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Abstract. The aim of this work is to control a non linear biological nitrogen removal
process. The paper illustrates the design steps of an observer based control scheme applied
to the linearized model of a phenomenological model of the process. The estimation
algorithm is combined with the control technique to monitor the process. The goal of
the control is the removal or at least the reduction of organic waste. The control law
is based on positive invariance concept that had shown efficiency in handling control
constraints. The efficiency of both the control and the estimation is demonstrated via
computer simulations.
Keywords: Activated sludge, WasteWater Treatment Plants (WWTP), Constrained
control, Positive invariance, Observers

1. Introduction. The modeling and control of activated sludge process, which is recog-
nized as the most common and major unit process for reduction of organic waste, has
become a subject of great interest. Researchers [2, 9, 20, 21, 28] have investigated differ-
ent control strategies for the monitoring of such processes. The development of effective
control strategies on this kind of WasteWater Treatment Plants (WWTP) is hampered
by the inherent nonlinearites, the time-varying dynamics and the lack of suitable instru-
mentation.

WasteWater treatment is just one component in the urban water cycle. However, it is
an important one since it ensures that the environmental impact of water human usage
is significantly reduced. The treatment consists of several processes: biological, chemical
and physical. WasteWater treatment aims to reduce the amount of nitrogen, phospho-
rous, organic matter and suspended solids. To reduce the amount of these substances,
WWTP consisting of four treatment steps have been designed. These steps are a primar-
ily mechanical pre-treatment step, a biological treatment step, a chemical treatment step
and a final step of sludge treatment.

The purpose of the mechanical pre-treatment step is to remove various types of sus-
pended solids from the incoming WasteWater. The aim of the biological treatment step
has originally been solely to remove organic matter. However, today many WWTP are
also designed for the biological removal of nitrogen and phosphorous. The most common
type of biological treatment step is based on the activated sludge process. In the biolog-
ical treatment of WasteWater, the sedimentation process enables to separate the treated
wastewater from the biomass sludge and produces a clear treated effluent. In addition
to clarification, secondary settler tanks or clarifiers have the function of thickening the
activated sludge for returning to the bioreactor and even to storage tank. The settling
process can take place in the same reactor or in a secondary settler. By all these reasons,
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secondary settling tanks have been considered essential and often they can be limiting
factors for good removal efficiencies of the activated sludge system. The purpose of the
sludge treatment step is to prepare the sludge for end disposal. Anaerobic digestion is
probably one of the most used processes for reducing the amount of sludge. At the same
time, the digestion process produces gaz, providing a significant source of energy, which
is usually used at the WWTP. For control process the WWTP is modeled by ordinary
differential equations derived from mass-balance considerations, which involve nonlinear
terms. The most important parameter is the specific growth rate which is a complex
nonlinear function of plant states and several uncertain biological parameters.
On the other hand, the state space representation is frequently used to form multi-

variable approach to linear control. The most common control schemes are based on
availability of the state for feedback. In the same real process, it is either impossible
or inappropriate to measure all elements of system state. To overcome this problem, an
auxiliary dynamical system, known as observer, driven by the inputs and outputs of the
original system, is designed [13]. Another problem that arises when considering real pro-
cess is the limitation of state or control of the process. In fact, processes are naturally
non linear and to obtain linear useful model, approximation of small variations around
steady state is used. Hence, validity of such linear model is limited to a neighborhood
of the steady point leading to constraints on some variables. Further, inherent physical
limitations may be source of limited variables. The respect of these constraints can be
accomplished by designing suitable feedback control laws. In many cases, this can be done
by constructing positively invariant domains inside the set of the constraints, [1, 5, 7, 18].
Other important applications were derived from this concept. In particular, the observers
in the framework of positive invariant sets are given in [15, 16].
During the last decades, many investigations have been focused on the control of the

nitrogen and dissolved oxygen in an activated sludge reactor within a WWTP with differ-
ent strategies. One may quote predictive control, optimal control and adaptive control,
etc. [3, 23]. Note here that constraints on the control are handled and further all required
measurements are assumed available. A part from this, one may also cite works about
the same topic but limited to estimation [8, 11] and not the control. Furthermore, works
combining estimation to control for monitoring such processes can also be found [26].
However, constraints are not taken into account during the design steps. Therefore, these
works may be thought as a generalization where constraints, estimation and control are
considered using the positive invariance concept together at the design stage.
The objective of this work is to apply positive invariance concept techniques to a

WWTP. The obtained linearized model combines the problems of non availability of the
state to measure with the limitations of some variables. The control is achieved by an
observer based controller that can take into account constraints on the control and on the
error. The obtained linear model is worked out to meet all design required conditions.
The efficiency of the process monitoring is showed via simulations with the real plant.
The remainder of the paper is organized as follows. Section 2 provides the modeling

of the WWTP through the modeling of the aerated, anoxic and settler basins. Further,
the obtained model is linearized around a steady state point. Section 3 is devoted to the
presentation of the control scheme. It consists of an observer based controller that respects
constraints on the control and on the observation error and achieves asymptotic stability
of the system. Application to the WWTP is achieved in Section 4. First, the model of
the WWTP is worked out to obtain the controllable and observable parts of the system.
Second, a reduced order observer is applied to the obtained controllable and observable
part. Finally, the simulated non linear system parameters and the ones obtained from
our control scheme are compared. Section 5 reports and discusses the obtained results
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and Section 6 concludes the paper.
Notations:

• For two vectors x, y of Rn, x ≤ y (respectively, x < y) means xi ≤ yi (respectively,
xi < yi), i = 1, . . . , n.

• x+
i = sup(xi, 0), x

−
i = sup(−xi, 0), and for x(t) a function of time, ẋ = dx

dt
.

• For A ∈ Rn×n, σ(A) denotes its spectrum and

Ã =

(
A1 A2

A2 A1

)
, A1(i, j) =

{
aij, i = j
a+ij, i 6= j

and A2(i, j) =

{
0, i = j
a−ij, i 6= j

• In and intRn
+ are respectively the identity matrix of dimension n and the interior of

Rn
+.

2. Process Modeling. A typical, conventional activated sludge plant for the removal of
carbonaceous and nitrogen materials consists of an anoxic basin followed by an aerated
one, and a settler; see the figure below. In the presence of dissolved oxygen, wastewater,
that is mixed with the returned activated sludge, is biodegraded in the aerated reactor.
Treated effluent is separated from the sludge and wasted while a large fraction is returned
to the anoxic reactor to maintain an appropriate substrate-to-biomass ratio.

In this work, six basic components are present in the wastewater: autotrophic bacteria
XA, heterotrophic bacteria XH , readily biodegradable carbonaceous substrates SS, nitro-
gen substrates SNH , SNO and dissolved oxygen SO, where XA, XH , SS, SNH , SNO and
SO represent the concentrations of these elements. In the modeling of the process, the
following assumptions are considered: first, the physical properties of fluid are constant
and there is no concentration gradient across the vessel. Second, substrates and dissolved
oxygen are considered as rate-limiting with a bi-substrate Monod-type Kinetic. Finally,
no bioreaction takes place in the settler that is considered perfect.

Based on the above description and assumptions, the full set of ordinary differential
equations (mass balance equations), making up the IAWQ (ASM1) Model NO.1 are ob-
tained [10, 22].

Figure 1. W.W.T. Plant

2.1. Modeling of the aerated basin. In the aerated basin, writing the mass balance
equations leads to the following:

ẊA,nit(t) = (1 + r1 + r2)Dnit (XA,denit −XA,nit) + (µA,nit − bA)XA,nit (1)

ẊH,nit(t) = (1 + r1 + r2)Dnit (XH,denit −XH,nit) + (µH,nit − bH)XH,nit (2)

ṠS,nit(t) = (1 + r1 + r2)Dnit (SS,denit − SS,nit) + (µH,nit + µHa,nit)XH,nit/YH (3)
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ṠNH,nit(t) = (1 + r1 + r2)Dnit (SNH,denit − SNH,nit) + (ixb + 1/YA)µA,nitXA,nit

− (µH,nit + µHa,nit) ixbXH,nit

(4)

ṠNO,nit(t) = (1 + r1 + r2)Dnit (SNO,denit − SNO,nit) + µA,nit
XA,nit

YA

− 1− YH

2.86YA

µHa,nitXH,nit

(5)

ṠO,nit(t) = (1 + r1 + r2)Dnit (SO,denit − SO,nit) + a0Qair(CS − SO,nit)

− 4.57− YA

YA

µA,nitXA,nit −
1− YH

YH

µHa,nitXH,nit

(6)

where

µA,nit = µmax,A
SNH,nit

(KNH,A + SNH,nit)

SO,nit

(KO,A + SO,nit)

µH,nit = µmax,H
SS,nit

(KS + SS,nit)

SNH,nit

(KNH,H + SNH,nit)

SO,nit

(KO,H + SO,nit)

µHa,nit = µmax,H
SS,nit

(KS + SS,nit)

SNH,nit

(KNH,H + SNH,nit)

KO,H

(KO,H + SO,nit)

SNO,nit

(KNO + SNO,nit)
ηNO

µA,nit and µH,nit are the growth rates of autotrophs and heterotrophs in aerobic conditions
and µHa,nit is the growth rate of heterotrophs in anoxic conditions.

2.2. Modeling of the anoxic basin. In the anoxic basin, mass balance equations lead
to the following:

ẊA,denit(t) =Ddenit(XA,in + r1XA,nit)− (1 + r1 + r2)DdenitXA,denit+

+ α.r2DdenitXrec + (µA,denit − bA)XA,denit

(7)

ẊH,denit(t) =Ddenit(XH,in + r1XH,nit)− (1 + r1 + r2)DdenitXH,denit+

+ (1− α)r2DdenitXrec + (µH,denit − bH)XH,denit

(8)

ṠS,denit(t) = − (µH,denit + µHa,denit)
XH,denit

YH

− (1 + r1 + r2)DdenitSS,denit

+Ddenit(SS,in − r1SS,nit)
(9)

ṠNH,denit(t) =Ddenit(SNH,in − r1SNH,nit)− (1 + r1 + r2) .DdenitSNH,denit

− (ixb + 1/YA)µA,denitXA,denit − (µH,denit + µHa,denit) ixbXH,denit

(10)

ṠNO,denit(t) =Ddenit(SNO,in − r1SNO,nit)− (1 + r1 + r2)DdenitSNO,denit+

+
µA,denitXA,denit

YA

− 1− YH

2.86YH

µHa,denitXH,denit

(11)

where

µA,denit = µmax,A.
SNH,denit

(KNH,A + SNH,denit)

µH,denit = µmax,H .
SS,denit

(KS + SS,denit)
.

SNH,denit

(KNH,H + SNH,denit)

µHa,denit = µmax,H .
SS,denit

(KS + SS,denit)
.

SNH,denit

(KNH,H + SNH,denit)
.

SNO,denit

(KNO + SNO,denit)
.ηNO
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Table 1. Process characteristics

Variable Value Description
Vnit 1333 m3 volume of nitrification basin
Vdenit 1000 m3 volume of denitrification basin
Vdec 6000 m3 volume of settler
Qin 18446 m3/j influent flow rate
Qw 385 m3/j waste flow rate
XA,in 0 mg/l autotrophs in the influent
XH,in 30 mg/l hetertrophs in the influent
SS,in 200 mg/l substrate in the influent
SNH,in 30 mg/l ammonium in the influent
SNO,in 2 mg/l nitrate in the influent
SO,in 0 mg/l oxygen in the influent

Table 2. Kinetic parameters and stochiometric coefficient characteristic

Variable Value Description
YA 0.24 yield of autotroph mass
YH 0.67 yield of heterotroph mass
ixb 0.086
KS 20 mg/l affinity constant
KNH,A 1 mg/l affinity constant
KNH,H 0.05 mg/l affinity constant
KNO 0.5 mg/l affinity constant
KO,A 0.4 mg/l affinity constant
KO,H 0.2 mg/l affinity constant
µAmax 0.8 l/j maximum specific growth rate
µH max 0.6 l/j maximum specific growth rate
bA 0.2 l/j decay coefficient of autotrophs
bH 0.68 l/j decay coefficient of heterotrophs
ηNO 0.8 l/j correction factor for anoxic growth
α 0.5

2.3. Modeling of the setller. In the setller, the mass balance equations enable us to
write:

Ẋrec = (1 + r2)Ddec(XA,nit +XH,nit)− (r2 + w)DdecXrec (12)

Above, r1, r2 and w represent, respectively, the ratios of the internal recycled flow Qr1, the
recycled flow Qr2 and the waste flow Qw to influent flow Qin. That is Qr1 = r1Qin, Qr2 =
r2Qin and Qw = wQin. Further, CS is the maximum dissolved oxygen concentration and
Xrec is the concentration of the recycled biomass. Finally, Dnit =

Qin

Vnit
, Ddenit =

Qin

Vdenit
and

Ddec =
Qin

Vdec
; where Dnit, Ddenit and Ddec are the dilution rates in respectively, nitrification,

denitrification, basins and settler tank. All remaining involved variables and parameters
of the system (1)-(12) have been directly taken from [25], and are defined in Tables 1 and
2. To obtain a model in the state space, the state vector is considered as

X(t) = [XA,nit(t) XH,nit(t) SS,nit(t) SNH,nit(t) SNO,nit(t) SO,nit(t) XA,denit(t)
XH,denit(t) SS,denit(t) SNH,denit(t) SNO,denit(t) Xrec(t)]

T .
(13)

Further, to complete the model, the following input and output vectors are used

U(t) = [Qr1 Qr2 Qair]
T , (14)
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Y (t) = [SNH,nit(t) SNO,nit(t) SO,nit(t)]
T (15)

The constraints on the control are given by the following limitations: −Q̄r1 ≤ Qr1 ≤ 4Q̄r1

−Q̄r2 ≤ Qr2 ≤ Q̄r2

−Q̄air ≤ Qair ≤ 2Q̄air

(16)

Linearizing the system around the equilibrium point computed from the non linear
equations leads to the new variables (x, u, y) that are now deviation variables. That
is, they are deviations from the point the model is linearized about, not their original
absolute values. The equilibrium point is given by

x̄ = [69.6 623 13.5 3.2 10.4 2.4 68.9 624.6 20.9 8.9 5.3 1356.8]T (17)

and Q̄r1 = 2300 m3/j, Q̄r2 = 18446 m3/j and Q̄air = 100 m3/j which leads to the
following matrices for the system:

A =



−29.07 0 0 2.65 0 2.17 29.40 0 0 0 0 0
0 −29.48 6.04 0.64 0 4.40 0 29.40 0 0 0 0
0 −0.34 −38.99 −1.02 −0.05 5.00 0 0 29.40 0 0 0

−2.22 −0.02 −0.55 −40.74 0 12.23 0 0 0 29.40 0 0
2.18 0 −0.06 11.05 −29.40 9.64 0 0 0 0 29.40 0
−9.45 0 −0.18 −47.90 −0.01 −167.00 0 0 00 0 0
2.30 0 0 0 0 0 −38.67 0 0 0.55 0 1.84
0 2.30 0 0 0 0 0 −39.18 4.44 0.11 0 16.60
0 0 2.30 0 0 0 0 −0.78 −50.67 −0.30 −3.42 0
0 0 0 2.30 0 0 −3.06 −0.04 −0.66 −39.32 −0.19 0
0 0 0 0 2.30 0 2.99 −0.03 −0.55 1.13 −39.58 0

6.14 6.14 0 0 0 0 0 0 0 0 0 −3.13



B = 104



−0.0011 −0.0011 0
0.0023 0.0023 0
0.0102 0.0102 0
0.0079 0.0079 0
−0.0071 −0.0071 0
−0.0033 −0.0033 0.0008
0.0014 0.1233 0
−0.0031 1.1003 0
−0.0386 −0.0386 0
−0.0105 −0.0165 0
0.0094 −0.0097 0

0 −0.2042 0


C =

 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0


Remark 2.1. It is worth noting here that the obtained state space representation is not
controllable nor observable. In fact, matrices of controllability and observability are re-
spectively of rank 10 and 9. Further, the matrix A of the system has a spectrum that
contains stable eigenvalues, let say n−m = 9 stable eigenvalues.

3. The Control Scheme. In this section, we present the control scheme that will be
applied to the linearized obtained system. The control startegie is based on the positive
invariance concept that had shown efficiency in handling constrained control systems.
Moreover, as the system state is composed by non measurable quantities, observers as
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software sensors are introduced. Let us first recall the observer based regulator with
constraints. To this end, consider the linear constrained system{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(18)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, y(t) ∈ Rp is the
output vector, A and B are constant matrices of appropriate dimension and (A,B) is
controllable. It is assumed that A possesses at last (n − m) stable eigenvalues. The
control u is constrained in the set Ω defined as follows:

Ω = {u ∈ Rm\ − umin ≤ u ≤ umaxumin, umax ∈ intRm
+}. (19)

Using a state feedback control:

u(t) = sat(Fx(t)), F ∈ Rm×n, (20)

where the saturation function is as follows:

sat(Fx(t)) =

 umax if Fx ≥ umax

u if − umin < Fx < umax

−umin if Fx ≤ −umin

leads to a domain of linear behavior for the closed loop system that is given by

D(F, umin, umax) = {x ∈ Rn\ − umin ≤ Fx ≤ umax}, (21)

and the closed loop system in this case

ẋ(t) = (A+BF )x(t). (22)

Hence, if the domain (21) is positively invariant, in the sense of the definition given
below, one guarantees the respect of the control constraints for all t ≥ 0.

Definition 3.1. A subset D of Rm is said to be positively invariant with respect to system
(22) if the condition x(t0) ∈ D implies that x(t) ∈ D ∀t ≥ t0.

At this level, one may introduce the observer for this class of systems. Note that the
proposed observer is a reduced order one as the measurable part of the output is a linear
combination of the states. To not neglect this information, only a part of the state is
reconstructed via the reduced order observer [24]. Let this part be noted as

z(t) = Tx(t) z ∈ Rn−p, (23)

where matrix T ∈ Rn−p×n is chosen in such a way that the matrix
(
CT T T

)T
is

invertible. z(·) is the state of the observer dynamics and may be generated from an
auxiliary dynamical system as follows:

ż(t) = Dz(t) + Ey(t) +Gu(t) (24)

At this stage, our problem may be stated as finding matrices F , D, E and G such that
the closed loop system with the control u(t) = sat(Fx̂(t)) is asymptotically stable and
the input constraints are respected. The observed state is given by

x̂(t) =

(
C
T

)−1 (
y(t)
z(t)

)
=

(
V P

)( y(t)
z(t)

)
(25)

where the matrices V , C, T and P satisfy

V C + P T = I. (26)

Recall that the minimal order observer matrices, as proposed, are given by [24]

D = T A P, E = T A V and G = T B (27)
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which is equivalent to
T A− E C = D T. (28)

Matrix P is chosen to ensure asymptotic stability of the matrix D. In fact, matrix D
defines the dynamics of the errors and this guarantees vanishing errors [16]. Indeed,

ε̇(t) = ż(t)− T ẋ(t)

=Dz(t) + Ey(t) +Gu(t)− T (Ax(t) +Bu(t))

=Dz(t) + ECx(t)− TAx(t)

=Dz(t)−DTx(t)

=Dε(t).

For the observation error, we define the field D(I, εmax, εmin) in which we allow the error
ε(t) to evolve. Further, define the reconstruction error as e(t) = x̂(t)− x(t). Note that, it
is related to the observation error as follows:

e(t) =V y(t) + Pz(t)− x(t)

=V Cx(t) + Pz(t)− (V C + PT )x(t)

=P (z(t)− Tx(t))

=Pε(t)

Furthermore, one may prove that the control dynamics are as follows [17]:

u̇(t) =F ˙̂x(t)

=FP ż(t) + FV Cẋ(t)

=FP (Dz(t) + Ey(t) +Gu(t)) + FV C(Ax(t) +Bu(t))

=FP (TAPz(t) + TAV y(t)) + (FPTB + FV CB)u(t) + FV CAx(t)

=FPTA(Pz(t) + V y(t)) + F (PT + V C)Bu(t) + FV CAx(t)

=FPTAx̂(t) + FBu(t) + FV CA(x̂(t)− e(t))

=F (PT + V C)Ax̂(t) + FBFx̂(t)− FV CAe(t)

= (FA+ FBF )x̂(t)− FV CAe(t)

=HFx̂(t)− FV CAPε(t)

=Hu(t) + Lrε(t)

Therefore, the system formed by the control u(t) and the error ε(t) is obtained as(
u̇(t)
ε̇(t)

)
=

(
H Lr

0 D

)(
u(t)
ε(t)

)
(29)

This background enables one to recall the theorem [17] giving conditions for computing
the controller that respects all the needed requirements:

Theorem 3.1. The field D(I, umax, umin) × D(I, εmax, εmin) is positively invariant with
respect to the trajectory of system (29) if and only if, there exists a matrix H ∈ Rm×m

such that: {
H F = F A+ F B F

M̃qε ≤ 0
(30)

where

M =

(
H Lr

0 D

)
; qε =


umax

εmax

umin

εmin

 ; Lr = −FV CAP (31)
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for every pair (u(0), ε(0)) ∈ D(I, umax, umin)×D(I, εmax, εmin).

To compute the feedback gain, the inverse procedure is used [5, 6]. Hence, matrix H
satisfying all required conditions such that a solution exists is chosen and the feedback F
is obtained as a solution to the equation:

F A+ F B F = H F. (32)

The controllers proposed here are shown to be robust with respect to parametric un-
certainties within given sets for the system matrices. For more details about robustness
and sensitivity of such controllers, the reader is refereed to [19].

Remark 3.1. Note here that all computation effort is handled off line. Choice of an
adequate matrix H with all required conditions is studied in [18], solution of Equation
(32) is the detailed subject of the work [5].

4. Application to the WWTP. In this section, the control scheme presented in the
previous section is adapted to the special case of the WWTP which is our initial aim. In
order to apply the concept of positive invariance, the studied system must be controllable
and observable. However, the obtained model do not completely satisfy the two later
conditions because, as pointed out in Remark 2.1 the controllability and the observability
matrices have respectively ranks 10 and 9. First, the model is worked out to extract
controllable and observable parts. Hence, a matrix H satisfying the required conditions
is chosen and a controller is computed as solution to Equation (32). Finally, the reduced
order observer is designed.

4.1. Working out the model. Any representation in the state space can be transformed
into the equivalent form by using the transformation Z = Mx [12]:{

Ż = ĀZ + B̄u
y(t) = C̄Z

(33)

with

Ā = M A M−1, B̄ = M B and C̄ = C M−1

Ā =

(
Acō A12

0 Aco

)
, B̄ =

(
Bcō

Bco

)
, C̄ =

(
0 Cco

)
and Z =

(
Zcō

Zco

)
.

Hence, the system may be re-written as Żcō = AcōZcō + A12Zco +Bcōu

Żco = AcoZco +Bcou
y = CcoZco

(34)

where (Aco, Bco, Cco) is controllable and observable. Further, computing the spectrum
σ(Acō) = {−0.3373,−35.9885 + 1.2899i,−35.9885− 1.2899i} shows that it is stable and
hence stabilizing the system matrix Aco suffices to stabilizes the hole system [12].

For the WWTP, the states (SNH,nit(t) SNO,nit(t) SO,nit(t)) are measurable, so the
matrix M is chosen like
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M =



0.0001 0.9975 −0.0395 0 0 0 0 −0.0561 0.0034 −0.0001 0 0.0185
−0.0014 0.0589 0.0680 0 0 0 0.0009 0.9943 −0.0573 0.0012 0.0003 −0.0003
−0.0000 −0.0184 0.0007 0 0 0 0 0.0013 −0.0001 0 0 0.9998
−0.0200 0.0355 0.9965 0 0 0 0.0064 −0.0703 0.0001 0.0172 0.0037 0
−0.0001 0.0000 0.0041 0 0 0 −0.0214 0.0572 0.9981 0.0001 0.0000 0
0.0001 −0.0002 −0.0064 0 0 0 0.9997 0.0008 0.0214 −0.0001 0 0
−0.9929 −0.0007 −0.0188 0 0 0 0 0 0 −0.0842 0.0821 0
−0.0017 0.0005 0.0146 0 0 0 0 0 0 −0.6895 −0.7242 0
0.1173 0.0004 0.0122 0 0 0 0 0 0 −0.7192 0.6847 0

0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0


which leads to the following decomposition for the system:

ZT
co =

(
Z4 Z5 Z6 Z7 Z8 Z9 − x6 − x5 − x4

)
; Zcō =

 Z1

Z2

Z3

 (35)

with Zi =
∑n

j=1 Mijxi, i = 1, . . . , n. Finally, the vector Zco may be decomposed into the
available and unavailable parts as

Zco =

(
ξe
ξm

)
; with ξTe =

(
Z4 Z5 Z6 Z7 Z8 Z9

)
; ξm =

 Z10

Z11

Z12


ξe is the vector of unmeasured variables and ξm is the vector of available states. Matrices
of the decomposed system are given by

Aco =



−38.85 28.99 −0.00 0.17 0.01 −0.01 −5.10 0.04 1.00
2.33 −50.29 −0.26 −0.24 2.72 −2.0948 −0.0205 0.0002 0.004
0.01 −0.44 −38.67 −2.33 −0.32 −0.17 0.0327 −0.0003 −0.0064
0.01 0.07 −28.69 −29.23 −0.04 −1.26 2.25 −0.1898 2.81
−0.01 1.29 −0.08 0.11 −38.99 0.81 −0.07 1.6664 1.60
0.04 0.28 7.71 −1.26 −0.51 −39.77 −0.31 −1.5741 1.35
0 0 0 −9.38 −0.01 1.11 −167.007 −0.0190 −47.90
0 −0.00 −0.00 −0.24 21.29 −20.38 9.6467 −29.4080 11.05

0.00 0 −0.00 0.25 20.27 21.41 12.23 −0.0033 −40.74



Bco = 103



0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0
0.0332 0.0332 −0.0076
0.0708 0.0708 0
−0.0789 −0.0789 0



and Cco =

 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0





OBSERVER BASED REGULATOR WITH CONSTRAINTS 635

with the following control constraints:

umax =

 9200
18446
200

 , umin =

 2300
18446
100

 (36)

The observer may be designed, at this stage, for the decomposed system. To this end,
matrix T is chosen such that only the part z(t) = TZco(t) is estimated. Further, matrix
P is chosen to ensure asymptotic stability of matrix D = TAcoP . In fact, in this case
matrix T is given by

T =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 and P =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


According to Equation (27), the matrices D, G and E are computed.

D =


−38.858 28.9925 −0.007 0.1784 0.0119 −0.0185
2.3306 −50.2968 −0.2666 −0.2478 2.7231 −2.0948
0.0147 −0.4418 −38.678 −2.3376 −0.3296 −0.1756
0.0119 0.0735 −28.6943 −29.2308 −0.0443 −1.2648
−0.0105 1.2947 −0.0824 0.1128 −38.9935 0.813
0.0442 0.2873 7.7115 −1.263 −0.5140 −39.7722



G = 103


0.1040 −0.6657 0
−0.3872 0.2181 0
0.0052 1.2322 0
0.0252 0.0145 0
0.0057 0.1856 0
0.1403 0.0522 0



E =


−1.0078 −0.0489 5.1034
−0.0042 −0.0002 0.0205
0.0064 0.0003 −0.0327
−2.8104 0.1898 −2.2577
−1.6047 −1.6664 0.0718
−1.3549 1.5741 0.3185


For the reconstruction error, one may choose the limits as:

εmax =
(
1 1 0.5 1 1 1

)
; εmin =

(
0.5 0.5 0.25 0.8250 0.5 0.5

)
For the matrix H, we choose to assign the following closed loop eigenvalues {−170;−55;

−51}, which leads to the following choice of matrix H:

H =

 −170 0 0
0 −55 0
0 0 −51


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It is worth noting here that the remaining closed loop eigenvalues are the n − m stable
ones coming from the open loop system [14]. Hence, solving Equation (32) leads to:

F =

 0.0010 −0.0044 0.0319 0.0725 −0.0791 −0.0944 1.0349 −0.0000 0.4162
0.0001 −0.0005 0.0000 0.0001 0.0000 −0.0002 0.0017 −0.0000 0.0007
0.0148 −0.0774 0.1421 0.0036 −0.1591 −0.2023 −0.0352 −0.0024 0.0864


Conditions of Theorem 3.1 are easily checked and are given by the vector M̃qε =

104(−3.3981 − 1.1 − 0.1018 − 0.0010 − 0.0044− 0.0017 − 0.0014 − 0.0037 − 0.0034 −
1.6974 − 0.55 − 0.0506 − 0.0005− 0.0020 − 0.0016 − 0.0008 − 0.0018 − 0.0014) < 0,
which is a strictly negative vector. One may conclude that all required conditions are
satisfied; and hence, the observer based controller as proposed is able to monitor the
WWTP guaranteeing asymptotic stability and respect of all constraints for the control
and the observation error.

5. Simulation Results. Figures 2-15 below are devoted to present the evolution of all
variables of the system. In fact, the observer based controller, as defined in the section
above, is applied to the WWTP. Estimated values are compared with the simulated
ones from the non linear model. As general remarks asymptotic stability is obtained, all
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constraints are respected and the amount of all non desired organic matter is reduced in
the output to the desired values. Further, the limits imposed to the estimation errors are
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also respected. First, the control evolution is presented in Figures 2-4. Respect of all given
control constraints is clearly noticed. Second, Figures 5-7 show the output evolution from
the initial values y0 = Cxo = C[100 300 15 1 10 2.25 74 200 22 200 100 300]T = [15 1 10]T .
Finally, from Figures 8-13 one may note that the convergence, for all estimated states, is
obtained. Hence, and in practice, the concentrations of the organic matter are reduced
and converge to the desired values. Furthermore, Figures 14 and 15 are devoted to show
that the reconstruction errors limits are really respected and this is clear from the figures.

6. Conclusion. In this paper, the minimal order observer in the control loop of a non
linear system with input constraints is introduced. In fact, observer, as software sensor,
in the framework of positive invariance techniques is used to control the linearized model
of a WWTP. For this process, linearization leads to some constraints on the control.
Further, state variables are unavailable to measure and more than that no adequate
sensor exists. Hence, the introduction of the observer is of great interest. The positive
invariance techniques that had emerged as very efficient to handle similar problems of
constrained control is successfully used to control the nitrogen removal process. The
observer based constrained control, as presented above may compete with approaches
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in easiness, applicability and computing effort. In fact, all the needed computation is
achieved off line and once the design finished, the control law is easy to implement on
the process. Further, it is true that in the computational steps some trial and error tests
are necessary; however, with the background available for the choice of the observer and
the matrix H assigning the closed loop poles [18], the computation effort is sensitively
reduced. On the other hand, the evolution of the closed loop system, as presented in the
figures above, with the designed control law shows its efficiency and the success of the
controller to the reduction of the organic waste.
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