3, c3} already separately determined at Step 4 and the
re-estimated values of {a4, b4, c4} already calculated at Step 7, new values for {a3, b3, c3}
can now be obtained by tuning for a higher P i value than in Step 7.

Step 9: Re-estimate the parameter cf2 under the conditions, cf1 ≤ cf ≤ cf2 and
N ≤ N1, where

A1(cf) =
cf2 − cf

cf2 − cf1
, A2(cf) =

cf − cf1
cf2 − cf1

, B1(N) = 1, B2(N) = 0,

w1 = A1(cf), w3 = A2(cf), w2 = w4 = 0 and

τ =
w1 · f1(cf,N) + w3 · f3(cf,N)

w1 + w3

=
cf2 − cf

cf2 − cf1
· (a1 · cf + b1 ·N + c1) +

cf − cf1
cf2 − cf1

· (a3 · cf + b3 ·N + c3).

Since the values of {a1, b1, c1} together with the values of {a3, b3, c3} have been already
re-calculated at Step 6 and Step 8 respectively, a new value for cf2 can now be obtained
by tuning for a higher P i value than in Step 8.

Step 10: Update the value of cf1 such that cf1 : cf2 = 1 : 3.
Step 11: Re-estimate the parameter N2 under the conditions, cf1 ≤ cf ≤ cf2 and

N1 ≤ N ≤ N2, where

A1(cf) =
cf2 − cf

cf2 − cf1
, A2(cf) =

cf − cf1
cf2 − cf1

, B1(N) =
N2 −N

N2 −N1

, B2(N) =
N −N1

N2 −N1

,

w1 =
cf2 − cf

cf2 − cf1
· N2 −N

N2 −N1

, w2 =
cf2 − cf

cf2 − cf1
· N −N1

N2 −N1

,

w3 =
cf − cf1
cf2 − cf1

· N2 −N

N2 −N1

, w4 =
cf − cf1
cf2 − cf1

· N −N1

N2 −N1

and

τ =
cf2 − cf

cf2 − cf1
· N2 −N

N2 −N1

· (a1 · cf + b1 ·N + c1)

+
cf2 − cf

cf2 − cf1
· N −N1

N2 −N1

· (a2 · cf + b2 ·N + c2)

+
cf − cf1
cf2 − cf1

· N2 −N

N2 −N1

· (a3 · cf + b3 ·N + c3)

+
cf − cf1
cf2 − cf1

· N −N1

N2 −N1

· (a4 · cf + b4 ·N + c4).

With both {a1, b1, c1} and {a2, b2, c2} already re-determined at Step 6, {a3, b3, c3}
and {a4, b4, c4} already re-calculated at Steps 8 and 7 respectively, cf1 and cf2 already
re-estimated at Steps 10 and 9, a new value for N2 can now be obtained by tuning for a
higher P i value than in Step 10.

Step 12: Update the value of N1 such that N1 : N2 = 1 : 3,

δ =
|P i − P ∗|

P ∗ , / *P ∗ : desired recognition rate */

P 0 = P i.

Repeat from Step 2 until δ is less than a predefined threshold.

4. Experiments and Results. The experimental settings and results of the proposed
SVM-embedded FLCMAP speaker adaptation algorithm are respectively reported in the
following subsections.
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4.1. Database and experiment design. The speech signal was sampled at 8 kHz. The
analysis frames were 30 ms wide with a 20 ms overlap. For each frame, a 24-dimensional
feature vector was extracted. The feature vector for each frame was composed of a 12-
dimensional mel-cepstral vector and a 12-dimensional delta-mel-cepstral vector.
Before conducting comparative experiments to show the effectiveness of the SVM-

embedded FLCMAP adaptation method proposed in Section 3, it is necessary to establish
the initial SI models. The database MAT400 sub-database DB3 [31], which comprises 4800
utterances from native Mandarin speakers, was used to develop the initial SI models in
the form of a set of HMM parameters. In Mandarin, an utterance may contain one to
several syllables, and each syllable consists (as HMM states) of a three-state initial part
and a six-state final part. Thus, the HMM of a Mandarin utterance includes the HMMs
of the constituent syllables, which in turn include an HMM of three states for the initial
part (if it is present) and an HMM of six states for the final part [32], totaling 440 states
in the SI models.
In the training phase of the SVM of hybrid SVM-FLC MAP and the proposed SVM-

embedded FLCMAP, the data used for training the SVM hyperplane parameters were
collected from 10 speakers. From each of the 10 speakers, 300 utterances of city names
(10 utterances for each of 30 cities) were requested as training data. Thirty SVM models
were trained in total, each of which corresponds to each of the 30 city names. For the
SVM model of a city name, the training data are composed of two parts: 1) the content
of the city name consisting of 100 utterances (10 utterances for each of the 10 speakers),
and 2) the content of the other 29 city names, used as the training data of anti-models
and consisting of 100 utterances (selected from the remaining 2900 utterances).
In the training phase of the fuzzy controller, a new group of 10 speakers was selected for

utterance recording. Thirty utterances of city names (one utterance for each of 30 cities)
as adaptation data for establishing SA models and 60 utterances of city names (two
utterances for each of the 30 cities) as tuning data for the fuzzy controller of the FCMAP,
hybrid SVM-FLC MAP, and the proposed SVM-embedded FLCMAP were collected from
each of the 10 speakers.
In the recognition experiments, adaptation and testing data were gathered from a

new group of 10 speakers entirely different from the previous groups. The adaptation
data consisted of 30 utterances from each speaker (one utterance for each of 30 cities).
The testing data consisted of 60 utterances from the speakers, each uttering 30 city
names twice. For each speaker, 2, 6, 10, 14, 18, 22, 26 and 30 utterances were selected
from their 30-utterance adaptation data for SI model adaptation, and eight sets of SA
models were established per speaker. Eighty SA models were thus prepared and used for
performance comparison among MAP, FCMAP, hybrid SVM-FLCMAP, and the proposed
SVM-embedded FLCMAP adaptations.

4.2. Experiment results. The averaged recognition performance of 10 speakers of the
conventional MAP with various settings of τ is shown in Table 1. According to Table
1, the conventional MAP has better results when τ is fixed at 30. Thus, the value of τ
is chosen in the conventional MAP for comparison. For the recognition experiment with
SVM-embedded FLCMAP adaptation, eight adapted models were constructed, using 2, 6,
10, 14, 18, 22, 26 and 30 adaptation utterances from each of the 10 speakers, and τ for each
of the eight adaptation sets were calculated using (8) with the derived cf parameter (from
(5), with P = 2, 6, 10, 14, 18, 22, 26 or 30) and Nutterances = 2, 6, 10, 14, 18, 22, 26 or 30.
FLC hyperparameters had already been determined during the training phase. Figure 7
shows the average recognition rate of the proposed SVM-embedded FLCMAP against the
hybrid SVM-FLCMAP, FCMAP, and the conventional MAP with a fixed τ . The proposed
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Table 1. Average recognition rates (%) of the conventional MAP with
various τ

Value of τ

Average recognition rate (%)
Numbers of utterances for adaptation

0 2 6 10 14 18 22 26 30
5 93.00 87.0 87.1 88.0 89.1 89.8 91.3 93.2 94.5
10 93.00 87.0 87.2 88.1 89.2 89.8 91.5 93.2 94.5
15 93.00 87.1 87.5 88.3 89.3 90.0 91.5 93.3 94.5
20 93.00 87.1 87.3 88.0 89.3 90.0 91.5 93.3 94.8
25 93.00 87.5 87.5 88.3 89.5 90.1 91.7 93.3 94.8
30 93.00 88.0 88.0 89.0 89.5 91.5 92.0 93.5 95.0
35 93.00 87.3 87.5 88.0 89.1 90.1 91.5 93.3 94.5
40 93.00 87.3 87.3 87.5 89.0 90.5 91.5 93.3 94.5
45 93.00 87.0 87.1 87.5 89.1 90.2 91.3 93.3 94.3
50 93.00 87.0 87.1 87.3 89.0 90.1 91.3 93.2 94.3

SVM-embedded FLCMAP and the other three adaptation methods have an adaptive
learning curve. For the conventional MAP and FCMAP, when the amount of training data
is insufficient (e.g., two adaptation utterances), the recognition rate is low, even lower than
the baseline. Conversely, the recognition rates of the proposed SVM-embedded FLCMAP
and hybrid SVM-FLC MAP are equal to or greater than the baseline when the amount of
training data is insufficient. Among all four adaptation methods against adaptation data
impropriety, the proposed SVM-embedded FLCMAP shows the greatest performance.
Furthermore, as the amount of training data increases, the recognition performance of
the conventional MAP, FCMAP, and hybrid SVM-FLC MAP improves gradually and
is above baseline but still inferior, compared with the SVM-embedded FLCMAP. The
SVM-embedded FLCMAP consistently outperforms the other three adaptation methods
in all conditions of adaptation utterances. Therefore, the SVM-embedded FLCMAP
has a superior adaptive learning curve among all four adaptation approaches. However,
FCMAP and hybrid SVM-FLC MAP adaptations perform well when adaptation data are
sufficient (e.g., adaptation utterances = 30), but still perform worse than the proposed
SVM-embedded FLCMAP. The causes of such behavior may be attributed to the matching
of HMM components in the recognition phase not being adapted appropriately when
using the hybrid SVM-FLC MAP, or adapted but also “polluted” by some substandard
utterances when using FCMAP.

When using scarce and inferior adaptation data (e.g., two adaptation utterances with
cf = 0.3), the performance of conventional MAP adaptation with various τ values is
shown in Figure 8. Increasing τ tends to improve the performance. Figure 9 shows the
performance of conventional MAP adaptation with various τ values for cases of suffi-
cient and high-grade adaptation data (e.g., 30 adaptation utterances with cf = 8.2). A
tendency that increasing the value of τ causes the recognition rate to decline was also
observed. These further justify the rationale supporting the design of the SVM-embedded
FLCMAP adaptation method.

5. Conclusions. The quality of conventional MAP speaker adaptation relies signifi-
cantly on the adaptation data acquired from a new speaker. This study proposed an
SVM-embedded FLCMAP method for further enhancing MAP to account for the quality
and the quantity of adaptation data in addition to MAP adaptation tasks. The devel-
oped SVM-embedded FLCMAP uses an SVM-embedded fuzzy logic controller to adjust
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Figure 7. Average recognition rates by 10 speakers using SVM-embedded
FLCMAP, Hybrid SVM-FLC MAP, FCMAP and conventional MAP adap-
tation methods

Figure 8. The number of adaptation utterances = 2 and cf = 0.3 (con-
ventional MAP testing experiments)

Figure 9. The number of adaptation utterances = 30 and cf = 8.2 (con-
ventional MAP testing experiments)

the adaptation speed parameter τ of MAP. In the adaptation framework of the SVM-
embedded FLCMAP, the quality information of adaptation data can be acquired first
from the support vector machine analysis, which together with the amount of adaptation
data, is then input into the fuzzy logic control mechanism to be inputs of fuzzy inference.
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The performance evaluation experiments in this research demonstrated the effectiveness
of the proposed SVM-embedded FLCMAP speaker adaptation method.
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