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Abstract. A constant challenge in Quasi-Cyclic Low-Density Parity-Check (QC-LDP-
C) codes lies on flexible code lengths and rates, conditioned by good error performance.
This paper presents an optimal construction method of QC-LDPC codes on the basis of
graphical model and search algorithm. Utilizing the proposed scheme, we can construct
adaptable QC-LDPC codes whose girths are no less than 12, and column weights are 3.
Comparing with any other QC-LDPC code construction approach, this method is much
more flexible in block length and block rate. Furthermore, when construction parameters
are selected, regular QC-LDPC codes can be constructed easily. Simulation results indi-
cate that LDPC codes proposed in the method perform similarly to the classic Progressive
Edge-Growth (PEG) based LDPC codes but outweigh in convenience of implementation
and applications.
Keywords: Quasi-cyclic low-density parity-check (QC-LDPC) codes, Tanner graph,
Girth, Iterative decoding

1. Introduction. The past decades have witnessed the increasing research interests in
Low-Density Parity-Check (LDPC) codes [1]. LDPC codes have two important merits:
1) the performance can approach the Shannon limit. The longer code length, the better
performance; and 2) decoding complexity is linear, which is much better than that of most
other channel codes. LDPC codes can be classified into two categories approximately:
1) random or pseudorandom codes; and 2) structured codes. Generally, random codes
outperform structured codes. However, the code length in real applications normally is
not long, limited by the algorithm complexity. In this way, some well-structured LDPC
codes perform as well as random ones. In addition, random LDPC codes need to store
their complete parity-check matrices, which result in large storage volume, especially when
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their code lengths are large. The large storage demands of LDPC codes are also one of
the reasons that prevent their applications after these codes were discovered.
As one class of structured LDPC codes, QC-LDPC codes have very good error perfor-

mance over noisy channels [2-5] and have linear relationship with their code length in the
encoding complexity. In addition, a QC-LDPC code can be encoded/decoded with storing
only part of its generator/check matrix because of the quasi-cyclic feature of QC-LDPC
codes. Hence, QC-LDPC codes have been applied to some telecommunication systems,
such as digital television terrestrial broadcasting system of China (CDTTB) [3].
In the bipartite graph corresponding to an LDPC code check matrix, its girth is one

of the important factors of determining the performance of the LDPC code. Therefore,
LDPC codes are generally expected to meet the RC constraint conditions (i.e., the bi-
partite graph has no cycle of 4). LDPC codes often adopt the belief propagation (BP)
algorithm to decode. Smaller cycles of LDPC codes will result in autocorrelation of mes-
sage passing, which will reduce decoding performance. Therefore, constructing LDPC
codes without small cycles is highly recommended in applications and has been discussed
in many references [6-17]. [6,7] present a classic random LDPC code construction algo-
rithm named as Progressive Edge-Growth (PEG) algorithm which makes girth as large as
possible. The methods in [8-10] are based on the PEG algorithm. The codes constructed
in [8] outperform the ones constructed by the original PEG algorithm dramatically in
fading channel. However, these codes are still random codes. The method in [9] partly
expands the length of the cycles, but whether to enlarge the girth or not is not sure. The
algorithm in [10] has large amounts of calculation. Except the PEG algorithm and its
evolved construction algorithms, there are some other construction methods without small
girth [11-17]. Some of them are to construct QC-LDPC codes [11,12,16,17]. The method
given in [11] cannot be directly used to construct low rate and large girth QC-LDPC
codes. The LDPC codes construction methods for girth of 6, 8, 10 and 16 are respectively
proposed in [12-15]. We proposed a QC-LDPC code construction method [16] which can
construct QC-LDPC codes with girth of 12. The fundamental idea of this method is to
construct QC-LDPC codes using linear congruence theorem and graph theory. However,
the dimensions of sub-matrices of these QC-LDPC codes are limited to prime numbers.
Also, the method provided in [17] requires that the dimensions of sub-matrices should be
prime numbers or multiple of prime numbers. Thus, the rates and lengths of QC-LDPC
codes are constrained as well.
In fact, LDPC codes in communication systems are often with small or median code

lengths. The practical LDPC codes are more likely to have small cycles distributed
inside, comparing with LDPC codes with long code length. Most QC-LDPC construction
methods require the dimensions of sub-matrices be prime numbers or multiple of prime
numbers, which result in inflexibility in code lengths and code rates. In addition, regular
LDPC codes are more preferred in practical implementations because they require much
less storage than irregular ones. Therefore, we propose an adaptable QC-LDPC code
construction method. An LDPC code constructed with this method has following features:
1) having girth no less than 12, 2) having flexible code length and code rate, 3) having
better performance in the case of shorter code length, and 4) having column weight of 3
and easily being constructed in regular form.
This paper is organized as follows. Section 2 presents some backgrounds. Section 3

describes a method of constructing QC-LDPC codes, each of which has girth of 12 and
flexible block length and block rate. In Section 4, the codes are analyzed. In Section 5,
the simulation results are given. Finally, Section 6 concludes this paper.
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2. QC-LDPC Codes and Structure Graph.

2.1. QC-LDPC codes. Let P i denote a circulant matrix of L × L-dimension, where
0 ≤ i < L. To make it simple, suppose P∞ denote the zero matrix. Then, the matrix of
an mL× nL-dimension QC-LDPC code is:

H =


P a0,0 P a0,1 · · · P a0,n−1

P a1,0 P a1,1 · · · P a1,n−1

...
...

. . .
...

P am−1,0 P am−1,1 · · · P am−1,n−1

 , (1)

where ai,j ∈ {0, 1, · · · , L− 1,∞}. Respectively substitute each zero matrix and each
cyclic shift matrix in H with “0” and “1” to obtain a matrix B(H) of m× n-dimension.
We call the cycles in B(H) as “cycle-B”. In H, a cycle-B with length of 2l can be denoted
as P a1 → P a2 → · · · → P a2l → P a1 , where ai ∈ {0, 1, · · · , L− 1}, 1 ≤ i ≤ 2l.

Suppose

s(a) =

(
2l−1∑
k=0

(−1)kak+1

)
(mod L), (2)

where x (mod B) is defined as (B + x) mod B.
If β is the greatest common divisor of s(a) and L, then a cycle in matrix B(H) with

length of 2l is corresponding to β cycles with length of 2lL/β in matrix H [18].

2.2. Mapping of structure graph and matrix. A structure graph G is a simple
graph which is finite and trivial [19]. Therefore, G has no multiple edges. G can be
correspondingly mapped to a Galois field GF (2) matrix H. Suppose the structure graph
G has m paths, p0, p1, . . ., pm−1, and n vertexes, v0, v1, . . ., vn−1. Any two paths in the
graph are either disjoint or singularly crossing. Path pj is mapped into the jth row of H,
i.e., rj of H. Vertex vi is mapped into the ith column of H, i.e., ci of H. Let V (S) denote
the vertex set of S. If vi ∈ V (pj) (0 ≤ i < n, 0 ≤ j < m) (i.e., path pj passes vertex vi),
then the element of the jth row and the ith column of matrix H is “1”, otherwise is “0”.

Therefore, the number of vertexes passed by each path is much less than the total of
vertexes of graph G, that is, V (pj) � V (G), where 0 ≤ j < m; then matrix H is a sparse
matrix.

Hence, if m paths of a structure graph respectively pass ρ vertexes; n vertexes are
respectively passed by λ paths, then the structure graph is correspondingly mapped into
a regular matrix with column weight of λ and row weight of ρ.

Figure 1 shows an example of mapping between a structure graph and a matrix. The
left is a structure graph, and the right is the corresponding matrix of the structure graph.

Additionally, in matrix H, let define row line which passes all “1” elements of the jth
row of H (0 ≤ j < m), and define column line which passes all “1” elements of the ith
column of H (0 ≤ i < n). Then t row lines and t column lines can form a cycle with
length of 2t (2 ≤ t ≤ min(m,n), where the symbol min(·) denotes the minimum value of
the aggregate).

Paths in a structure graph can form a p-cycle. If there are totally t paths involved in
the p-cycle, then the length of the p-cycle is defined as t. As indicated in the structure
graph of Figure 1, bold lines denote a p-cycle with length of 3 formed by three paths p0, p2
and p3. The p-cycle in the structure graph on the left is transformed to a cycle depicted
in its corresponding matrix on the right. The size of the cycle in the matrix is 6.
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Figure 1. Example for mapping between structure graph and matrix

It is easy to prove that a p-cycle in structure graph G can be transformed to a cycle in
matrix H, and the length of the p-cycle is only half of the length of the cycle, and vice
versa.

3. Construction of QC-LDPC Codes with Girth of 12. As for the check matrix
of an LDPC code, if its column weight λ ≥ 3, with its code length increasing, minimum
distance of the code will increase linearly. If column weight is 2, minimum distance of
code will only increase logarithmically [1]. Therefore, LDPC codes with column weight
of 3 are preferred in the paper. In our method, first, we map some original matrixes into
structural graphs. For the purpose of constructing QC-LDPC codes, the original matrixes
are quasi-cyclic matrixes. We then add multiple paths in the structural graph and make
sure two conditions: 1) every vertex in the structure graph is passed by 3 paths; 2) the
smallest p-cycle of the structure graph is 6. In this way, we convert the structural graph
back to a check matrix. The matrix has column weight of 3 and girth of 12. Figure 2
shows an example for a structure graph construction. Each original quasi-cyclic matrix
maps to each layer in Figure 2, respectively. The submatrix al,i,j of original quasi-cyclic
matrix al maps to subgraph gl,i,j, and paths are added to connect these subgraphs. The
following steps are addressed to build GF(2) check matrix which has no small cycles:
1) Construct t small m ·L×n ·L original quasi-cyclic matrices in GF(2), each of which

is marked as Al (2 ≤ m,n ≤ L, 0 ≤ t ≤ L, 0 ≤ l < t, L is the order of each submatrix
of Al), which do not include smaller cycles (for example each girth is 6). Because the
matrices are small, the construction is relatively easy.
Each original matrix Al can be obtained by searching L-tuple matrix al = [al,i,j], where

al,i,j ∈ {0, 1, · · · , L− 1}, 0 ≤ i < m, 0 ≤ j < n, 2 ≤ m,n ≤ L. According to (2),
∀0 ≤ i1, i2 < m, 0 ≤ j1, j2 < n, i1 6= i2, j1 6= j2, when the girth of a original matrix Al is
6, the following restriction condition should be met:

al,i1,j1 − al,i1,j2 + al,i2,j2 − al,i2,j1 6= 0(mod L). (3)

2) Map each original matrix Al into structure graph Bl. Aggregation of B0, B1, . . ., Bt

form structure graph C. Each original matrix Al is divided into m×n submatrices. Each
submatrix is denoted as ml,i,j. All the “1” elements in Al are mapped into vertexes in
structure graph C, marked as vl,i,j,k, where k means that the vertex is mapped by the “1”
element of the kth column of submatrix ml,i,j; hence, 0 ≤ k < L, 0 ≤ i < m, 0 ≤ j < n,
0 ≤ l < t.
The row lines and the column lines of Al are mapped into paths in Bl, named as row

paths and column paths, respectively. Because each “1” element of Al is respectively
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Figure 2. Structure graph construction

intersected by one row line and one column line, the vertexes in Bl are intersected by two
paths. In this way, a cycle of length q in Al is mapped into a p-cycle of length q in Bl.

In order to construct an LDPC code of column weight 3, each vertex in Bl should be
passed by another path. Therefore, there are rules to add paths among structure graphs
B0, B1, . . ., Bt to avoid that the length of each p-circle in C is small.

Each original matrix Al is divided into m× n submatrixes, which are denoted as ml,i,j,
correspondingly, and each structure graph Bl is divided into m× n subgraphs, which are
denoted as gl,i,j, where 0 ≤ i < m, 0 ≤ j < n. Structure graph C is divided into m × n
groups. Each group is composed of subgraphs g0,i,j, g1,i,j and . . . gt−1,i,j. L twisty paths
are added in each group, and each twisty path passes one vertex of each subgraph in the
group.

Define twisty factor τl,i for each twisty path when the twisty path intersects subgraph
gl,i,j, where 0 ≤ τl,i < L, 0 ≤ l < t. ∀0 ≤ i < m, let τ0,i = 0. Each twisty path is added
to follow the following rules:

The twisty path starts from g0,i,j, vertex v0,i,j,u is connected to vertex vl,i,j,(u+τl,i)( mod L)

when the twisty path intersects subgraph gl,i,j, where 0 ≤ u < L, 0 < l < t, 0 ≤ i < m,
0 ≤ j < n.

According to (2), ∀0 ≤ l1, l2 < t, 0 ≤ i1, i2 < m, 0 ≤ j < n, where l1 6= l2, i1 6= i2, in
order to guarantee that any two column paths passing subgraphs gl1,i1,j, gl1,i2,j, gl2,i1,j and
gl2,i2,j and any two twisty paths intersecting subgraphs gl1,i1,j, gl1,i2,j, gl2,i1,j and gl2,i2,j do
not form a p-cycle with length of 4, the following two restrict conditions must be met:

τl1,i1 − τl2,i1 6= τl1,i2 − τl2,i2 (4)

τl,i1 6= τl,i2 . (5)

Also, in order to ensure that any two row paths passing subgraphs gl1,i,j1 , gl1,i,j2 , gl2,i,j1
and gl2,i,j2 (1 ≤ l1, l2 ≤ L) and any two twisty paths intersecting subgraphs gl1,i,j1 , gl1,i,j2 ,
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gl2,i,j1 and gl2,i,j2 (1 ≤ l1, l2 ≤ L) do not form a p-cycle with length of 4, the following
restrict condition must be met:

al1,i,j1 − al1,i,j2 + al2,i,j2 − al2,i,j1 6= 0(mod L). (6)

3) Map structure graph C into parity check matrix D: Define each path in structure
graph C as pq. Row paths are formed by the row lines in structure graph Bl, q =
((m + n)l + i)L + w, where w denotes the wth row of submatrix ml,i,j (0 ≤ w < L).
Column paths are formed by the column lines in Bl, q = ((m+ n)l +m+ j)L+k. As for
twisty paths connecting each structure graph Bl, q = ((m+ n)t+ in+ j)L+ k, where k
is denoted with the column label in m0,i,j.
Map the path px in structure graph C as the xth row of check matrix D, and map the

vertex vy in C as the yth column of D, where 0 ≤ x < (tm+tn+mn)L, 0 ≤ y < t·m·n·L.
If vy ∈ V (px), then the element of the xth row and the yth column of the check matrix
D is “1”, otherwise is “0”.
In this approach, given 2 ≤ m,n, t ≤ L, we can construct QC-LDPC codes with column

weights 3, and varied row weights: m, n or t. However, generally speaking, when weight
of every column is the same, an LDPC code whose weight of each row is roughly equal can
more likely approach the Shannon limit than an LDPC code whose weight of each row
is arbitrary [20]. Therefore, when this approach is employed in constructing the LDPC
codes, the values ofm, n and t need to be chosen as close as possible under the prerequisite
of design demands on rate and code length.

4. Analysis on Structural Matrix.

4.1. The lower bound of search complexity. Suppose the L-tuple matrix of original
matrix Al searched is m × n-dimension (2 ≤ m,n ≤ L, 0 ≤ l < t). The value of factor
al,i,j (0 < i < m, 0 < j < n and 0 ≤ l < t) needs search for i × j times to meet (3) at
least, and l × j times to meet (6) at least.
When twisty factor τl,i is being searched (1 < l < t, 0 < i < m), l× i time searches are

required to meet (4) at least; i time searches are required to meet (5) at least.
Hence, search complexity is lower bounded as follows:

C = t ·
∑n−1

j=1

∑m−1

i=1
i · j +m ·

∑n−1

j=1

∑t−1

l=1
l · j+

∑m−1

i=1

∑t−1

l=2
l · i+t ·

∑m−1

i=1
i

=
tmn(n− 1)(m+ t− 2) +m(m− 1)(t+ 2)(t− 1)

4
.

(7)

Since the code length of Check matrix D is t ·m · n · L, the lower bound increases in
a geometric ratio of increasing of the code length. Therefore, the method is preferred to
construct QC-LDPC codes with short length.
Similarly, structure graph C with smallest p-cycle length of 8 or even larger length can

also be searched according to (2). However, the search is conducted under the prerequisite
that structure graph C has no p-cycles with length of 4. Therefore, the search complexity
will be much larger.

4.2. Matrix rate. Check matrix D is (tm + tn +mn)L × t ·m · n · L-dimension. Each
vertex of structure graph C is passed by a row path, a column path and a twisty path.
The column weights of check matrix D are the same and equal to 3. The row weights
can be varied among m, n or t. Therefore, the sequence distribution of check matrix D
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is denoted as follows:

λ(x) = x2 (8)

ρ(x) =
tm

tm+ tn+mn
xn−1 +

tn

tm+ tn+mn
xm−1 +

mn

tm+ tn+mn
xt−1. (9)

Hence, the rate of check matrix D is

R = 1−
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

=
t2m2(n− 3) + t2n2(m− 3) + n2m2(t− 3)

mnt(tm+ tn+mn)
.

(10)

When the codelength c and rate t of a QC-LDPC are given, the value of the parameters
m, n, t and L can be solved by following equation set:{

c = t ·m · n · L
k = t2m2(n−3)+t2n2(m−3)+n2m2(t−3)

mnt(tm+tn+mn)

. (11)

Since the equation set is underdetermined, the value of m, n, t and L can be varied in
multiple options.

When m = n = t, a regular matrix can be obtained: its row weight is m, its column
weight is 3, and its rate is

R =
m− 3

m
. (12)

The check matrix constructed with this approach is not necessary full rank. Therefore,
its rate can be slightly higher than the calculation results of (10).

5. Simulation. In Figure 3, horizon axis is Signal to Noise Ratio (SNR) and vertical
axis is Bit Error Rate (BER). The performance curve for a (1250, 500) QC-LDPC code
constructed by the approach is presented in Figure 3. The LDPC code is generated under
the circumstances L = 10, and m = n = t = 5. This is a regular LDPC code whose
column weight is 3 and row weight is 5. The check matrix of this LDPC code has 15
redundant rows, so its rate is approximately 0.412. Its corresponding curve is marked as
MGM in Figure 3.

The PEG algorithm is a classical random LDPC code construction method and was
recognized the best one by MacKay [6-8]. For the purpose of comparison, the performance
curve of a PEG LDPC code (1250, 500) is presented in Figure 3, which is marked as PEG.
The girth of the LDPC code is 8, and the average length of its cycles is 9.99.

In addition, the performance curve of a random LDPC code which has the same length
and rate is also shown in Figure 3 and marked as RAND.

BPSK transmission over an AWGNC and the BP algorithm are employed for all simu-
lations, and the maximum iterations are set as 20.

As indicated by Figure 3, the LDPC code constructed with the approach described
in the paper is better than the LDPC code constructed with PEG algorithm. The con-
structed random LDPC code has similar performance with these two codes in low SNR
areas; however, error floor starts to appear when BER is close to 10−6. Hence, both this
approach and the PEG algorithm have low error floors. However, the PEG algorithm is
to construct random LDPC codes. As mentioned at the beginning of the paper, random
LDPC codes are inconvenient in practice because they require much bigger storage than
structure LDPC codes do. Therefore, the LDPC codes constructed with this approach
ensure both of performance and application convenience on the premise of flexible code
length and rate.
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Figure 3. Comparison of (1250, 500) LDPC code performances

6. Conclusions. With the principles of constructing large girth LDPC codes, an ap-
proach of constructing QC-LDPC codes based on graphical model and search algorithm
is put forward in the paper. Original matrixes of girth 6 are constructed firstly, and then
they are mapped into structure graphs. Paths are added to these structure graphs to form
a large structure graph. Finally, the large structure graph is mapped into a QC-LDPC
code as required. The column weight of the QC-LDPC code is 3, and the girth is 12. Both
the code lengths and code rates of QC-LDPC codes in this approach are very flexible.
Furthermore, when construction parameters are selected, regular QC-LDPC codes can be
constructed. These features all make the codes constructed be convenient in applications.
Final simulation results also indicate that our QC-LDPC codes have similar performances
with LDPC codes constructed with the classic PEG algorithm. The future work includes:
1) applications of the proposed scheme, 2) further simulation in test bed, 3) larger girth
QC-LDPC construction algorithm with lower complexity.
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