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ABSTRACT. During last two decades many studies on power system stability have been
reported that cascading voltage collapse events and formation of viable bifurcation points
on Q-V curves are strictly related to each other. This paper presents an analytical con-
trol procedure to eliminate viable bifurcation points on Q-V curves that cause cascade
voltage collapse events. After elimination procedure, stability margins of power system
are extended to large loadability levels and wviable bifurcation points on Q-V curves are
changed by fewer viable ones that sustain system stability. During study, possible roles
of small parameter changes of sample power system around bifurcation points have been
traced over time series analysis, phase plane analysis and bifurcation diagrams. A wide
collection of useful dynamic analysis procedures for the exploration of studied power sys-
tem dynamics have been handled through the AUTO open-source algorithms.
Keywords: Power system stability, Voltage collapse, Viable bifurcation points, Nonlin-
ear system analysis, Small parameter changes

1. Introduction. A power system usually is expressed with nonlinear dynamic equa-
tions consisting of system parameters. Any change from the system parameters results in
significant changes in the behaviour of the nonlinear dynamic system. System parameter
change sometimes can lead to complex events. Such a system may show oscillatory be-
haviour as a result of instability in this system. Among several nonlinear mathematical
theories [1], bifurcation analysis has been applied to investigate qualitatively the ways in
which instabilities can take place in power system as well as how the system equilibrium
points become unstable [2]. For example, after a load increment a stable operating point
may become unstable and oscillations arise. This behaviour can be locally associated to
a hopf bifurcation and, in general, bifurcation theory can be applied to understand mech-
anisms leading to nonlinear phenomena in these systems [3,4]. In this context, Kwatny
and E. H. Abed demonstrate possible outcomes in the study of steady state stability of
power systems in respect of dynamic (hopf) and static (saddle-node) bifurcations. On
the other side, Dobson and Chiang have introduced a simple 3-bus power system model
showing that the causes and effects between the load and generator create a saddle-node
bifurcation. During such a situation, power system stability is highly dependent of the
magnitude of reactive power demand. Bifurcation points on Q-V curves may crucially
effect on the voltage on the load bus. Even small changes on reactive power demand
cause sudden drops on load bus voltage called as voltage collapse phenomenon.

In this study, the 3-bus power system model is studied. This simple model has been
widely studied using different sets of parameter values. This paper presents an analytical
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control procedure to eliminate viable bifurcation points on Q-V curves that cause cascade
voltage collapse events. After elimination procedure, stability margins of power system
are extended to large loadability levels and viable bifurcation points on Q-V curves are
changed by fewer viable ones that sustain system stability. Control strategy has been
applied in context of demonstrating and then eliminating the change path of system
stability loss, birth or death of oscillations, passage from periodic to chaotic solutions or
vice versa.

This paper is organized as follows. In Section 2, complicated dynamical behavior of the
nonlinear power system model is further investigated. In Section 3, design principles of
static VAR compensator are explained. Section 4 considers definition of hopf bifurcation.
Effects of designed control scheme on studied power system are discussed in after/before
control comparison views in Section 5. A brief conclusion is presented in last section.

2. System Model. In this part of the study, as shown in Figure 1 after generating power,
a power system consists of a powerful infinite busbar transmission line and nonlinear power
loads. This model includes an infinite bus on the left that generates V4, Z0 constant voltage
amplitude and the angle, a load bus and SVC device on the center, and a generator bus
on the right that generates V,,Zd,, magnitude of voltage and angle. Detailed dynamics
of generator buses are sketched into swing equations. Power system model also contains
complex admittances of transmission line (Y;, and Y;), an SVC and a load connected
parallel with a capacitor. Load voltage and angle are assembled as V' /4.
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FIGURE 1. Schematic diagram of the 3-bus power system model with SVC

Swing equation dynamics of generator can be expressed as follows:
MOy, + Dby, = Py + Vi V.Y 8I0(8 — 6y — Oy) + V2 Y, sin O, (1)

Here, M, D, P,,, 6,, are respectively, generator moment of inertia, damping coefficient,
mechanical power generator and rotational angle. Load model contains a dynamic in-
duction motor and a parallel connected constant P-Q load. Load includes a capacitor
to maintain nominal and reasonable voltage amplitude. Load dynamics model can be
expressed as follows:

Py=Py+ P+ Kpubp + Ky (V + TV) 2)
Qa= Qo+ Q1 + Ky + KpV 4 KoV (3)

Here, Ky, Kpy, Kqu, Kqv, Kqu2 expressions come from the induction motor dynamics and
accepted as fixed. Furthermore, Py, Q)9 and @1, P, represent active and reactive power
demands for induction motor and P-Q load, respectively.

Active and reactive powers transmitted by the system to loads are:

P=-ViVYysin(d + 04) — Vo, VY, sin(§ — 8,y — 0,) + (Yo sin 0 + Yy, sin 6,,)V2(4)
Q= VyVYycos(§+ 0) + Vi VY co8(8 — 8 + O) — (Y cos 0 + Yy, cos 0,,) V2 (5)
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By handling differential terms in the left side, the system dynamics are able to be
described with following four ordinary differential equations:

M Wy, = —Dwpy + P+ Vi VY sin(§ — 6, — 0,) + V2Y,, sin 6, (7)
Kpwd = —KyoV? = K,V +Q — Qo+ Qsve — Q1 (8)

TK KV = Kpw K2V + (KpuwK gy — KgKpo)V
+ Ky (Qo — Qsve + Q1 — Q) Ky (P, + P — P)

State variables of given equations are generator voltage phase angle-6,,, rotor speed-w,,,
load voltage phase angle-@, load voltage-V .

Point-indices over variables show the ¢-derivatives. During the analysis, (); reactive
power demand value is chosen as bifurcation parameter.

3. Static VAR Compensator Model. Studied SVC scheme includes of a fixed capac-
itor connected in parallel with a thyristor controlled reactor. The effective reactance of
the controlled reactor is a function of the firing angle of the thyristor. The SVC function,
therefore, is equivalent to providing a continuously controlled shunt susceptance to the
system [5-7]. The SVC studied in this paper is modeled as a first order linear differential
equation

1

Tsve
Here, B is the susceptance of the SVC, Kgy¢ is the SVC gain, Tsy ¢ is the SVC time
constant and u is the control input to the SVC (see Figure 2). The node that voltage needs
to be controlled should be connected with SVC. Generally SVC devices are connected at
the middle of a transmission line or at a load bus. In this paper, the SVC is connected
paralelly with the load bus as sketched into Figure 1.

B =

(KSVCU - B); Bmin S B S Bmax (10)

Bmax
u Ksve B i)

1+sTsvc
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FIGURE 2. Schematic diagram of static feedback controlled SVC

In static state feedback, the SVC input is given by:
u=ks(Vy, — Vo) (11)

Here, Vj is the reference voltage means targeted operating voltage, and V7, is load bus volt-
age that SVC connected. Substituting Equation (10) into Equation (11), then following
expression can be written

1

TSVC

The actual effect of the variable susceptance introduced to the system by the SVC is
modeled as an additional reactive power (Qsy ¢ that is added to the load reactive power.

Qsve = BVE (13)

With SVC control, the reactive power supplied by the SVC to the power system is given
by (13) which is added to @, in Equations (3) and (4).

B= (Ksveks(Ve, = Vo) = B),  Buin < B < By (12)
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4. Hopf Bifurcation Analysis. Consider a power system dynamic model which is rep-
resented by an autonomous differential equation of the form:

&= F(z,p) (14)

where x is the n-dimensional state vector and p is a parameter. If the parameter is varied,
the corresponding state vector x and the eigenvalues of the Jacobian df /dx evaluated on
this path change accordingly. Near an equilibrium point the left hand side term & becomes
7€ero:

F(z,p)=0 (15)

Equation (15) specifies the position of the equilibrium point x as a function of p. The
power system state on the surface defined by Equation (15) is asymptotically stable if the
eigenvalues of the Jacobian have negative real parts at that point. One of the ways the
system can reach a critical state is if a real eigenvalue becomes zero or a pair of complex
conjugate eigenvalues crosses the imaginary axis.

Bifurcation theory is interested in how solutions x(p) branch as p varies [8-10]. These
changes, when they occur, are called bifurcations and the parameter values at which a
bifurcation happens are called bifurcation values. Equation (15) specifies the position
of the equilibrium point x as a function of p. One type bifurcation is a saddle-node
bifurcation. The saddle-node bifurcation occurs the disappearance of system equilibrium
as parameters change slowly [11].

For example consider the quadratic equation:

22 —p=0 (16)

The variable x represents the system state and p represents a system parameter. When
p is negative there are two equilibrium solutions zy = \/—p and zy = —\/—p.

If p increases to zero then both equilibria are at the double rout x = 0. If p increases
further and becomes positive, there are no equilibrium solutions. The bifurcation occurs
at py at the critical case separating the case of two real solutions from no real solutions.

The power system state on the surface is asymptotically stable if the eigenvalues of the
jacobian have negative real parts at that point. One way the system can reach a critical
state is if a real eigenvalue becomes zero or a pair of complex conjugate eigenvalues crosses
the imaginary axis. When a complex conjugate pair of eigenvalues crosses the imaginary
axis and moves into the right half plane the system may start oscillating with small
amplitude. This phenomenon is described by hopf bifurcation theory [8,12,13].

5. Studied Power System Model. Power system parameters are given below.
Load parameter values:
Ky, =04, Q, =12, K,, =0.3, P =0, Ky, = —0.03,
T =285, Kyy =28, P,=0.6, Kj0o = 2.1.
Network and generator parameter values:
Y,=10, P, =1, M =0.25, V,=1, D =0.05,
Y,)=8, V] =-25, 0, =-8, 0,=—-12, V,, = 1.05.
Here, the angle values in radian, the time in milliseconds, and the other parameters in

the unit value (per unit: pu) are quoted.
With initial conditions of the system will be shown by

jo - (5mo;wmoa 60; va Qlo)

Initial conditions parameters are respectively
Om: Generator angle
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wm: Generator angular velocity

0: Load angle

V. Load voltage

Q1: Reactive power demand for PQ load
And, initial conditions parameters are taken I, = (0.4, 0.02, 0.1, 0.95, 9.879), respectively.
In this paper, bifurcation points are identified through combined assesment of eigenvalues.
In Figure 3, bifurcation points are shown by HB, SHB, SNB and UHB abbreviations.

For HB point I, = (Omo, Wmos 90, Vo, Q10) 1s (0.3244, 0.0000, 0.1240, 1.0526, 10.1215)
and “first lyapunov coefficient” is —14.352645e + 001.

For UHB point I, = (dm0, Wmo, 90, Vo, Q10) is (0.3359, 0.0000, 0.1320, 0.9317, 10.1862)
and “first lyapunov coefficient” is 5.455¢ — 001.

For SHB point I, = (0mo, Wimes 00, Vo, Q10) is (0.3378, 0.0000, 0.1375, 0.9727, 10.2587)
and “first lyapunov coefficient” is —7.388638e — 001.

For SNB point I, = (00, Wimos 00, Vo, Q1) is (0.3785, 0.0000, 0.1456, 0.9659, 10.450)
and “first lyapunov coefficient” is —1.388638e — 003.

Figure 4 depicts the changes of relevant eigenvalues of HB, SHB, SNB and UHB at
equilibrium points. The eigenvalues are calculated by substituting (HB, SHB,SNB and
UHB) values of the system equilibrium points into values of state variables in the Jacobian
matrix [5]. There are four eigenvalues for each equilibrium point because of system’s
representation by four first order state equations. At the Q1 = 9.80 and Q1 = 10.00
values, the eigenvalues are (el = —138,662, €2,3 = —0.42 + 3.873i, el = —14,12) and
(el = —127,435, 2,3 = —0.34 £+ 3.538i, el = —9,54), respectively. It is clear that
eigenvalues are far from unstability margin. At Q1 = 10.12 (HB), the eigenvalues are
(el = —117,755, 2,3 = —0.0034 4+ 2.857i, el = —7,65). Necessary condition for hopf
bifurcation is satisfied by the presence of complex conjugate eigenvalues with real part
Re[2] 0 and Re[3] 0. Real part of conjugate eigenvalues at HB point is very close to stability
margins borders. Unstable/supercritical hopf bifurcation point and stable/subcritical
hopf bifurcation are detected at Q1 = 10.20 and Q1 = 10.27 values, respectively. The
eigenvalues at Q1 = 10.20 are (el = —95,735, €2,3 = +0.00039 + 2.4367, el = —4,19).
Real part of conjugate eigenvalues at UHB point are out of stability margins borders.

1.36
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Ficure 3. Bifurcation diagram before installing SVC
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FIGURE 4. Changes of eigenvalues for power system equilibrium Point be-
fore installing SVC
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FicUrRE 5. Period doubling branches in bifurcation diagram before in-
stalling SVC

However, the other system dynamics remain into stability margins. As seen in Figure 5
supercritical hopf point at Q1 = 10.20 value has family of unstable periodic solutions that
undergo a period doubling cascade starting from PDB 1 to PDB 3.

In Figure 6(a), Figure 6(c) and Figure 7(a), formation of PDB 1, PDB 2 and PDB 3 is
demonstrated on load bus voltage and load bus angle phase portraits, respectively. Figure
6(b), Figure 6(d) and Figure 7(b) show time series of load bus voltage at PDB 1, PDB 2
and PDB 3. With a further increase in ()1, the equilibrium point undergoes SHB which
falls again into the stability margins. At SHB point, system starts to increase number of
doubling cycle from PD3 to PD9. With a further increase in X1, the equilibrium point
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FIGURE 6. Phase portraits of load bus voltage-load bus angle and time

series of load bus voltage at given period doubling bifurcation points before
installing SVC

FiGure 7. Phase portrait of load bus voltage-load bus angle and time

series of load bus voltage at given period doubling bifurcation point before
installing SVC

undergoes SNB point accumulating a critical value of Q1 = 10.40. The creation of chaotic
attractor for Q1 = 10.40 is shown in Figure 7(c). The Lyapunov exponent in this case
found to be 0.187, which confirms chaotic nature. After this point a small increase in
system parameter results into voltage collapse event as sketched into Figure 7(d).
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FIGURE 9. Bifurcation diagram before/after installing SVC

The bifurcation diagram of the studied power system after installing SVC using static
state feedback of the controller gain k; at —0.90 value is depicted in Figure 8 and Figure 9.
The constants of installed SVC are Tsy« = 0.0145 s and Kgy« = 5. When comparing after
and before installation of SVC scenario, Figure 8 and Figure 9 demonstrate positive effects
of designed static feedback controller procudure. As sketched on Figure 8, proposed SVC
scheme extends stability margins of power system from 10.45 pu reactive power demand
to 11.45 pu loadability levels. Also, unstable eigenvalues are transfered into stability
margins.

As seen bifurcation diagram sketched in Figure 9, it is clear that designed SVC extends
stability margins of power system to larger loadability levels and alters viable bifurcation
points on Q-V curve by fewer viable one (LP-Limit Point) that sustain system stability.

Designed SVC scheme also delays voltage collapse event even in larger reactive power
demand values as shown in Figure 10.
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FIGURE 10. Load bus voltage changes over time before/after installing SVC

6. Conclusion. This paper presents an analytical control procedure to eliminate viable
bifurcation points on Q-V curves that cause cascade voltage collapse events. During study,
possible roles of small parameter changes of sample power system around bifurcation
points have been traced over time series analysis, phase plane analysis and bifurcation
diagrams. As shown in mentioned diagrams it is clear that designed SVC extends stability
margins of power system to larger loadability levels and alters viable bifurcation points
on Q-V curve by fewer viable one (LP-Limit Point) that sustain system stability.
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