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ABSTRACT. A touchless user interaction system based on marker detection and tracking
is proposed for real-time mobile applications. The proposed algorithm can robustly esti-
mate users’ control information with a camera on a mobile device, which often has limited
hardware resources and is influenced by varying environmental conditions. First, we de-
tect a pre-registered marker based on the normalized correlation coefficient. Then, we
track the marker motion by employing the contrast invariant mean-shift algorithm. More
specifically, the proposed contrast invariant mean-shift algorithm transforms a candidate
frame in order to match its histogram into the histogram of the target frame. It then tracks
feature points by performing the mean-shift on both original and transformed candidate
frames adaptively. To evaluate the performance of the proposed interaction system, we
implement ‘Painting’, ‘Camera’ and ‘Virtual Keypad’ applications. Ezperimental results
demonstrate that the proposed algorithm provides better interaction performance than the
conventional method, while demanding lower computational complexity and thus support-
ing real-time user interaction.

Keywords: User interaction, Mobile user interface, Touchless user interface, Contrast
invariant tracking, Pattern analysis

1. Introduction. Mobile devices have evolved from simple phones into powerful multi-
media creators and players with recent advances in mobile and multimedia technologies.
In 2009, 4.6 billion people used mobile phones, corresponding to 67 percent of the global
population [1]. Mobile phones play a significant part in the human lifestyle, in which
people can listen to music, take photographs, play games, watch digital video contents,
and control consumer electronic devices [2]. Nowadays, most mobile phones include at
least VGA displays, integrated digital cameras, and high-clock-rate CPUs with dedicated
graphics processing units (GPUs) to support these applications. These components em-
power mobile phones to become sophisticated computing centers. However, people need
intuitive user interfaces to control applications on mobile phones more easily. The design
of user interfaces significantly affects the usability of mobile phones [3].

Traditional user interaction systems for mobile phones have been controlled by 4 x 3
telephone keypads with letter mapping [4]. This remains the commonest user interface
for making a phone call and sending a message. However, the keypad interface has a
limitation that it occasionally requires multiple typing for a single task. Though the
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QWERTY keypad has been employed to prevent multiple typing, it is impractical for
delicate interaction, such as drawing a curve. Voice interaction [5] also has been used for
dialing or giving commands, instead of typing key buttons to complete the task. However,
voice interaction is inappropriate for giving multiple commands quickly due to the reaction
delay. Sensor-based interaction, which detects the vibration, tilt, or motion of a device,
has been used [6, 7, 8]. Though this interaction system is suitable for specific tasks, e.g.,
pivoting displays, it cannot support precise interaction. Touch-based user interfaces have
been developed to support more precise interaction. A user can control situation-specific
tasks by touching a screen. However, since touch-based interfaces require additional
hardware for touch screens, they increase handset prices and are not suitable for low-end
mobile phones. Moreover, they are useless in some situations, for example, when fingers
are wet or users wear gloves.

Computer vision techniques have been used for camera-based user interfaces to over-
come the above mentioned issues and provide users with novel user experiences [9, 10,
11, 12, 13, 14]. To acquire control information for camera-based user interfaces, color
detection methods [9, 10, 11, 12] and object tracking methods [13, 14] can be used. Es-
pecially, in [15, 16, 17, 18, 19], camera-based interfaces have been proposed for mobile
phones. In [15], a motion-based method was used to measure the translation and rotation
of a device. In [16], a user interaction method using the Kalman filter tracking was pre-
sented. However, these methods require too high complexity to be employed in practical
applications. In [17], Drab and Artner developed a low complexity system based on scene
analysis. However, it yields inaccurate control when scenes contain repetitive texture or
they are captured under varying contrast conditions. Bulbul et al. [18] proposed an inter-
action system based on face tracking. Gallo et al. [19] adopted a finger tracking method,
which estimates the gradients of the red chrominance to update new positions. These
approaches [18, 19] support real-time user interaction, but they assume that there is only
a single object with a uniform skin color in a scene.

In this paper, we develop a touchless user interaction system based on marker detec-
tion and tracking for real-time applications on mobile phones. To support mobile devices
with limited hardware resources in varying environmental conditions, we first register a
user-defined marker pattern. Then, we detect the pattern based on the normalized cor-
relation coefficient [20, 21], and track it using the proposed contrast invariant mean-shift
algorithm to extract control information under varying contrast and scale conditions.
Specifically, to achieve reliable tracking under varying illumination and exposure condi-
tions, the contrast invariant mean-shift algorithm first transforms a candidate frame using
the sorted histogram specification [22], so that its histogram is matched to the histogram
of the target frame. Then, we track feature corner points by performing the mean-shift
on both original and transformed candidate frames. The detected marker motion is then
used to control applications. Extensive simulation results demonstrate the proposed user
interaction system can be employed for various applications efficiently.

The remainder of the paper is organized as follows. Section 2 describes the overall
structure of the proposed interaction system and explains the marker detection and the
contrast invariant mean-shift tracking techniques. Sections 3 and 4 describe applications
and implementation issues of the proposed system, respectively. Section 5 discusses the
performance of the proposed system. Finally, Section 6 concludes the paper.

2. Proposed System. Figure 1 shows the architecture of the proposed user interac-
tion system, which uses video information from a camera as the input. The proposed
system requires an activation procedure, which turns on the camera, so as to operate
the camera module at users’ requests only. In this work, the activation is performed by
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FI1GURE 1. The overall architecture of the proposed user interaction system

touch-based user interaction, which enables the system to initiate the input node. How-
ever, the proposed system can be initiated by any user interaction techniques, such as
voice interaction.

When the system is activated, the camera module captures a scene to generate raw
frames. The mobile device then processes the raw frames using a DSP chip to adjust
their qualities. Then, the post-processed frames are stored in the memory buffer. By
detecting and tracking the marker in the frames, the control system node analyzes events.
This information is then transferred to the user interface node. Finally, applications can
be controlled. At the same time, the captured frames and application data are also shown
on the display module.

2.1. Control system node. When designing user interaction systems for mobile devices,
several constraints should be taken into account [23]. Major constraints are related to
limited resources, including low CPU power and small memory. Moreover, mobile devices
have mobility-related constraints, since input frames from mobile cameras have widely
varying characteristics, such as brightness change, span and tilting. In this work, the
control system node has the detection module and the tracking module, which analyze
input frames from the camera in varying environments. Therefore, we also have the
resource-related constraints and the mobility-related constraints.

To overcome these constraints, we use a pre-registered marker, which is shown in Fig-
ure 2. Although the proposed system can be utilized with any marker, a marker with
indistinctive features, such as bare hands, may lead to poor performance or require high
system complexity. Therefore, we utilize the marker in Figure 2 in this work, which has
distinctive color and edge features.

2.1.1. Detection module. Let M be the marker image, which is pre-registered as shown
in Figure 2. Let I be an input image, captured by the camera. Let I(z,y) and M (z,y)
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FIGURE 2. A user-defined marker pattern and its horizontal and vertical
gradient components

(b)

FIGURE 3. (a) An input image and (b) its normalized correlation coefficient map

denote the values of pixels at position (z,y) in the images I and M, respectively. In the
detection module, we detect the marker in the input image I. The lighting and exposure
conditions of the image vary greatly in mobile environments. Therefore, we detect the
matching block in I, which is most similar to the marker image M, by employing the nor-
malized correlation coefficient [20, 21], as illustrated in Figure 3. We can prevent matching
errors due to different lighting and exposure conditions based on the normalization. The
normalized correlation coefficient is defined as

- S | M@ ) @+ y+ )]
"y = 2 2
S [0 01] Sy 1 4004 0]

where M(x’,y’) = M(z',y') — M, f(x +a'y+y) = Iz +a2",y+vy)— I, Mis the
average value of M (2',y'), and [ is the average value of I(z+ ',y +1%'), respectively. The
normalized correlation coefficient r(z,y) ranges from —1 to 1. In the input image I, we
search the best matching block with the largest coefficient. If the coefficient is less than
a pre-described threshold, we carry out the detection in the next frame. This continues
until we find the block with a coefficient larger than the threshold.

(1)

2.1.2. Tracking module based on the contrast invariant mean-shift algorithm. The detec-
tion module searches the best matching block in I. However, the detection requires
relatively high complexity to search the marker over the entire frame. Since mobile de-
vices have the resource-related constraints, it is necessary to minimize the complexity of
the matching for real-time processing. Also, due to the mobility-related constraints, the
intensity similarity-based matching often fails to achieve accurate tracking when match-
ing pixels exhibit different intensities due to varying contrast conditions. Moreover, since
the distance between the camera and the marker changes frequently, we should detect
the marker robustly regardless of the scale change of the marker. To this end, we pro-
pose the contrast invariant mean-shift algorithm, which is based on the mean-shift tech-
nique [13, 14] and the sorted histogram specification [22]. Figure 4 shows the flowchart
of the proposed contrast invariant mean-shift algorithm.



TOUCHLESS USER INTERFACE FOR REAL-TIME MOBILE APPLICATIONS 855

Target

Detection Histogram q Contrast

module Marker Matching
¥

Feature corner
detector

}

Extracting
color histogram

!

Weight
Computation

Wkl,ﬂ

Mean-Shift
Computation

Next
frame

Matching

FIGURE 4. The flowchart of the tracking module

We employ the mean-shift technique, which is a simple and reliable approach to real-
time object tracking. However, the conventional mean-shift tracking is not robust against
the scale change of the marker as well as varying contrast conditions. Therefore, we
first transform each candidate frame to compensate for the contrast variations based on
the sorted histogram specification, which we proposed in our preliminary work [22]. A
histogram represents the probability distribution of pixels in an image, and it is widely
used to specify image characteristics [24]. Since neighboring frames in a captured video
are highly correlated, their histograms should be similar to each other. Let L, ; and
L; denote the discrete random variables, representing pixel values in the target frame
I, and the candidate frame I;, respectively. Also, let hy, ,(l;_1) and hy,(l;) denote the
probability distribution functions for the target frame I, ; and the candidate frame I,.
Then, the cumulative distribution functions (CDF’s) Hy,_, and Hj, are defined as

le—1

Hy, (1) = Pr{Liy <lia} =) h, (k) (2)
Hy,(l) =Pr{L, < i} = i: hu, (k)

The CDF values Hy, ,(l;—1) and Hyp,(l;) represent the ranks of pixels with color levels
l;_1 and [;, respectively, in the neighboring frames. Based on the CDF’s, we transform
the color levels in the candidate frame I; to match the CDF of the target frame I;_;.
However, it may cause ambiguity in the matching when multiple pixels in a candidate or
target frame have the same CDF value. To resolve the ambiguity, we employ the sorted
histograms [22] by employing the tie-breaking rule based on the average values of the
neighboring pixels. Using the sorted histograms, we obtain the transition vectors, which
transfer the histogram Hp, (I, 1) of the target frame [, ; to the histogram Hp,(l;) of
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the candidate frame I,. Then, we acquire the transformed candidate frame I, using those
transition vectors.

Even after we overcome the effect of varying contrast conditions, there is still a problem
due to the scale changes of the marker. The distance between the camera and the marker
changes in mobile environments. Therefore, the tracking method should detect the scale
changes of the marker and track the marker robustly regardless of the scale changes.
Although the scale-invariant feature transform (SIFT) [25] or the speeded up robust fea-
tures (SURF) [26] can be used to achieve the scale invariance, they are computationally
too demanding for mobile applications. Instead, we extract distinctive features from the
marker and track each region separately.

Let ¢ denote the color histogram of the matching block I,, which was found in the
detection module, and ¢, denote the histogram value at level k. Similarly, let p and p
denote the color histograms of the candidate block I, in the original candidate frame I,
and the candidate block fp in the transformed candidate frame I, respectively. Let py
and pi denote the corresponding histogram values at level k.

First, we extract feature corner points of the matching block /,. We obtain the gradient
vector field of ,. The gradient magnitude |V1,| is given by

VI = /(S0 1)? + (S, 1,)? (3)

where S, and S, are the Sobel masks in the horizontal and vertical directions. Then, we
select the three points with the largest gradients. Around each selected point, we set the
feature block B;,, © = 1,2, 3, which is depicted by a yellow rectangle in the last column
in Figure 2. Each feature block is then tracked separately by the mean-shift tracking
algorithm.

Let p(z;,y;) and p(z;,y;) be the histograms of the candidate blocks B;, and B;; at
position (z;,y;) in the original candidate frame I; and the transformed candidate frame
I,, respectively. For example, in case of p(x;, yi), we iteratively track the marker and find
the best position (z;,y;) that maximizes the similarity between the target histogram ¢; of
the feature block B;, and the candidate histogram p(z;, ;). The similarity between the
two histograms is measured by the Bhattacharyya coefficient [27]

p(wi,yi) = Z P (Tis Yi) ik (4)

k=0

where m is the number of histogram bins, which is set to 255 in this work.

Given the location (x;,y;) of the marker in the target frame, we track its location
(¢,4}) in the candidate frame I, and the transformed candidate frame I;, respectively,
so that the Bhattacharyya coefficients are maximized. To reduce the complexity, instead
of computing the coefficient for each candidate location directly, we use the mean-shift
rule [13]. The proposed contrast invariant mean-shift algorithm employs both the original
candidate frame I, and the transformed candidate frame I, to alleviate the effect of con-
trast variations. To combine the information in these two frames properly, we compare
the similarities between the target frame and these candidate frames and then assign the
weight values adaptively. Specifically, we assign the weight a to the original candidate
frame I; and the weight 3 to the transformed candidate frame I;, based on the histogram
intersection [28],

255 . 255 . -
—o MIN{Gk, P —o MIN{Gk, P
a:ZkU (k k) B:Zko (k k). (5)

225:50 Ak , 2?:50 Ak
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Then, using the weights o and 3, we perform the contrast invariant mean-shift tracking

T ke

Z TR ACRT)

!
dik = ik
w25, ;) = \/%, W (74, yi) = \/% (7)

Yi
This iterative rule is repeatedly applied until the convergence, which usually takes five to
six repetitions.

(6)

where

2.1.3. Click module. In any user interaction system, the click interface is necessary to
enable users to perform their desired actions. Therefore, to support the touchless user
interaction more intuitively, we develop the click module based on the analysis of motion
vectors. A single click operation consists of pushing the button and releasing it. In our
interface, the pushing and the releasing correspond to the zoom-in and the zoom-out of
the marker, respectively.

To detect the zoom-in/out operations, we compute the center position (z’,y.) of the
three feature blocks. Then, the zoom magnitude of the ith feature block is defined as

|Z ()| = /(2] — 2 + (v — i) (8)
If the zoom magnitude | Z ()}, y)| of the tracked marker is bigger than the zoom magnitude
|Z(x;,y;)| of the target marker, the zoom-in operation is detected. Conversely, if the
zoom magnitude |Z (2}, y!)| of the tracked marker is smaller, the zoom-out operation is
detected. However, if we directly detect zoom-in/out operations, false clicks may occur.
To prevent this problem, we implement a sensitivity control mechanism for the click
module. Specifically, we perform the stabilization using the Gaussian moving average
filter as shown in Figure 5. In other words, we use
t+2
Zy(al ) = Y w(k) Zi(x), ) (9)
k=t—2
where the Gaussian kernel is w(-) = {5/49,12/49,15/49,12/49,5/49}. In this way, we
can implement the click module more reliably.

3. Applications. As shown in Figure 6, we implement three applications ‘Painting’,
‘Camera’ and ‘Virtual Keypad’ to test our user interface system.
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FIGURE 6. Applications of the proposed user interaction system: (a)
‘Painting’, (b) ‘Camera’ and (c) ‘Virtual Keypad’

Color Selection I Tool Selection l
r_‘ . N -
ERE N |

FIGURE 7. ‘Painting’ application and its menu

3.1. Painting application. Painting applications are rarely supported by keypad user
interfaces or accelerometer user interfaces, since it is hard to control drawing tools precisely
via those interfaces. On the contrary, touch-based user interfaces and the proposed system
can support painting applications effectively. However, whereas touch-based interfaces
acquire user inputs through expensive touch screen panels, the proposed system requires
only a camera, which most mobile phones are equipped with. In other words, the proposed
system can be employed in low-end mobile phones without requiring additional hardware.
We implement the ‘Painting’ application, which serves several functions with a menu:
choosing a color in the color selection, drawing and erasing in the tool selection, opening
and storing files in the menu selection, as shown in Figure 7. A user can draw freely by
moving a finger in front of the camera. A hidden menu appears when the user moves the
marker to the left. The user operates painting functions with this menu. In addition,
we support several options, such as drawing on a blank background, a stored image, or
a video stream. Therefore, it can offer new user experiences, such as drawing pictures
during video conferences, e.g., drawing a funny face over a person at the other end of the
line, writing a schedule, and marking a path on a map, as shown in Figure 8. Moreover,
the ‘Painting’ application can be generalized to more powerful contents creation tools.

3.2. Camera application. Our ‘Camera’ application provides general functionality of
taking a picture, generating a photo thumbnail, and storing or deleting an image, as
shown in Figure 9. A user can take a picture, when the camera menu is selected. The
application also provides the thumbnails of user’s photographs in a parallel layout. These
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FIGURE 8.

FIGURE 9. ‘Camera’ applica-
tion and its menu

Ficure 10. ‘Virtual Keypad’ application

thumbnails can be dragged to change the positions, sorted, or deleted. If a user selects a
picture, the thumbnail is enlarged to the original size and can be further processed.

3.3. Virtual keypad application. A main function of a mobile phone is to dial phone
numbers. The ‘Virtual Keypad’ application is implemented to support dialing or sending
messages, with a virtual keypad on the screen. A user can replace the traditional keypad
by a touchless virtual keypad as shown in Figure 10.

4. Implementation for Mobile Devices. To implement the proposed user interaction
system and its applications on the Windows Mobile platform, we use two computer lan-
guages: unmanaged native C++ and managed Cf. Unmanaged native C++ codes are
directly compiled into machine level instructions. On the other hand, managed Cf codes
are interpreted by a just-in-time compiler, which converts the program into native codes
in the Common Language Runtime (CLR) and then executes the codes. Therefore, man-
aged codes are slower than unmanaged native codes. However, managed codes support
an object oriented model and useful functions, such as garbage collection for automatic
memory management.

In this work, we implement the camera capture system and the control system in
unmanaged native codes to access a mobile camera efficiently. On the contrary, we develop
the user interfaces for the ‘Painting’, ‘Camera’ and ‘Virtual Keypad’ applications, in
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managed codes, which are easier to develop. We combine the system using the .NET
framework [29] to achieve the inter-operability between the unmanaged native C++ codes
and the managed Cf codes, as shown in Figure 11.

5. Main Results. We evaluate the performance of the proposed user interaction system,
which is implemented in two versions: the PC version and the mobile version. In com-
parison with PCs, mobile devices have limited hardware resources. In addition, a camera
in a mobile device is not generally fixed. The comparative tests between the PC version
and the mobile version clarify the influence of the constraints in mobile devices.

We conduct the experiments of the PC version using a computer with a Pentium IV
2.4GHz processor and 2GB RAM. The mobile version is implemented on a GSM/HSDPA
phone, which has a MSM7201A 528 MHZ processor, 256 MB RAM, a 3.0 inch color display
with 240 x 400 pixels, and a 5 mega pixel camera. Its operating system is the Windows
Mobile 6.5. The proposed system is implemented in C++ only in the PC version, but Ct
is also used in the mobile version as described in Section 4. The input frame size is QVGA
(320 x 240) for both PC and mobile versions. The frame rate is fixed to 30 frames/s, since
we target real-time applications.

5.1. Control performances. We compare the control performance of the proposed sys-
tem with that of the conventional method [19]. The conventional method detects user
interactions based on the skin color. We evaluate the interaction accuracy using the ‘Vir-
tual Keypad’ and ‘Painting’ applications. We also evaluate the performance under two
different lighting conditions, since camera-based methods are influenced by the lighting
conditions significantly. One is the bright condition in Figure 12(a) with an external light
source, and the other is the dark condition in Figure 12(c) without the light source. All
experiments are performed 30 times and the average accuracy is reported.

Table 1 compares the recognition accuracy rates in the “Virtual Keypad’ application,
which evaluates the average success rate when entering a given number 30 times. The
proposed system provides better accuracy rates than the conventional method in both PC
and mobile versions. Also, since the mobile device has limited hardware, its performance
is inferior to that of the PC version.

Table 2 compares the root mean square error (RMSE) performance, which measures
the error rates for drawing four shapes (A, B, C, and a complex line drawing) in the
‘Painting’ application. The RMSE performance is computed by the square root of the
average square distance between original and user-drawn routes. The proposed system
provides lower RMSE performance than the conventional method. This is because the
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TABLE 1. Comparison of recognition accuracy rates in the ‘Virtual Keypad’
application. In each test, the left number denotes the number of successes
out of 30 trials, and the right number is the corresponding accuracy rate.

Tests | Conditions | Conventional Method | Proposed Algorithm
[19]
PC Bright 27 90.00% 29 96.67%
Dark 25 83.33% 28 93.33%
Mobile Bright 25 83.33% 28 93.33%
Dark 22 73.33% 27 90.00%

Ficure 12. Control performance tests of the painting application in the
PC version: (a) the conventional method in the bright condition, (b) the
proposed algorithm in the bright condition, (¢) the conventional method in
the dark condition, and (d) the proposed algorithm in the dark condition.

861

conventional method becomes inaccurate if objects have similar colors, as shown in Fig-
ures 12 and 13. In addition, whereas the conventional method is negatively influenced by
dark environments, the proposed system yields consistent and reliable RMSE performance
in both bright and dark conditions. Also, note that for both the proposed system and the
conventional method, the PC version achieves better accuracy than the mobile version,
since the mobile device has limited hardware. Figures 12 and 13 show exemplar results
of the PC version and the mobile version, respectively. We see that the proposed system
supports more accurate control and provides better performance than the conventional
method in both bright and dark conditions.
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TABLE 2. Comparison of RMSE performances of the proposed system and
the conventional method [19] in the ‘Painting’ application

Shape
. . Complex
Test | Condition | Algorithm A B C line Average
drawing
Conventional
5.27 5.67 5.31 6.18 5.61
Bright method
Proposed 3.65 3.43 2.35 3.46 3.22
PC algorlthm
Conventional | g4 7.01 7.92 8.57 7.60
Dark method
Proposed
) 4.29 3.88 2.97 3.93 3.77
algorithm
Conventional |~ - | 570 | 541 6.07 5.83
Bright method
Proposed
. 3.81 3.71 2.94 4.34 3.70
Mobile algorithm
Conventional
8.74 7.90 8.19 8.71 8.39
Dark method
Proposed 4.23 4.23 3.21 4.84 4.13
algorithm

5.2. Computational complexity. The computational complexity of the proposed inter-
action system is low enough to be used for mobile devices. It operates at 30 frames/s and
achieves real-time processing. Conversely, the conventional method achieves 17 frames/s
only, since it requires heavy computations to differentiate between multiple skins colored
objects.

These simulation results indicate that the proposed system provides better control per-
formance than the conventional method, whilst requiring lower computational complexity.

6. Conclusions. We proposed an efficient touchless user interaction system for real-time
applications in mobile devices. The proposed system can estimate control information ac-
curately in diverse environments by detecting and tracking a marker based on the contrast
invariant mean-shift algorithm. It was shown that the proposed system can support vari-
ous applications, including the ‘Painting’, ‘Camera’ and ‘Virtual Keypad’. The proposed
system is suitable for mobile devices, since it can achieve real-time processing without de-
grading interaction quality. Therefore, the proposed user interaction system can overcome
device-related and user-related constraints and offer novel user experiences. Simulation
results demonstrated that the proposed algorithm provides better control performance
than the conventional method [19], whilst requiring lower computational complexity.
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Ficure 13. Control performance test in the painting application in the
mobile version: (a) the conventional method in the bright condition, (b) the
proposed algorithm in the bright condition, (¢) the conventional method in
the dark condition, and (d) the proposed algorithm in the dark condition.
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