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Abstract. In this paper, we address the problem of immersion and invariance (I&I)
control for a class of nonlinear systems. Based on selection of target system, a novel
controller is obtained, which efficiently avoids choosing Lyapunov function. The designed
controller guarantees that all trajectories of the closed-loop systems are asymptotically
stable. The efficiency and effectiveness of the proposed method is demonstrated by a
practical example.
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1. Introduction. There are many kinds of practical systems which can be described by
a class of three-order nonlinear systems, such as inverted pendulum systems [1], power
systems [2-5], aircraft wing rock systems [6], electro hydraulic systems [7]. The practical
systems mentioned above can be written in a unified form as follows:

ẋ1 = x2,
ẋ2 = f21 (x1, x3) + f22 (x1, x2)x2,
ẋ3 = f3 (x) + ku,

(1)

where x = (x1, x2, x3)
T ∈ R3, u ∈ R are the measurable state and the input of the

systems, respectively. k ∈ R is a known constant; f21 (x1, x3) is left-invertible (with
respect to second argument)1. Throughout the paper it is assumed that all functions and
mappings are C∞.

In the past years, considerable research efforts have been made for the stabilization
of nonlinear systems [8-18]. Several constructive methods such as feedback linearization,
backstepping, sliding mode control, and passivity-based control have been established to
stabilize nonlinear systems; see [19-22] and the references therein.

A new method to design asymptotically stabilizing control law for nonlinear systems was
presented in [23]. The method relies upon the notions of systems immersion and manifold
invariance and does not require the knowledge of a Lyapunov function. The method has
been further developed in a series of publications that have been recently summarized in

1A mapping f21 (x1, x3) : R × R → R is left-invertible (with respect to x3) if there exists a mapping
fL
21 : R× R → R such that fL

21 (x1, f21 (x1, x3)) = x3, for all x3 ∈ R (and for all x1).

3463



3464 S. LI, X. LIU, X. DONG, Y. JING AND X. LIU

[6]. And in the past few years, there were new research results on applications of the new
method [24-30]. And the new method is called as I&I method.
The basic idea of I&I methodology is to achieve stabilization by immersing the plant

dynamics into a stable (lower-order) target systems. This methodology, as it is based
on the concept of asymptotic model matching, offers greater flexibility. In [6,23], it was
rigorously proven that I&I technique is fundamentally different from sliding mode control
(SMC) and singular perturbation methods. The three of them, of course, rely on the
concept of invariant manifolds, but they are used in different ways. In SMC the invariant
manifold is created switching vector fields and it is reached in finite time. In I&I, there is
no switching, and convergence to the manifold is asymptotic. The great advantage of the
latter is, of course, to avoid the deleterious chattering effect, which is unavoidable in SMC.
The composite control of P. Kokotovic, and related singularly perturbed techniques, do
not create a manifold, but simply ensure the convergence to the slow manifold that already
exists in the system. This gives very little room to use this technique in a constructive
way.
The main contribution of this paper is to propose a state-feedback controller for nonlin-

ear systems (1) via I&I. The paper is organized as follows. In Section 2 a brief introduction
to the I&I control synthesis is given. In Section 3 we give main result of designing I&I
controller for (1). Comparative simulation result of wing rock system proves the improved
performance in terms of faster convergence in Section 4. Finally, Section 5 concludes the
paper.

2. Immersion and Invariance. The present section reviews the basic theoretical results
of [23], namely a set of sufficient conditions for the construction of globally asymptotically
stabilizing state feedback control laws for general nonlinear systems.

Theorem 2.1. [23] Consider the system on

ẋ = f (x) + g (x)u, (2)

with state x ∈ Rn and control u ∈ Rm, and an equilibrium point x∗ ∈ Rn to be stabilized.
Let p < n and assume we can find mappings

α : Rp → Rp, π : Rp → Rn, c : Rp → Rm,
φ : Rn → Rn−p, ψ : Rn×(n−p) → Rm

such that the followings hold.
(H1) (Target system). The system

ξ̇ = α (ξ) , (3)

with state ξ ∈ Rp, has an asymptotically stable equilibrium at ξ∗ ∈ Rp and x∗ = π (ξ∗).
(H2) (Immersion condition). For all ξ ∈ Rp

f (π (ξ)) + g (π (ξ)) c (π (ξ)) =
∂π

∂ξ
α (ξ) (4)

(H3) (Implicit manifold). The set identity (4) in reference [23] holds.
(H4) (Manifold attractivity and trajectory boundedness). All trajectories of the
system

ż =
∂φ

∂x
[f (x) + g (x)ψ (x, z)] , (5)

ẋ = f (x) + g (x)ψ (x, z) , (6)

are bounded and satisfy
lim
t→∞

z (t) = 0. (7)
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Then x∗ is an asymptotically stable equilibrium of the closed loop system

ẋ = f (x) + g (x)ψ (x, φ (x)) .

Remark 2.1. The result in Theorem 2.1 lends itself to the following interpretation. The
stabilization problem of system (2) can be divided into two subproblems. First, given the
system (2) and the target dynamical system (3) find, if possible, a manifold M , described
implicitly by {x ∈ Rn |φ (x) = 0}, and in parameterized form by {x ∈ Rn|x = π(ξ), ξ ∈
Rp}, which can be rendered invariant and attractive, and such that the restriction of the

closed-loop system to M is described by ξ̇ = α (ξ). Second, we do not propose to apply the
control u = c (π (ξ)) that renders the manifold invariant; instead we design a control law
u = ψ (x, z) that drives to zero the coordinate z and keeps the system trajectories bounded.

Remark 2.2. The convergence condition (7) can be relaxed, i.e., to prove asymptotic
stability of the equilibrium x∗ it suffices to require

lim
t→∞

f (x, ψ (x, z))− f (x, ψ (x, 0)) = 0

In other words, it is not necessary to reach the manifold M , in order to stabilize the
equilibrium x∗.

Remark 2.3. If we can find a partition of x = col(x1, x2) with x1 ∈ Rp and x2 ∈ Rn−p

and a corresponding partition of π (.) = col(π1 (.) , π2 (.)) such that x1 = π1 (ξ) is a global
change of coordinates, then (H3) is satisfied with z = φ (x) = x2 − π2

(
π−1
1 (x1)

)
. As a

result, instead of considering the trajectories of the extended system (5)-(6) in (H4), it
suffices to study the trajectories of the system with state (x1, z).

3. I&I-Based Controller Design for Nonlinear Systems.

3.1. Control objective. As mentioned earlier, x∗ denotes the operating stable equilib-
rium. We assume that x∗ is known to us and state the control objective as ‘to design a
control law u = ψ (x, z) in order to make the system (1) asymptotically stable at x∗, and
to improve the transient response of the closed-loop system’.

3.2. Controller design. We proceed to verify the H1-H4 of Theorem 2.1.
(H1) (Target system). The key idea is to immerse a plant dynamics into a stable
target system. Thus, we define the target dynamics as

ΣT :

{
ξ̇1 = ξ2,

ξ̇2 = −V ′ (ξ1)− R (ξ1, ξ2) ξ2,
(8)

where ξ1, ξ2 ∈ R, V (ξ1):R → R is the potential energy of the system and R (ξ1, ξ2):R×R →
R is a damping function which are to be chosen. The target system (8) has a stable
equilibrium at ξ∗ with energy function H (ξ1, ξ2) =

1
2
ξ22 + V (ξ1).

To ensure the stability at the equilibrium we introduce the following assumption.
Assumption 3.1. (i) The potential energy function V (ξ1), satisfies V

′ (ξ1∗) = 0 and
V ′′ (ξ1∗) > 0.

(ii) The damping matrix is R (ξ∗) ≥ 0.
(H2) (Immersion condition). Given the control objectives and our choice of target
dynamics a natural selection of the mapping π is

π (ξ) =

 ξ1
ξ2

π3 (ξ)

 , (9)
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where π3 (ξ) is a function to be defined. With this choice of π (ξ) and the target dynamics
above, Equation (4) becomes ξ2

f21 (ξ1, π3 (ξ)) + f22 (ξ1, ξ2) ξ2
f3 (π (ξ))

+

 0
0
k

 c (π (ξ))
=

 1 0
0 1

∂π3(ξ)
∂ξ1

∂π3(ξ)
∂ξ2

[
ξ2

−V ′ (ξ1)− R (ξ1, ξ2) ξ2

] (10)

Next we choose π3 (ξ) and c (π (ξ)) to satisfy the above equation as follows: the first row
of (10) is already satisfied. From the second row we have

f21 (ξ1, π3 (ξ)) + f22 (ξ1, ξ2) ξ2 = −V ′ (ξ1)− R (ξ1, ξ2) ξ2 (11)

Choose R (ξ1, ξ2) = −f22 (ξ1, ξ2)+d and V (ξ1) = −β cos ξ̃1 for some β > 0 (to be chosen).

We use ξ̃1 to denote ξ1 − ξ1∗. Then the above equation becomes

f21 (ξ1, π3 (ξ)) = −β sin ξ̃1 − dξ2, (12)

and from (12) we get

π3 (ξ) = fL
21

(
ξ1,−β sin ξ̃1 − dξ2

)
. (13)

From the third row we have

c (π (ξ)) = k−1

[
∂π3 (ξ)

∂ξ1
ξ2 − f3 (π (ξ))

−∂π3 (ξ)
∂ξ2

(
β sin ξ̃1 + (d− f22 (ξ1, ξ2)) ξ2

)] (14)

(H3) (Implicit manifold). The manifold is implicitly described by M = {x ∈ R3|
φ (x) = 0}, with

φ (x) =x3 − π3 (x1, x2)

=x3 − fL
21 (x1,−β sin x̃1 − dx2)

(15)

where x̃1 denotes x1 − x1∗.
(H4) (Manifold attractivity and trajectory boundedness). The off-the-manifold
coordinates are z = φ (x) and straightforward calculations show that

ż = ẋ3 − π̇3 (x1, x2)

= f3 (x) + kψ (x, z)− ∂π3 (x1, x2)

∂x1
x2

− ∂π3 (x1, x2)

∂x2
(f21 (x1, x3) + f22 (x1, x2) x2)

(16)

To ensure the boundedness of the trajectories of the off-the-manifold coordinate z and
also that lim

t→∞
z (t) = 0 we take

ż = −γz, γ > 0, (17)

and then we have

ψ (x, z) = k−1

[
−γz + ∂π3 (x1, x2)

∂x1
x2 − f3 (x)

+
∂π3 (x1, x2)

∂x2
(f21 (x1, x3) + f22 (x1, x2)x2)

] (18)
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We calculate the control law as

u =ψ (x, φ (x))

= k−1

[
−γφ (x) + ∂π3 (x1, x2)

∂x1
x2 − f3 (x)

+
∂π3 (x1, x2)

∂x2
(f21 (x1, x3) + f22 (x1, x2)x2)

]
= k−1

[
−γ

(
x3 − fL

21 (x1,−β sin x̃1 − dx2)
)
+
∂fL

21 (x1,−β sin x̃1 − dx2)

∂x1
x2

+
∂fL

21 (x1,−β sin x̃1 − dx2)

∂x2
(f21 (x1, x3) + f22 (x1, x2)x2)− f3 (x)

]
. (19)

3.3. Stability result. We establish boundedness of the trajectories of the closed-loop
system (1) with the control law (19) and the off-the-manifold coordinate z.

From (8) and (9), we can obtain that states x1, x2 are bounded and converge to
equilibrium x1∗, x2∗. We know that the off-the-manifold coordinate z is bounded and
lim
t→∞

z (t) = 0 from (17). Next we have x3 = z + π3 (x1, x2), from (12) and (13) we have

π3 (x1, x2) is bounded for all (x1, x2), and hence we can conclude boundedness of x3.
The above discussion on the control synthesis can be summarized in the following

proposition which is the main result of this paper.

Proposition 3.1. The closed-loop system (1) with the control law (19) is asymptotically
stable at x∗.

Proof: From the derivations above it is clear that Proposition 3.1 can be easily proved,
but omitted here for brevity.

4. A Practical Example. In this section, we use a practical example which is taken
from [6] to illustrate the effectiveness and merit of our result.

Consider the system of aircraft wing rock

ẋ1 = x2,

ẋ2 = x3 + ϕ2 (x1, x2)
T θ,

ẋ3 =
1
τ
u− 1

τ
x3,

(20)

where the states x1, x2 and x3 represent the roll angle, roll rate and aileron deflection
angle respectively, τ is the aileron time constant, u is the control input, θ ∈ R5 is a
known constant vector and ϕ2 (x1, x2) = [1, x1, x2, |x1|x2, |x2|x2]T. The system has an
equilibrium at zero and the control objective is to regulate all the state trajectories to the
equilibrium.

Follow the design methodology of the previous section and apply the control law

u = τ

[
−γ (x3 + β sinx1 + θ2x1 + dx2)− (β cos x1 + θ2)x2 − dẋ2 +

1

τ
x3

]
(21)

The system (20) in closed-loop with controller is simulated by using the proposed
method and backstepping in [20], θ = [0,−26.67, 0.76485,−2.9225, 0] and 1/τ = 15. The
design parameters are set β = 20, γ = 50. Simulation is done with d = 6 and result is
shown in Figure 1 for the initial conditions x (0) = (0.4, 0, 0).

As seen from Figure 1, we achieve slightly faster convergence speed with the proposed
method.
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Figure 1. Comparative results for different controllers

5. Conclusions. We have presented a constructive algorithm for designing state feed-
back controller which relies on the tools of I&I to stabilize a class of nonlinear systems at
equilibrium. We choose a manifold such that the closed-loop system restricted to the man-
ifold is the target dynamics. The control law is synthesized in order to render the manifold
invariant and attractive. Comparative result demonstrates the superior performance of
the proposed technique in convergence speed.
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