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ABSTRACT. In this paper, we present an intelligent image restoration approach by com-
bining the geostatistical interpolation technique of punctual kriging, fuzzy logic with type-
II and fuzzy smoothing based approaches. Images degraded with Gaussian white noise are
restored by first utilizing fuzzy logic for selecting pizels that needs kriging. Fuzzy type-1I
inference system is employed. Type-II fuzzy set has been used to generate fuzzy map for
detection of noisy pizels. This fuzzy map of noisy pizels enhances performance of the
proposed technique in terms of image restoration and as well as in terms of computational
cost. Local neighborhood information is used to ensure noise free pixels in 3 x 3 window
to estimate the noisy data. The concept of punctual kriging is then used to estimate
the intensity of a noisy pizel. Image restoration performance based comparison has been
made against adaptive Weiner filter and existing fuzzy kriging approaches. Experimental
results using 450 images and different image quality measures show effectiveness of the
proposed approach with fuzzy type-II for detecting noisy pizels and utilization of local
information in conjunction with kriging based estimation.
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1. Introduction. Image restoration has become a widely investigated field of image
processing, dealing with the reconstruction of images by removing noise and blur from
degraded images and making them suitable for human perception. In spite of the ad-
vances made by recent methods, it is still a challenging task as these methods have yet
to achieve a desirable level of applicability in many realistic scenarios. Moreover, with
the ever increasing production of digital contents such as images and videos taken with
low resolution cameras and in poor conditions, the importance of image restoration has
significantly increased. Images can become corrupted during any of the acquisition, pre-
processing, compression, transmission, storage and/or reproduction phases of processing
[1]. One of the main aspects in devising intelligent image restoration techniques is noise
suppression with keeping edges intact. Further, noise smoothing and edge enhancement
are generally considered as contradictory attributes. Since smoothing a region might de-
stroy an edge while sharpening edges might lead to amplification of unnecessary noise
[2]; therefore, we present a new spatial filtering technique; an intelligent approach based
on punctual kriging and fuzzy logic control, to consider this conflict and to remove noise
while efficiently preserving the image details and edge information.

Punctual kriging, named after its developer, D. G. Krige [3] is heavily used in mining
and geostatistics based applications. It is an interpolation technique that gives an optimal
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linear estimate of an unknown parameter at a sampling point in terms of its known values
at the surrounding sampling points [4]. The estimation involves calculation of the semi-
variances and modeling of semi-variograms from the sampled data. Besides this, kriging
has been applied in many other fields as well.

Fuzzy filters have been extensively applied in image processing over the last decade.
Choi and Krishnapuram [5] devised fuzzy rule based multiple filters, derived from the
method of weighted least squares, for noise removal. Some researchers have also inves-
tigated the use of fuzzy clustering for the removal of impulsive noise [6]. In [7], Farbiz
and Menhaj have introduced an approach of image filtering based on fuzzy logic control.
They have shown how to remove impulsive noise and smooth out Gaussian noise while,
simultaneously, preserving image details and edges efficiently. Liang and Looney [8] have
proposed a competition fuzzy edge detector to distinguish the noisy pixels from the edge
pixels. Further, Khriji and Gabbouj [9] have recently proposed a fuzzy transformation
based approach for multichannel image processing. Although fuzzy spatial filters have
been widely used, with the increase of local information, the number of fuzzy rules also
increases accordingly. To reduce the requirement of such complicated rules, fuzzy control
is used as a complementary tool along with the existing techniques to develop better and
accurate methods. This is one of the major aims of the investigations presented in this
paper.

Besides Pham and Wagner [10,11] have used punctual kriging along with fuzzy sets to
enhance images corrupted by Gaussian white noise. They model soft-thresholding by fuzzy
sets. In their approach, the pixel intensity in the processed image is a weighted sum of
the original (noisy) and the estimated value through kriging. They have evaluated their
results qualitatively in comparison with adaptive Wiener filter (AWF). However, their
study does not provide any quantitative performance analysis of their proposed technique
[12,13]. Further, they apply kriging to all pixels in the degraded image. Considering 3 x 3
neighborhood, inverse of a kriging matrix of size 9 x 9 is required, which can make the
filtering process computationally expensive. Furthermore, due to zero diagonal, matrix
inverse may not always be possible. In addition to this, filter weights also suffer from
occurrence of negative values, which leads to an overall poor performance of the filter.
Mirza et al. [12] have highlighted these issues and proposed a spatially adaptive fuzzy
kriging (SAFK) approach based on punctual kriging, fuzzy logic and fuzzy smoothing. In
their scheme, first they employ fuzzy logic based on homogeneity and DAMdistance to
generate a fuzzy decision map for the fate of a pixel whether it needs to be kriged or not.
In the next step, they apply punctual kriging to estimate the selected noisy pixels. To
tackle the matrix inversion failure problem, they have used fuzzy smoothing value as an
estimate for the pixel under consideration. In their scheme, they renormalize the positive
weights on occurrence of negative weights in punctual kriging.

In most of the image restoration methods, all pixels in local neighborhood are considered
to estimate a pixel under consideration without observing whether all of the pixels other
than central pixel are noise free or not. Technically speaking, noisy pixels used to estimate
a corrupted pixel in local window cannot offer optimal /near optimal estimate. This is
because noisy pixel has intensity level away from its actual intensity value depending
upon the strength of noise in the degraded image. Even AWF, Pham & Wagner fuzzy
kriging (PWFK) [10,11] and SAFK [12] approaches employ the same scenario to estimate
the pixel under consideration without taking into account this important fact. So, this
certainty needs special attention how to replace intensity values at noisy locations before
its use in estimation. In this current work, we propose an intelligent technique based on
fuzzy inference system considering fuzzy type-1I and utilization of noise free pixels in local
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neighborhood window in conjunction with punctual kriging for image restoration. This
paper makes the following contributions:

a. We introduce an effective fuzzy based kriging methodology for image denoising by
exploiting local information in the degraded image.

b. Type-II fuzzy sets with improved fuzzy rules for decision making whether a pixel
needs to be estimated or not.

c. We exploit the existence of noise free pixels in local neighborhood to estimate the
noisy pixel under consideration. This factor not only improves the results but also
gives optimal /near optimal estimates and avoids devastating edges.

Fuzzy type-IT with improved member functions, fuzzy rules to generate fuzzy decision
map, and taking into account vital information about the pixels (noisy or noise free) to
estimate the pixel under consideration in local neighborhood window differentiate this
current, research from the work presented in [12].

Since separating noise and original signal from a single input image is under constrained,
in theory it is very difficult to recover the original signal [14]. Hence in this work, we
perform image denoising with following objectives:

a. Edges in an image should be preserved during the denoising process.

b. No artifacts should be visible in the de-noised image.

c. To exploit available local information in the neighborhood window to estimate a
noisy pixel.

d. We believe noise free pixels significantly contribute to estimating the noisy pixel
whereas noisy pixels other than the pixel under consideration may enhance the noise
effect because of their corruptness.

e. An improved, intelligent fuzzy kriging approach based on use of fuzzy decider type-11,
and local neighborhood information, punctual kriging and fuzzy averaging.

Although some of these objectives seem contradicting, our proposed method attempts
to mutually de-correlate conflicting objectives as much as possible using punctual kriging
and a fuzzy rule based approach.

Rest of the paper is structured as follows. Section 2 introduces punctual kriging and
variograms, fuzzy inference system, type-II fuzzy sets. It also presents some of the most
commonly used image quality measures along with the variogram based quality measures.
Section 3 explains the proposed intelligent technique based on punctual kriging and fuzzy
approach of adaptive learning. Experimental results and discussion is presented in Section
4. Our findings including directions for future work are given in Section 5.

2. Related Theory.

2.1. Punctual kriging and variogram. In literature, it has been proved that Punctual
kriging results best linear unbiased estimate of an unknown point on a surface [15]. This
estimate is the weighted sum of the known neighboring values around the unknown point
and by minimizing the variance of estimation-error these weights can be determined.
Kriging uses a variogram model (a concept from geostatistics) to fit the experimental
data. Based on the variogram model chosen, known values are assigned optimal weights
to calculate the unknown value. Whereas, in an image denoising scenario pixel intensity is
available at all points including corrupted ones. So, from the experimental variogram we
can directly findout kriging weights to estimate the noisy pixels without employing any
theoretical variogram model. For more details on this topic, we refer the readers to [12,13].
Variogram presents the variation of semivariance with respect to distance from a point.
Semivariance provides a measure of spatial dependence between samples. Semivariance
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[4] of the samples at lag ‘d’ can be calculated from Equation (1).

7uy:%vmgﬁw—%) (1)

Different distance metrics can be used to identify a group of neighboring samples having
the same lag. In the present investigations, however, we have considered the Euclidean
metric as the distance measure. The experimental semivariogram is obtained directly by
using the sample values from the experimental data.

For a given lag ‘d’, it is calculated from the available data as

N(d)
v(d) = Wl(d) Z(Zz — Ziva) (2)

The above expression for experimental semi-variogram depends upon the spatial con-
figuration of the available image data. One has to consider different cases, as to whether
the data is aligned or not and whether it is regularly spaced along the alignments. How-
ever, in the present case of digital images, the data is aligned and regularly spaced, which
makes the estimation of the semi-variogram easy.

Punctual kriging is a linear combination of the neighboring sample values, as given by

Equation (3).

where w; are the weights and z; are the neighboring values of z. It is an unbiased estimator
if the weights add up to Equation (1). This additional constraint on weights is given by

Zwi: 1 (4)

Statistical variance is measure of how different the estimated value is from its neigh-
boring sample values. It can be found using Equation (5).

Var(e) =Var (z — 2) (5)
A number of such linear unbiased estimators are available, but we find the best one in

the sense that it has the smallest estimation variance. Thus, the cost function is defined
as

o(w;, A) = Var(e) — 2\ (Z w; — 1) (6)

where ) is the Lagrange multiplier. Differentiating the cost function ¢(w;, A) with respect
to w; and A and setting the differential equal to zero and rearranging the system of
equations, these can be written in matrix form as

Y(di) v(dig) -+ v(dy) 1 wy v(dy)
Y (da1) v (da) -+ y(da) 1 Wo v(dy)

: S D= : (7)
v (dnl) vy (dn2) e Y (dnn) 1 W, V(dn)

1 1 1 1 0 A 1

or in matrix-vector notations
Aw =b (8)
Matrix A is symmetric and has zero diagonal elements. The elements of the matrix are
taken from the semi-variogram (defined in Equation (1)) for the current point. Solving
Equation (8) gives us the optimal kriging weights {w,ws,---,w,} for estimating the
unknown value Z using its neighbors. However, if A is a singular matrix then punctual
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kriging fails to estimate pixel intensity. Further, in image de-noising case, the semi-
variance matrix A for each marked noisy pixel has to be calculated using neighboring
pixels in local window. This may result incorrect estimation when there exist noisy
pixels other than the pixel under consideration in local window. Same could be happen
in calculating the semi-variance vector b. Special attention is required to handle these
problems to avoid incorrect estimation of noisy pixel under consideration and to enhance
the overall performance of the system. One of the main contributions of this paper resolves
this issue.

2.2. Fuzzy inference system and fuzzy smoothing. There are two types of fuzzy
inference systems (FIS), that are commonly used, i.e., Mamdani and Takagi-Sugeno type
[16]. Both types of FIS are similar in many aspects; fuzzifying the inputs and applying
the fuzzy operator. The Takagi-Sugeno output membership functions are either linear or
constant and this aspect mainly differs from the Mamdani type [17]. Since classification of
noisy pixels from an image is considered as a nonlinear process. In the proposed approach,
nonlinear fuzzy output membership functions are employed to decide the fate of a pixel.
Keeping in view this aspect and considering to decide the fate of a pixel whether it needs
to be estimated or not, depending upon the local properties of the neighborhood as a
challenging problem [12], we have employed Mamdani type FIS.

Type-II fuzzy sets are considered as generalization of the ordinary fuzzy sets, whereby
fuzzy sets are characterized by a fuzzy membership function and consequently, the mem-
bership value for each member of the set is itself a fuzzy set between 0 and 1 [18]. The
main advantages of using a type-1I framework are twofold; by using type-II fuzzy sets
one can transform a vague pattern classification problem into a precise, well-defined, op-
timization problem, and secondly type-II fuzzy sets, unlike ordinary fuzzy sets, retain a
controlled degree of uncertainty [19]. In this research work, we have employed type-II
fuzzy sets for decision making about the pixel’s fate (generation of decision map). Fur-
ther, we exploit the noise free pixels instead of noisy pixels in the local neighborhood
window to estimate the pixel under consideration that improves the results as compared
with the existing techniques.

Fuzzy logic based smoothing filters have also been applied by many researchers in signal
and image processing based applications. These include fuzzy rank selection filter, fuzzy
weighted filter, switching fuzzy filter and fuzzy neural network filter [12].

In the present work, we have used both fuzzy based intelligent decision-making and
fuzzy smoothing to improve the performance of the proposed spatial adaptive fuzzy kriging
filter. The main use of the fuzzy inference system is to generate a fuzzy map from the
degraded image, which is then employed by the fuzzy kriging filter to enhance the degraded
image. Further, fuzzy smoothing is used to smooth out the unselected pixels within the
proposed filter. The current work differs from our previous research findings in [12] in
fuzzy decision map generation, fuzzy type-II FIS, improved fuzzy membership functions
and rules, and in noisy pixel estimation procedure. The proposed technique offers the
following advantages over the existing fuzzy punctual kriging based image restoration
approaches:

a. Intelligently differentiate between noisy, non-noisy, edge pixels and improves image
restoration results through keeping image detail intact.

b. Type-II fuzzy sets with improved membership functions and rules for fuzzy map
generation.

c. Offers optimal /near optimal estimate by utilizing available information in local neigh-
borhood.
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d. Robust against different images corrupted through Gaussian white noise of different
variances.

e. Computationally efficient as compared with punctual kriging based image restoration
techniques at hand.

2.3. Image quality measures. Besides mean square error (MSE), peak signal-to-noise
ratio (PSNR), weighted peak signal-to-noise ratio (WPSNR) and structure similarity in-
dex measure (SSIM) [20,21], other image quality measures in terms of the experimental
variograms of the original and degraded images are also used. Whereby, if v,(d) and ~(d)
represent the semi-variances at lag d of the original and degraded image respectively, then
variogram based image quality measures called variance mean square error (VMSE) and
variance peak signal signal-to-noise ratio (VPSNR) can be calculated as

My

VMSE = Mi S () = ()] (9)

[max {7 (d)}) 0

VMSE
Here M, is the maximum lag for the images. VMSE and VPSNR are global quality mea-
sures; however, these do take into account the structural detail information present in the
image. Variogram illustrate the variation of semivariance with respect to distance from a
point, and semivariance provides a measure of spatial dependence between pixels. Vari-
ogram of two different images is different because both images have different distribution
of data that can be verified from Figure 5. Further, variogram of an image corrupted
with white Gaussian noise shows the up-lifting of the variogram as the noise variance is
increased. Furthermore, the general shape and structure of the variogram remains the
same for low noise variances as shown in Figure 6. The hypothesis in developing this
image quality measure relies on the idea that if a technique which brings the variogram
of the restored image very close to that of the original image, will perform better. It can
also be verified from Table 1, Figure 7 and Figure 8. Statistical meaning of VMSE is
to measure the mean squared error of the variogram of the estimated and the original
images. Similarly, VPSNR measures peak signal-to-noise ratio of the estimated and the
original images.

VPSNR = 101log;,

3. The Proposed Approach. An experimental semi-variogram is the key point for
estimating pixel values in a degraded image using kriging. Semi-variogram estimation
inherently introduces an element of uncertainty in the overall processing of the image.
Fuzzy logic is efficiently well-suited in dealing with such problems. Several traditional
image processing techniques have been extended with fuzzy logic giving much improved
results, without adding to the complexity of implementing the overall process. Several
traditional image processing techniques have been extended with fuzzy logic to simulta-
neously take care of the conflicting tasks of smoothing and edge preservation. In this
paper, we make use of type-II fuzzy logic with improved membership functions and rules
to intelligently classify the noisy pixels. The occurrence of singular matrix in kriging
is inherently unpredictable as it depends on the variogram for a pixel in the degraded
image. The variogram itself depends on neighboring values of a pixel. Such scenarios
should be taken care of separately by replacing the processed pixel with a value given by
fuzzy ‘averaging’ or ‘median’ filter, which ever makes the error variance ‘small’. In this
experimental study, we assume that the images are corrupted through Gaussian white
noise and if singular matrix occurs, we replace the processed pixel by fuzzy averaging.
Further, it is observed that for some of the selected pixels, the punctual kriging procedure



IMPROVED ADAPTIVE FUZZY PUNCTUAL KRIGING FILTER 589

Pixr_zlsén&‘.x3 /////////

Kriging

Linear Weighted Estimates at

; /; Cog;p'::::ieon o, the unsampled
7 : i
Z

Locations

Semivariance
caleulations

7 |V
o
Solution of the
Kriging System of
Original Equations
Image /

FIGURE 1. Schematic flowchart of the proposed approach

results in negative weights. To handle this problem, we use approximation to reinitialize
the weights, i.e., negative weights have been set to zero and positive weights have been
renormalized in a similar fashion as described in [12].

In addition to this, kriging procedure is relatively computational expensive as compared
with other image smoothing linear filters. This implies that blindly kriging all points
in an image would make the estimation procedure infeasible. Further, all pixels in an
image may not require estimation as homogenous regions could be enhanced by much less
computationally expensive methods like fuzzy averaging. In addition to its computational
cost, we need to smooth out noise in certain regions, but still preserve sharpness of the
edges. The decision of when to use kriging or not could be related to the smoothness or
homogeneity of image structures. Thus, it seems sensible to have a fuzzy logic rule-based
system to decide when to perform kriging.

Figure 1 shows the basic architecture of our proposed methodology. Firstly, we generate
a map for pixels that needs kriging or not through fuzzy decider. Further, we ensure that
there are all noise free pixels around the pixel in question in local window. In case of any
noisy pixel found other than the central pixel in local window, we replace it by average
of its neighbors lying at one pixel apart. Then selected pixels are estimated by applying
punctual kriging. The pixels that are not selected for kriging by the fuzzy decider are
processed using the robust fuzzy weighted filter. Lastly, various image quality measures
have been employed to analyze the quality of the processed image.

3.1. Details of different stages of proposed methodology. In the proposed method,
all pixels are not blindly kriged. Rather, based on the homogeneity and deviation of its
local neighborhood, a pixel is selected for kriging by a fuzzy logic rule-based system. This
fuzzy system is called the Fuzzy Decider in our work. The inputs to the Fuzzy Decider are
a measure of homogeneity and DAMdistance which is based on the mean and deviation
of the 3 x 3 window around the current pixel. The degree of homogeneity is estimated
by Equation (11) as proposed by Tizhoosh [22]. The numerator in Equation (11) is the
difference of the maximum and minimum gray values in the region comprising of the 3 x 3
window around a pixel where, the denominator is the difference of the maximum and
minimum gray values in the whole image.

local local
_ Imax — Imin (11)
HH = global global
Gmax — Gpnin
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The DAMdistance in the rules is simply the difference between the gray value of the
current pixel and the mean gray value of its neighbors. The Fuzzy Decider is a basic
Mamdani type-II fuzzy logic system consisting of the following rules which differs from
Mirza et al. [12]. They have employed fuzzy type-1 with two rules given below.

If (regionHomogenuity is HomoHigh) or (DAMdistance is acceptable)
then (decision is KrigingNo)

If (regionHomogenuity is HomoLow) or (DAMdistance is veryHigh)
then (decision is KrigingYes)

3.2. Type-II fuzzy sets. The concept of type-II fuzzy logic is actually an extension of
type-I fuzzy sets. Type-II fuzzy sets are capable to handle more uncertainties in spite of
the fact that they are difficult to use and understand than type-I fuzzy sets. We have
used type-II fuzzy set to enhance the fuzzification process for better decision making. In
our approach based on type-II fuzzy sets, we have used the following nine rules to decide
the pixel’s fate.

If (regionHomogenuity is HomoMed) and (DAMdistance is Acceptable)

then (decision is KrigingNo)

If (regionHomogenuity is HomoMed) and (DAMdistance is High)

then (decision is KrigingYes)

If (regionHomogenuity is HomoMed) and (DAMdistance is VeryHigh)

then (decision is KrigingYes)

If (regionHomogenuity is HomoLow) and (DAMdistance is Acceptable)

then (decision is KrigingNo)

If (regionHomogenuity is HomoLow) and (DAMdistance is High)

then (decision is KrigingYes)

If (regionHomogenuity is HomoLow) and (DAMdistance is VeryHigh)

then (decision is KrigingYes)

If (regionHomogenuity is HomoHigh) and (DAMdistance is Acceptable)

then (decision is KrigingNo)

If (regionHomogenuity is HomoHigh) and (DAMdistance is High)

then (decision is KrigingNo)

If (regionHomogenuity is HomoHigh) and (DAMdistance is VeryHigh)

then (decision is KrigingYes)

Figures 2 and 3 show the graphical representations of type-I1 fuzzy membership func-
tions. Fuzzy decision maps generated by fuzzy type-I and type-II are described below.

3.3. Generation of fuzzy decision map through fuzzy-II. In the first stage, the
noisy image is presented to the Fuzzy Decider that generates a binary image called the
fuzzy decision map. This decision map is generated through type-II fuzzy set and is
provided to the punctual kriging based estimation stage, where the decision of whether to
estimate or not is enforced. This helps to reduce the computational time. Effectiveness
of fuzzy decision map generated through fuzzy type-I and type-II has been compared for
image restoration. Fuzzy decision maps generated through fuzzy type-I and type-II for
cameraman image are shown in Figure 4. It can be observed from Figure 4 that fuzzy
map generated through type-IT avoids to select edge pixels for estimation whereas type-I
selects more for estimation including edge pixels results in edge smoothing as compared
with type-II fuzzy.

3.4. Employing punctual kriging for estimation. In the second stage, an attempt
is made to find a kriging estimate for pixels selected by the Fuzzy Decider. If the attempt
fails, the original pixel value is taken as the processed pixel value. The attempt to find
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a kriging estimate was found to fail due to two broad reasons: singular kriging matriz
and negative-weights. The pixels that were rejected for kriging by the Fuzzy Decider are
processed using the robust fuzzy weighted filter. After this stage, the processed image
contains two types of values based on the decision map: kriging estimate and the fuzzy
smoothed values. There is a third category of noisy pixels for which kriging could not
give optimum weights, i.e., the weights either do not sum up to 1 or the sum of square
of weights is not less than or equal to 1. The negative weights in this case are set to zero
and the positive weights are normalized to sum to 1.

3.5. Fuzzy smoothing of pixels not selected for kriging. In the third stage, the
unselected pixels by the Fuzzy Decider are processed using the robust fuzzy weighted
filter. After the second stage, the processed image contains two types of values based on
the decision map: kriging estimate and original values (unselected pixels). In this stage,
a fuzzy smoothing is applied on the unselected pixels.

4. Results and Discussions.

4.1. Variograms of the original and degraded images. The experimental semi-
variograms of three different types of images (Boat, Blood cells and Lena) have been
computed and shown in Figure 5. The shapes of the variograms for all three images
near lag zero are continuous. This shows that the pixel values do not change abruptly
at lags near zero. However, for Lena and Boat images, fluctuations start appearing for
lags greater than 10. This shows that after a lag of 10 pixels, we enter into a new region.
Further, in case of Blood cells image, the fluctuations appear after a lag of 20 pixels. The
variograms show sharp changes for larger lags.

Figure 6 shows the changes in the experimental variogram when a zero mean Gaussian
noise with various variances is added to a particular image. The most interesting aspect
to note is the up-lifting of the variogram as the noise variance is increased (see Figure
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FIGURE 5. Experimental variograms of three different images
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6(d)). It is also important to note that the general shape and structure of the variogram
stays the same for low noise variances. The abrupt changes in the variogram take place at
the same lags. Even for high noise variance, the shape of the variogram remains similar
to that of the original image; however, the abrupt changes become more discontinuous.
Further, near zero lag, the variogram becomes highly discontinuous as the additive noise
variance is increased. These observations have led us to introduce the variogram based
image quality measures VMSE and VPSNR, as introduced in Section 2.

Various image quality measures as explained in Section 2 are applied to find out the
quality of the processed image as compared to the original image. We have tested the
performance of the proposed approach (both using type-II fuzzy sets in SAFK instead
of type-I named as spatially adaptive fuzzy-1I kriging (SAFK-IT) and type-II with local
information about the pixels in the neighborhood window around the pixel under consid-
eration) by considering three scenarios.

Firstly, the performance of the proposed method has been tested for additive Gaussian
white noise of different variances for a test image. Secondly, the performance is tested
for 450 different images corrupted with Gaussian white noise of same variance. This is
because the effect of noise may change with the variance of noise as regards the visual
distortion for the same image. On the other hand, same noise may affect different images
differently as regards the visual distortion. Typical results from the Fuzzy Decider type-I
and type-II shown in Figure 4. The white pixels are the ones that need kriging.

4.2. Scenario 1: performance analysis by varying variance of Gaussian noise.
In the first case, we have considered Boat image as test data. The image is degraded with
Gaussian white noise of variance ranging from 0.02 to 0.12. The results obtained from our
approach have been compared with that of the AWF, PWFK, SAFK and SAFK-IT ap-
proaches. The effect of the additive Gaussian noise and its removal by various approaches
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TABLE 1. Comparison of various approaches against Boat image at differ-
ent noise variances

Qualitative Measures

Noise  penvizing Methods ~ MSE ~ PSNR SSIM ~ VMSE — VPSNR
Variances (db) (db)
Noisy Image 5441.96 10.77 0.07 241621}3 -8.30
PWFK 1782.12 15.62 0.15 1671512  2.83
AWF 1030.22 17.95 0.23 188895  12.30
0.12 SAFK 1001.12  18.25 0.23 17025/  12.58
SAFK-IT 987.60 18.36 0.23 162518  12.85
Proposed Approach — 968.61  18.87 0.24 154279 13.18
Noisy Image  4112.58 11.98 0.10 14130729 —6.43
PWFK 1297.69 17.00 0.19 850778  5.76
AWF 793.21  19.13 0.28 132926  13.82
0.08 SAFK 783.70  19.18 0.28 110521  14.63
SAFK-IT 745.04 1940 0.28 79716  16.05
Proposed Approach  721.07 19.73 0.29 66047 17.26
Noisy Image 2336.64 14.44 0.15 4744911 -1.69
PWFK 788.94 1944 0.27 230101  11.}4
AWF 471.64 21.19 0.38 53139  17.81
0.04 SAFK 420.29 21.69 0.39 11036 24.63
SAFK-IT 412.22  21.82 0.39 9643 25.22
Proposed Approach  }03.45  21.89  0.40 7255 26.45
Noisy Image 1241.91 17.18 0.23 1399773 3.60
PWFK 421.27  21.88 0.37 48712  18.65
AWF 262.82 2371 0.51 9538 25.27
0.02 SAFK 229.72  24.29 0.53 1850 32.39
SAFK-IT 225.03  2/.36 0.5 1281 33.98

Proposed Approach 210.59  24.45 0.53 1176 34.25

is shown in Figure 7. Table 1 gives a quantitative comparison among different methods in
terms of MSE, PSNR, SSIM, VMSE and VPSNR at test image against various variances.
It can be observed from Table 1 that the proposed approach based on fuzzy type-II, and
punctual kriging in conjunction with local information offers superior performance at all
noise levels compared to the rest of the methods.

The experimental variograms of the original, noisy, and restored images through AWF,
PWFK, SAFK, SAFK-II and proposed fuzzy type-II approach are plotted in Figure 8.
The image is corrupted with Gaussian noise of variance 0.05. From Figure 8, it is clear that
variograms of both the original as well as noisy image retain the structural information
about the image and differ only in the semivariance at different lags depending upon the
strength of the noise variance. Further, in comparison to the variograms produced by
other methods, our approach produces a variogram that is very close to the variogram
of the original image. This is also clear from Table 1, where the proposed approach
outperforms at all quality measures compared with AWF, PWFK, SAFK and SAFK-II
image restoration techniques.

4.3. Scenario 2: performance analysis using 450 test images. In the second case,
we consider 450 different images as the test data. These images have been corrupted
with white Gaussian noise of variance 0.08. Performance analysis of the above-mentioned
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(a) Original image (b) Degraded image

(e) SAFK (f) SAFK-II (g) The proposed
approach

Ficure 7. Original, noisy and estimated images obtained through AWF,
PWFK, SAFK, SAFK-II, and the proposed approach
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Ficure 8. Comparison of the variograms of the original, degraded and
processed Boat image

methods is carried out in terms of average values of MSE, PSNR, SSIM, VMSE and
VPSNR across 450 test images as shown in Table 2. The graphical representation of var-
ious performance measures is shown in Figure 9. Results obtained through the proposed
approach have been compared with the existing techniques. It can be observed from re-
sults presented in Table 2 that the performance of our proposed approach based on fuzzy
type-I1, local neighborhood information of the pixels around pixel under estimation and
punctual kriging is better as compared with PWFK, SAFK, SAFK-IT and AWF in terms
of the image quality measures.
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TABLE 2. Comparison of various approaches against 450 image database
at 0.08 noise variance

Qualitative Measures

Denoizing MSE PSNR SSIM VMSE VPSNR
Methods (db) (db)
Noisy Tmage 389647 12.51 0.1] 11989831 —6.457
PWFK 1315.80 16.9/ 0.23 107424  6.29
AWF 850.20 18.7) 0.3 129207  14.58
SAFK 801.3/ 19.01 0.3, 111842  15.35
SAFK-IT 716.86  19.23 0.3/ 98508  15.89

The Proposed Approach 75/.27 19.46 0.35 93940 16.10
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’ BAWF

e = SAFK

8.0 uSAFK-II
- F0 uThe Proposed Approach
@
= 60
=3
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FiGure 9. Comparison of 450 images test data with different methods at
0.08 noise variance. Average values of various qualitative measures (rescaled
for elaboration purpose).

4.4. Performance comparison using type-I and type-1I fuzzy sets. The results of
fuzzy type-I and type-II based punctual kriging approaches are compared using various
image quality measures. Number of pixels selected for kriging by the fuzzy decider using
fuzzy type-1 and type-II are shown in Table 3. From Table 3, it is clear that fuzzy decider
using fuzzy type-II selects less number of noisy pixels for high variance compared with
that of type-I fuzzy set. The reason for the selection of less number of noisy pixels by
type-I1 fuzzy set is that it avoids over smoothing and preserves edges more efficiently for
a noise variance range [0.04 to 0.1]. Whereas for low level of noise, it selects more pixels
as compared with type-I fuzzy set. This is because it selects pixels for noise removal that
are corrupted but close to homogenous or textured gray level. The performance of the
proposed approach is better than AWF, PWFK, SAFK, SAFK-II at all noise levels in
terms of MSE, PSNR, SSIM, VMSE and VPSNR. In Figure 8, variograms of the proposed
approach based on fuzzy type-II, and utilization of local information in conjunction with
punctual kriging based estimation is compared with existing approaches using boat image.
It can be observed that the variogram curve of the proposed method is very close to the
original image and thus shows the advantage over the existing approaches.
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TABLE 3. Statistics of the pixels selected for kriging by the fuzzy type-I
and type-I1. The Boat image degraded with white Gaussian noise of different
variances.

Gaussian white noise of different variance
0.1 0.08 0.06 0.0/ 0.02  0.01

164943 155123 140831 119244 78852 359846

Statistics of the data

No. of pizels advised for
kriging by type-1I fuzzy
No. of pizels advised for

kriging by type-T fuzzy 206215 190083 165535 124774 54927 15857

TABLE 4. Comparison of different approaches in terms of computational
cost (in seconds)

De-noising Methods

Test Images ~ PWFK ~— AWF  SAFK  SAFK-;1  Lroposed
Approach
Blood Cells 15.575  0.125  0.938 0.81 0.83
Cameraman 10.818 0.125 1.14 0.992 1.02
Boat 50.047  0.328  3.391 2.91 3.08
Lena 52.813  0.343  2.968 2.58 2.62
Baboon 47.765 0.36 5.906 4.71 4.93

4.5. Performance comparison in terms of computational cost. Performance of
the proposed approach in terms of computational cost has also been made with AWF,
PWFK, SAFK and SAFK-II. Results regarding time taken by various approaches to
restore various noisy images are presented in Table 4. From Table 4, it may be observed
that the proposed approach out performs PWFK and SAFK. Further, it offers almost
same computational performance as compared with SAFK-II. Furthermore, it is slightly
expensive in computation as compared with AWF like other fuzzy kriging based image
restorations approaches (PWFK, SAFK and SAFK-II).

5. Conclusions. An intelligent and improved image denoising method based on the con-
cept of punctual kriging is analyzed. More improved Fuzzy type-II IF THEN rules based
on region homogeneity and deviations, are used to intelligently decide the fate of a pixel
whether it needs to be estimated or not in view of edge preservation. The performance
of type-II fuzzy sets with local neighborhood information has been analyzed for this pur-
pose. The overall kriging procedure is coupled with a fuzzy smoothing filter. Due to the
use of type-IT Fuzzy Decider and local information about the status of pixels in window,
punctual kriging is employed to estimate pixels along region boundaries and isolated dis-
continuities. However, for pixels inside the regions, away from the region boundaries, fuzzy
smoothing is used. The results show a marked improvement in the performance of image
restoration scheme as compared with the existing fuzzy kriging and adaptive Wiener filter
approaches. A total of 450 images are used to test the effectiveness of the proposed fuzzy
type-II based punctual kriging image restoration approach. The proposed technique out-
performs at all determined image quality measures at all noise levels. In future work, we
intend to use evolutionary algorithms in addition to fuzzy sets for developing a majority
voting based composite predictor. The composite predictor thus formed would decide the
fate of pixel under consideration for the better exploitation of the intensity variation on
the edges, lines and object boundaries in the image.



598 A. CHAUDHRY, J. Y. KIM AND T. A. TUAN

Acknowledgements. This research was supported by the MKE (The Ministry of Knowl-
edge Economy), Korea, under the ITRC (Information Technology Research Center) sup-
port program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-
2012-H0301-12-3005) and BK21, South Korea under Postdoc fellowship.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Pearson Education Inc.,
2002.

[2] A. Hussain, M. A. Jaffar, A. M. Mirza and A. Chaudhry, Detail preserving fuzzy filter for im-
pulse noise removal, International Journal of Innovative Computing, Information and Control, vol.5,
no.10(B), pp.3583-3591, 20009.

[3] D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand,
Journal of the Chemical, Metallurgical and Mining Society of South Africa, vol.52, pp.119-139, 1951.

[4] S. Voloshynovskiy, O. Koval and T. Pun, Image denoising based on the edge-process model, Proc.
of Signal Processing, vol.85, pp.1950-1969, 2005.

[5] Y. S. Choi and R. Krishnapuram, A robust approach to image enhancement based on fuzzy logic,
Proc. of IEEE Transactions on Image Processing, vol.6, pp.808-825, 1997.

[6] M. Doroodchi and A. M. Reza, Implementation of fuzzy cluster filter for nonlinear signal and image
processing, Proc. of the 5th IEEFE International Conference on Fuzzy Systems, vol.2113, pp.2117-
2122, 1996.

[7] F. Farbiz and M. B. Menhaj, A fuzzy logic control based approach for image filtering, Proc. of Fuzzy
Techniques in Image Processing, LII, pp.194-221, 2000.

[8] L. R. Liang and C. G. Looney, Competitive fuzzy edge detection, Applied Soft Computing, vol.3,
pp-123-137, 2003.

[9] L. Khriji and M. Gabbouj, Rational-based adaptive fuzzy filters, Int. J. Computational Cognition,
vol.2, pp.113-132, 2004.

[10] T. Pham and M. Wagner, Filtering noisy images using kriging, Proc. of the 5th International Sym-
posium on Signal Processing and Its Applications, vol.421, pp.427-430, 1999.

[11] T. D. Pham and M. Wagner, Image enhancement by kriging and fuzzy sets, Int. J. Pattern Recog-
nition and Artificial Intelligence, vol.14, n0.8, pp.1025-1038, 2000.

[12] A. M. Mirza, A. Chaudhry and M. Badre, Spatially adaptive image restoration using fuzzy punctual
kriging, J. Computer Science and Technology, vol.22, no.4, pp.580-589, 2007.

[13] A. Ullah, Image Restoration using Machine Learning, Ph.D. Thesis, Faculty of Computer Sciences
and Engineering, GIK Institute, 2007.

[14] L. Ce, S. Richard, K. S. Bing, C. L. Zitnick and T. F. William, Automatic estimation and removal of
noise from a single image, IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol.30,
pp-299-314, 2008.

[15] N. El-Sheimy, C. Valeo and A. Habib, Digital Terrain Modeling; Acquisition, Manipulation and
Applications, Artech House, 1995.

[16] D. Driankov, H. Hellendorn and M. Reinfrank, An Introduction to Fuzzy Contorl, Springer Verlag,
New York, 1993.

[17] M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Publisher Co., 1985.

[18] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
Information Sciences, vol.8, pp.199-249, 1975.

[19] H. B. Mitchell, Pattern recognition using type-II fuzzy sets, Information Sciences, vol.170, pp.409-
418, 2005.

[20] A. Chaudhry, A. Khan, A. Ali and A. M. Mirza, A hybrid image restoration approach: Using fuzzy
punctual kriging and genetic programming, Int. J. Imaging Systems and Technology, vol.17, no.4,
pp.224-231, 2007.

[21] A. Hussain, M. A. Jaffar, F. Jabeen and A. M. Mirza, Impulse noise removal using robust statistical
estimators and fuzzy logic, ICIC Express Letters, vol.3, no.4(A), pp.1119-1124, 2009.

[22] H. Tizhoosh, Fuzzy Image Enhancement: An Ouverview, Fuzzy Techniques in Image Processing,
Springer Verlag LII, 2000.



