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Abstract. This paper is concerned with the control problem of networked control sys-
tems (NCSs) with piecewise constant generalized sampled-data hold function (PCGSHF).
A new hybrid nonlinear NCSs model based on the PCGSHF is constructed, in which both
the network-induced delay and the packet dropouts are considered in the transmission.
By using a novel multi-datum point parameter method, the obtained NCSs model is di-
vided into two parts, which are related to the given multi-datum point parameters and
the bound uncertain multi-datum points, respectively. Correspondingly, the design of in-
finite PCGSHF can be achieved by giving finite multi-datum points. For handling the
nonlinear term in system model, an effective norm bounded method is proposed based
on the number of segments of PCGSHF. Next, the system stability is investigated based
on Lyapunov theory and the linear matrix inequality (LMI) approach. Then, both the
PCGSHF and networked feedback controller for guaranteeing the stability condition are
designed. Moreover, a stability criterion based on maximum allowable network-induced
delay rate is proposed for choosing a reasonable sampling period. Finally, one example
is given to show the effectiveness and less conservatism of the results.
Keywords: Networked control systems (NCSs), Packet dropout, Network-induced de-
lay, PCGSHF, Zero-order holder (ZOH)

1. Introduction. A typical NCSs can be considered as a sampled-data feedback control
system (including sampler units, digital processing units and actuator units) with commu-
nication network; see [7, 15, 26] and the references therein. Because the system units are
connected through a multipurpose network, NCSs possess many advantages, such as sim-
ple installation, low cost and maintenance, and high reliability. However, networking the
control system also introduces new problems caused by the packet-based data exchange
between different units of the network. These problems can degrade closed-loop perfor-
mance, or even worse, harm closed-loop stability of the control system. Therefore, during
the last decade, a considerable attention has been devoted to the study of sampled-data
based NCSs; for instance, see [4-6, 8-15, 20-22, 24, 27, 30, 32-35]. To be more specific, the
stability analysis and the design of networked feedback controller were considered in [4, 6,
12-14, 20, 21, 33]. When considering some control performance, the H∞ control methods
were proposed in [5, 8, 24], and guaranteed cost control was considered in [10, 11]. Some
fault detection and robust filtering problems were considered in [32-35]. The stability
problem of nonuniform sampling frequency was considered in [9, 22, 27].

Although the above results studied different control problems of NCSs, it should be
mentioned that they share a common characteristic: the actuator units are provided with
ZOH for implementing the output signal of digital processing units. Such a consideration
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raises an issue whether we can obtain better performance by introducing other types
of hold functions. Obviously, if the hold function is variable instead of constant, the
design of the NCSs will be more flexible which is helpful to improve the performance of
NCSs. Such idea was proposed initialing in [1, 2], which used GSHF instead of ZOH in
traditional sampled-data control systems. [3, 16, 17, 28] studied the decentralized control
of interconnected systems. In lastest work [18], the authors studied the pole placement of
continuous-time linear time-invariant systems and designed a GSHF for minimizing the
given LQ performance index. Furthermore, it is well known that when the number of
segments of PCGSHF is taken large enough, the PCGSHF can approximate the GSHF
[19]. The design of PCGSHF is more significant because of its feasible structure for
practical implementation. Recently, the existing studies on PCGSHF mainly focused on
the property of zero point stability for sampled-data control system, in which the sampling
period was limited to sufficiently small (see [23, 25]).
Although existing results are employed to design the GSHF or PCGSHF for sampled-

data control system with the desired performance, an important issue that should be
taken into account is the transmission delay. Moreover, these existing results on GSHF
approaches cannot be used directly to design the NCSs. Specifically, the design of GSHF
depends on the Gram matrix, which is based on the controllability of system; for instance,
see Equations (8) and (9) in [18] and the similar equations in [1-3, 16, 17, 28]. However,
the Gram matrices may be infinite because of the induced delay and packet dropout in
the network. This strategy is invalid for designing the NCSs with GSHF. Similarly, the
strict limiting condition in [23, 25] on sampling period may lead to the conservatism, and
even fail to the design of the NCSs. To the best of our knowledge, there is no an effective
and common method to design the parameters of PCGSHF for the sampled-data control
system with transmission delay, which motivates our present study.
In this paper, PCGSHF technique is, for the first time, developed to solve the NCSs

control problem. The main objective of this paper is to design both the PCGSHF and
the networked feedback controller for ensuring the stability of the obtained hybrid non-
linear NCSs model, in which both the network-induced delay and the packet dropouts are
considered in the transmission. Firstly, a novel multi-datum point parameter method is
proposed. By using this method, the obtained hybrid nonlinear NCSs model is divided
into two parts: one is related to the given multi-datum points; the other is related to the
bounded uncertain multi-datum points. Based on the given finite multi-datum points,
we can design infinite PCGSHF with one time-invariant networked feedback controller.
This design method has the advantages of both higher efficiency and less computation
burden. Secondly, an effective norm bounded method based on number of segments of
PCGSHF is proposed to handle the nonlinear term in NCSs model, which is induced by
both the network-induced delay and packet dropouts. Compared with the existing over-
approximating polytypic inclusion approach (see [24]), our method efficiently reduces
the amount of computation for determining the optimal upper bound of norm, which
is induced by the inter-sampler behavior. Moreover, this method makes full use of the
piecewise character of PCGSHF for reducing the conservatism which is induced by the
large range of networked-induced delay. Thirdly, based on the above mentioned strategies,
both the PCGHSF and the networked feedback controller can be designed. Finally, for
choosing a reasonable sampling period in practical situation, one stability criterion based
on maximum allowable network-induced delay rate is proposed.
Notation: The superscript T stands for transposition; Rn represents the n dimen-

sional Euclidean space; Z+ represents the sets of positive integers. Z denotes the set of
nonnegative integers. I is the identity matrix of compatible dimensions. ‖•‖ refers to the
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Euclidean norm for vectors and induced 2-norm for matrices. ∗ is used to describe the
symmetrical element in matrix. sym{•} describes (•) + (•)T .

2. Problem Statement and Preliminaries. The structure of the considered NCSs is
shown in Figure 1, in which the sensor is clock-driven with sampling period h, and the
data is transmitted in a single packet at each time step (kh, k ∈ Z+). The controller
and actuator (with PCGSHF) are event-driven. The plant is described by the following
continuous-time linear system model

ẋ(t) = Ax (t) + Bu (t) , (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the input. A and B are known real constant
matrices with appropriate dimensions, which ensure the plant (1) is controllable. The
discrete-time networked controller is of the form

u (kh) = Fx (kh) , (2)

where F ∈ Rm×n. The networks exist between from the sensor to the controller, and from
the controller to the actuator. τsc and τca are used to describe the sensor-to-controller
delay and the controller-to-actuator delay, respectively. Without loss of generality, any
controller delay can be absorbed into either τsc or τca. Moreover, if the transmission delay
τ = τsc + τca satisfies 0 ≤ τ < h, the input signal u (kh− τ) is considered as successful
transmission. On the contrary, if the transmission delay τ = τsc + τca does not satisfy
0 ≤ τ < h, the input signal u (kh− τ) is considered as unsuccessful transmission, which
means packet dropout. Here the number of successive packet dropout is upper bounded,
and the bound is denoted by dmax, which is a known constant.

According to the above consideration, a set Π = {αi|αi ∈ kh; i, k ∈ Z} denotes the
sequence points of successful transmissions from the sensor to the actuator, such as αi−1,
αi and αi+1. Moreover, a function d (αi) is used to describe the number of packet dropouts
during two sequence points of successful transmissions, which are αi and αi+1. So we have
the following definitions for capturing the natural of packet dropouts, network-induced
delay and PCGSHF.

Definition 2.1. The packet dropouts process d (αi) is defined as

d (αi) =
(αi+1 − αi)

h
− 1, (3)

where d (αi) ∈ Ω and Ω = {0, 1, 2, · · · , dmax}.

(PC-GSHF)

( )x t
( )x kh

( )
sc

x kh

( )
sc ca

u kh

Figure 1. The structure of NCSs with PCGSHF
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Definition 2.2. During one sampling period, the impulse response function of PCGSHF
h(t) can be defined as

h(t) = δ (i) , kh+
(i− 1)h

ā
≤ t < kh+

ih

ā
, (4)

where ā is the number of segments of PCGSHF, δ (i) ∈ R, i = 1, 2, · · · , ā and h(t) =
h(t+ h).

According to Definition 2.1 and Definition 2.2, a variable wi
∆
= w (αi) is used to describe

the case of

τ (αi) ∈
[
(wi − 1)

h

ā
, wi

h

ā

)
, (5)

where wi ∈ {1, 2, · · · ā}. Correspondingly, we can obtain the NCSs model during the two
successive points, αi and αi+1:

x (αi+1) = G (d (αi) , wi) x (αi) +H (d (αi) , wi) x (αi−1) , (6)

where M1 (wi) =
ā∑

c=wi+1

∫ ch
ā

(c−1)h
ā

eA(h−s)dsBδ (c)F , N̂ (wi) =
wi∑
c=1

∫ ch
ā

(c−1)h
ā

eA(h−s)dsBδ (c)F ,

M (wi) =
∫ wi

h
ā

τ(αi)
eA(h−s)dsBδ (wi)F , G (d (αi) , wi) = eA(d(αi)+1)h+eAd(αi)hM1 (wi)+eAd(αi)h

M (wi)+ϑ (d (αi))
d(αi)−1∑
β=0

(
eAh
)β

M1 (wi)+ϑ (d (αi))
d(αi)−1∑
β=0

(
eAh
)β

N̂ (wi), H (d (αi) , wi) =

eAd(αi)hN̂ (wi)− eAd(αi)hM (wi), an indicative function ϑ (d (αi)) is defined as

ϑ (d (αi)) =

{
0 d (αi) = 0,
1 d (αi) 6= 0.

(7)

The initial condition of (6) in this paper is considered as follows: x(0) = x(α0) = x0,
where x0 is the initial state. The initial process is d(α0) and w0. The initial input u (t) = 0
for t ∈ (−∞, τ0). Then the initial system of (6) is described as

x (α1) = G (d (α0) , w0) x (α0) . (8)

In this paper, the main objectives are to design both the PCGSHF h(t) and the net-
worked feedback controller (2) to ensure the stability of NCSs (6) with the initial condition
(8). In general, the h(t) and the controller (2), that satisfy the stability condition, are in-
finite. However, how to determine them is an important problem. Therefore, we propose
a multi-datum point parameter method to achieve the joint-designing of them, which is
showed in the following Lemma 2.1.

Lemma 2.1. (Multi-datum point parameter method) If the designer applies the
multi-datum point parameter method, the parameter δ (i) of PCGSHF h(t) can be fixed by
the following formulations:

δ (i) = δidp + δ̄ (i) , (9)

∣∣δ̄ (i)∣∣ ≤ δimax, (10)

in which i ∈ {1, 2, · · · , ā}, δidp, δ̄ (i) ∈ R, and δimax ∈ R+. The parameters δidp (i ∈
{1, 2, · · · , ā}) is the multi-datum point.
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Correspondingly, the NCSs model (6) with the initial condition (8) can be described as

x (αi+1) =
(
Gδcdp

(d (αi) , wi) +Gδ̄(c) (d (αi) , wi)
)
x (αi)

+
(
Hδcdp

(d (αi) , wi) +Hδ̄(c) (d (αi) , wi)
)
x (αi−1) , (11)

and

x (α1) =
(
Gδcdp

(d (α0) , w0) +Gδ̄(c) (d (α0) , w0)
)
x (α0) (12)

where Gδcdp
(d (αi) , wi) andHδcdp

(d (αi) , wi) equal to G (d (αi) , wi) andH (d (αi) , wi) when

δcdp = δ (c), Gδ̄(c) (d (αi) , wi) andHδ̄(c) (d (αi) , wi) equal to G (d (αi) , wi) andH (d (αi) , wi)

when δ (c) = δ̄ (c), c ∈ {1, 2, · · · , ā}.
Furthermore, it should be noted that the NCSs (11) with (12) are hybrid nonlinear

switched systems, where the nonlinear uncertain term is induced by the network-induced
delay τi. For handling such nonlinear term, a norm bounded method based on the seg-
ments of PCGSHF is proposed as the following Lemma 2.2.

Lemma 2.2. The nonlinear uncertain term M (wi) in (6) can be expressed as

M (wi) = eA(h−wi
h
ā)M̄ (v (αi) ,∆τcon)Bδ (wi)F, (13)

where M̄ (v (αi) ,∆τcon) =
∫ ∆τcon
0

eAsds + eA∆τcon
∫ v(αi)

0
eAsds, ∆τ (αi) ∈

(
0, h

ā

]
, v (αi) =

∆τ (αi)−∆τcon, ∆τcon ∈
(
0, h

ā

]
is a chosen constant. Moreover, by using Lemma 1 in [6],

the following relationships can be obtained:

∆τcon =
h

2ā
, (14)

and ∥∥∥∥∥
∫ v(αi)

0

eAsds

∥∥∥∥∥ < Λ (∆τcon) = Λ

(
h

2ā

)
, (15)

where Λ (σ) = 1
λmax+ã

[
e(λmax+ã)|σ| − 1

]
.

Proof: Let τ (αi) = wi
h
ā
−∆τ (αi), we have

M (wi) =

∫ h−wi
h
ā
+∆τ(αi)

h−wi
h
ā

eAsdsBδ (wi)F = eA(h−wi
h
ā)
∫ ∆τ(αi)

0

eAsdsBδ (wi)F, (16)

where ∆τ (αi) ∈
(
0, h

ā

]
. Furthermore, we introduce a constant ∆τcon ∈

(
0, h

ā

]
and let

v (αi) = ∆τ (αi)−∆τcon, the term
∫ ∆τ(αi)

0
eAsds in (16) can be described as∫ ∆τ(αi)

0

eAsds =

∫ v(αi)+∆τcon

0

eAsds =

∫ ∆τcon

0

eAsds−
∫ ∆τcon

v(αi)+∆τcon

eAsds

=

∫ ∆τcon

0

eAsds+ eA∆τcon

∫ v(αi)

0

eAsds (17)

Substituting (17) into (16), we can obtain (13). Moreover, we have the following parameter
index J (∆τcon), which is defined as

J (∆τcon) = min
∆τcon∈(0,hā ]

{
max

{
Λ (−∆τcon) ,Λ

(
h
ā
−∆τcon

)}}
. (18)

According to the character of function Λ (·) in [6], it is obvious that the minimum
J (∆τcon) can be obtained when ∆τcon = h

ā
−∆τcon. Therefore, we have (14) and (15).
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3. Main Result. In this section, the objectives are to design both the PCGSHF (4) and
the networked state feedback controller (2) for guaranteeing the stability of the NCSs (11)
with initial state x0, d (α0) and w0.

Theorem 3.1. The NCSs (11) with the initial condition (12) are asymptotically stable,
if for any scalars εc > 0, ε > 0, ε

wj

dp > 0, ε̂c > 0, and the given multi-datum points δcdp,

δcmax (c, wi, wj ∈ {1, 2, · · · , ā}), there exist symmetric positive definite matrices P̄ (dj, wj),
P̄ (di, wi), Q̄ (di, dj ∈ Ω), the nonsingular matrix E, and the appropriate dimensions

matric Ê satisfying the following LMI:

Ŷ11 Ŷ12 Ŷ13 Ŷ14 Ŷ15 Ŷ16

∗ Ŷ22 0 0 0 0

∗ ∗ Ŷ33 0 0 0

∗ ∗ ∗ Ŷ44 0 0

∗ ∗ ∗ ∗ Ŷ55 Ŷ56

∗ ∗ ∗ ∗ ∗ Ŷ66


< 0 (19)

where

Ŷ11 =

 P̄ (di, wi) + Q̄− E − ET 0 ŜT
11

∗ −Q̄ ŜT
12

∗ ∗ −P̄ (dj, wj)

, Ŝ11 = Φ(dj + 1)E

+ Φ(dj)
ā∑

c=wj+1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BÊδcdp + Φ

(
dj + 1− wj

ā

)
Γ (∆τcon)BÊδ

wj

dp

+ ϑ (dj)
dj−1∑
β=0

(Φ (1))β
ā∑

c=1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BÊδcdp, Ŷ12 =

[
ε
wj

dpX (dj, wj) ZT
]
,

Ŝ12 = Φ(dj)
wj∑
c=1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BÊδcdp − Φ

(
dj + 1− wj

ā

)
Γ (∆τcon)BÊδ

wj

dp , X (dj, wj)

=
[
0 0

(
Φ
(
dj + 1− wj

ā

)
eA∆τconδ

wj

dp

)T ]T
, X̄ (dj, c) =

[
0 0 ΦT

(
dj + 1− c

ā

) ]T
,

Z =
[
BÊ −BÊ 0

]
, Ŷ16 =

[
0 ZT

]
, Ŷ22 = diag

{
−ε

wj

dp I,−
ε
wj
dp

Λ2( h
2ā)

I

}
,

Z̃(c) =
[
Φ
(
1− c

ā

)
Γ
(
h
ā

)
BÊ 0 0

]
, l = wj + 1,

Ŷ13 =

[
wj−1︷ ︸︸ ︷

ε1X̄ (dj, 1) , · · · εwj−1X̄ (dj, wj − 1)

wj−1︷ ︸︸ ︷
Z̄T (dj), · · · Z̄T (dj)

]
,

X̂(dj) =

[
0 0

(
Φ (dj) + ϑ (dj)

dj−1∑
β=0

(Φ (1))β
)T ]T

, Ŷ55 = diag
{
−εwj

I,−ε̂wj
I
}
,

Z̄ (dj) =

[
Φ (−dj)ϑ (dj)

dj−1∑
β=0

(Φ (1))βΓ
(
h
ā

)
BÊ Γ

(
h
ā

)
BÊ 0

]
,

Ŷ33 = diag
{
−ε1I · · · − εwj−1I,−ε̂1I · · · − ε̂wj−1I

}
, Ŷ66 = diag

{
−εI,− ε

Λ2( h
2ā)

I

}
,

Ŷ15 =
[
εwj

X̄ (dj, wj)
(
Z̄ (dj) +

_

Z
)T ]

,
_

Z =
[
Γ (∆τcon)BÊ −Γ (∆τcon)BÊ 0

]
,

Ŷ14 =

[
ā−wj︷ ︸︸ ︷

εlX̂ (dj, l) , · · · εāX̂ (dj, ā)

ā−wj︷ ︸︸ ︷
Z̃T (l), · · · Z̃T (ā)

]
, Ŷ56 =

[
0 0

eA∆τconε 0

]
,

Ŷ44 = diag
{
−εwj+1I · · · − εāI,−ε̂wj+1I · · · − ε̂āI

}
.
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Moreover, if the inequality (19) can hold under the case of the given multi-datum point

δcdp, the networked feedback control gain (2) can be designed as F = ÊE−1, the PCGSHF

(4) can be designed as δidp − δimax ≤ δ (i) ≤ δidp + δimax, where (δcmax)
2 = εc

ε̂c
.

Proof: At first, a binary Lyapunov functional is taken as

V (ρ) = xT (ρ)P (d (ρ) , wρ) x (ρ) + xT (αi)Qx (αi) , (20)

for αi + h ≤ ρ ≤ αi+1, and yields

V (αi) = xT (αi)P (d (αi) , wi)x (αi) + xT (αi−1)Qx (αi−1) , (21)

and

V (αi+1) = xT (αi+1)P (d (αi+1) , wi+1)x (αi+1) + xT (αi)Qx (αi) . (22)

Then we have

∆V = V (αi+1)− V (αi) =

[
x (αi)
x (αi−1)

]T [
Ξ11 Ξ12

∗ Ξ22

] [
x (αi)
x (αi−1)

]
, (23)

where Ξ11 = −P (di, wi) + Q + GT (dj, wj)P (dj, wj)G (dj, wj), Ξ22 = −Q + HT (dj,

wj)P (dj, wj)H (dj, wj), P (d (αi) , wi)
∆
= P (di, wi), Ξ12 = GT (dj, wj)P (dj, wj)H (dj, wj),

and P (d (αi+1) , wi+1)
∆
= P (dj, wj).

By schur complement Lemma, the inequality (23) can be described as −P (di, wi) +Q 0 GT (dj, wj)
∗ −Q HT (dj, wj)
∗ ∗ −P−1 (dj, wj)

 < 0. (24)

Furthermore, let Γ (•) =
∫ •
0
eAsds, Φ (•) = eA(•)h, we have the following expressions by

using both the multi-datum point parameter method (see Lemma 2.1) and the (13) in
Lemma 2.2, −P (di, wi) +Q 0 S̄T

11

∗ −Q S̄T
12

∗ ∗ −P−1 (dj, wj)

+ sym {X (dj, wj) Γ (vj)D}

+
wj−1∑
c=1

sym
{
X̄ (dj, c) δ̄ (c) D̄ (dj)

}
+

ā∑
c=wj+1

sym
{
X̂ (dj, c) δ̄ (c) D̃ (c)

}
+sym

{
X̄ (dj, wj) δ̄ (wj) D̂ (dj)

}
< 0, (25)

where

S̄11 = Φ(dj)
ā∑

c=wj+1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BFδcdp + Φ

(
dj + 1− wj

ā

)
Γ (∆τcon)BFδ

wj

dp

+Φ(dj + 1) + ϑ (dj)
dj−1∑
β=0

(Φ (1))β
ā∑

c=1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BFδcdp,

S̄12 = Φ(dj)
wj∑
c=1

Φ
(
1− c

ā

)
Γ
(
h
ā

)
BFδcdp − Φ

(
dj + 1− wj

ā

)
Γ (∆τcon)BFδ

wj

dp ,

X (dj, wj) =
[
0 0

(
Φ
(
dj + 1− wj

ā

)
eA∆τconδ

wj

dp

)T ]T
,

X̄ (dj, c) =
[
0 0 ΦT

(
dj + 1− c

ā

) ]T
, D =

[
BF −BF 0

]
,

D̄(dj) =

[
Φ (−dj)ϑ (dj)

dj−1∑
β=0

(Φ (1))βΓ
(
h
ā

)
BF Γ

(
h
ā

)
BF 0

]
,

D̃(c) =
[
Φ
(
1− c

ā

)
Γ
(
h
ā

)
BF 0 0

]
,
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X̂(dj) =

[
0 0

(
Φ (dj) + ϑ (dj)

dj−1∑
β=0

(Φ (1))β
)T ]T

, and D̂(dj) = D̄(dj) +[
Γ (∆τcon)BF −Γ (∆τcon)BF 0

]
+
[
eA∆τconΓ (vj)BF −eA∆τconΓ (vj)BF 0

]
.

Here according to (14) and (15) in Lemma 2.2, we have

sym {X (dj, wj) Γ (vj)D} ≤ ε
wj

dpX (dj, wj)X
T (dj, wj) +

Λ2
(

h
2ā

)
ε
wj

dp

DTD (26)

for any ε
wj

dp > 0. Moreover, by using Lemma 2 in [30], the following inequality guarantees
that (25) holds, 

Y11 Y12 Y13 Y14 Y15 Y16

∗ Y22 0 0 0 0
∗ ∗ Y33 0 0 0
∗ ∗ ∗ Y44 0 0
∗ ∗ ∗ ∗ Y55 Y56

∗ ∗ ∗ ∗ ∗ Y66

 < 0 (27)

where Y11 =

 −P (di, wi) +Q 0 S̄T
11

∗ −Q S̄T
12

∗ ∗ −P−1 (dj, wj)

, Y12 =
[
X(dj, wj) DT

]
, Y22

= diag

{
− 1

ε
wj
dp

I,− ε
wj
dp

Λ2( h
2ā)

I

}
, Y13 =

[
wj−1︷ ︸︸ ︷

X̄ (dj, 1) , · · · X̄ (dj, wj − 1)

wj−1︷ ︸︸ ︷
D̄T (dj), · · · D̄T (dj)

]
,

Y33 = diag

{
− 1

ε1
I · · · − 1

εwj−1
I,− ε1

(δ1max)
2 I, · · · ,−

εwj−1(
δ
wj−1
max

)2 I

}
, Y16 =

[
0 DT

]
,

Y14 =

[
ā−wj︷ ︸︸ ︷

X̂ (dj, wj + 1) , · · · X̂ (dj, ā)

ā−wj︷ ︸︸ ︷
D̃T (wj + 1), · · · D̃T (ā)

]
, Y56 =

[
0 0

eA∆τcon 0

]
,

Y15 =
[
X̄ (dj, wj)

(
D̄ (dj) +

_

D
)T ]

, Y66 = diag

{
−1

ε
I,− ε

Λ2( h
2ā)

}
, ε > 0,

Y44 = diag

{
− 1

εwj+1
I · · · − 1

εā
I,− εwj+1(

δ
wj+1
max

)I,− εā
(δāmax)

2 I

}
, Y55 = diag

{
− 1

εwj
I,− εwj

(δ
wj
max)

2 I

}
,

ε
wj

dp > 0,
_

D =
[
Γ (∆τcon)BF −Γ (∆τcon)BF 0

]
, εc > 0, and c ∈ {1, 2, · · · , ā}.

Here for any nonsingular matrix E ∈ Rn×n, there exists(
E−1 − P (di, wi)

)T
P−1 (di, wi)

(
E−1 − P (di, wi)

)
≥ 0, (28)

which implies that

−P (di, wi) ≤ E−TP−1 (di, wi)E
−1 − E−1 − E−T . (29)

Correspondingly, the term −P (di, wi) + Q in Y11 can be replaced by the term E−TP−1

(di, wi)E
−1 − E−1 − E−T + Q. Furthermore, pre- and post-multiply the inequality (27)

with this replacement by matrix diag
{
ET , ET , I, ε

wj

dp I, I, Ē, Ẽ, εwj
I, I, εI, I

}
, where Ē =

wj−1︷ ︸︸ ︷
ε1I, · · · εwj−1I,

wj−1︷ ︸︸ ︷
I, · · · I and Ẽ =

ā−wj︷ ︸︸ ︷
εwj+1I, · · · εāI,

ā−wj︷ ︸︸ ︷
I, · · · I, we can obtain (19) under the case of

P̄ (di, wi) = P−1 (di, wi), P̄ (dj, wj) = P−1 (dj, wj), Q̄ = ETQE, ε̂c =
εc

(δcmax)
2 and FE = Ê.

It should be mentioned that in Theorem 3.1, there exists a restriction condition of
τi ∈ [0, h). It means that the allowable range of network-induced delay is related strictly to
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the sampling period h. However, in practical application, the allowable range of network-
induced delay can be predetermined, for instance, τi ∈ [0, τmax), τmax is the upper bound
of network-induced delay. The sampling period h is the parameter, which needs to be
designed. Therefore, the definition of maximum allowable network-induced delay rate is
introduced as follows:

Definition 3.1. Let τmax =
(ā−â)h̄

ā
denote the maximum allowable network-induced delay,

where â is chosen from the set {1, 2, · · · , ā− 1}, ā > 1, then we have

θ =
(ā− â)

ā
× 100%. (30)

The parameter θ is called the maximum allowable network-induced delay rate, which de-
notes the relationship between the maximum allowable network-induced delay and the sam-
pling period h̄.

Corollary 3.1. Based on the maximum allowable network-induced delay rate θ, the NCSs
(11) with initial condition (12) are asymptotically stable, if the parameters wi and wj in
(19) belong to the set {1, 2, · · · , (ā− â)}, the sampling period h is replaced by h̄.

Proof: Because of the network-induced delay τi ∈
[
0, θh̄

)
, the influence of network-

induced delay for the NCSs (11) during the interval
[
kh+ (ā−â)

ā
h, (k + 1)h

)
should not be

considered. Therefore, the parameters wi and wj in (19) belong to the set {1, · · · , (ā− â)},
the sampling period h is replaced by h̄.

4. Numerical Example. In this section, we present a numerical simulation to show the
application of the proposed methods in this paper.

Example 4.1. Considering the continuous-time linear time-invariant model as

ẋ (t) =

[
0 1
0 −0.1

]
x (t) +

[
0
0.1

]
u (t) . (31)

This system (31) was considered in [4, 21, 26, 29]. In their analysis, the networked
feedback control gain is taken as F =

[
−3.75 −11.5

]
. Notes that as these results

mentioned, the maximum allowable network-induced delay (or the maximum allowable
sampling period) 1.73 is the necessary and sufficient condition for the considered NCSs
(31) with both the networked feedback controller F and the ZOH. Moreover, in [21], the
maximum number of packet dropouts is less than 1 when the sampling period h̄ is larger
than 1s. Here for indicating the less conservative of the strategy in this paper, we take
the same networked feedback controller with the above mentioned results. Moreover, the
maximum allowable network-induced delay τmax is taken as 3s, the maximum number of
packet dropouts is taken as 1. Correspondingly, if the sampling period h̄ is chosen as 6s,
we have ā = 2, θ = 50%, and

h(t) =

{
δ (1) kh̄ ≤ t < kh̄+ 3
δ (2) kh̄+ 3 ≤ t < kh̄+ 6

. (32)

Furthermore, by using Corollary 3.1 with these multi-datum points δdp (1) = 0.0001 and
δdp (2) = 0.03, we have

h(t) =

{
δ (1) ∈ [−0.0015, 0.0027] kh̄ ≤ t < kh̄+ 3
δ (2) ∈ [0.0291, 0.0309] kh̄+ 3 ≤ t < kh̄+ 6

. (33)

From (33), we can conclude that the NCSs (31) with the networked feedback controller
F are asymptotically stability on the cases of τmax = 3s, dmax = 1 and h̄ = 6s. Obviously,
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Table 1. The maximum allowable network-induced delay (MANID) for
system (31) by existing stability conditions

The method MANID
[4] 0.869 s
[21] 1.365 s
[29] 1.729 s

this paper 3 s

comparing with the current results, the obtained results in this paper are less conservative
(see Table 1).
In fact, the ZOH is a special case of PCGSHF, when δ (i) = 1. Such structure can

result that the existence of limiting conditions (such as 1.73s or the maximum number
of packet dropouts) when the networked feedback controller is given. By designing a de-
sired PCGSHF, these limiting conditions can be removed. Therefore, according to above
analysis, we can obtain larger stable region by using PCGSHF instead of ZOH.

5. Conclusions. In this paper, we have considered the control problem of NCSs with
PCGSHF. A hybrid NCSs model based on the PCGSHF has been constructed, in which
both the network-induced delay and the packet dropouts are considered in the transmis-
sion. The obtained system model has been divided effectively by using a multi-datum
point parameter method, which was based on the given finite multi-datum point for de-
termining the range of parameters in PCGSHF. An effective norm bounded method based
on the number of segments of PCGSHF has been proposed to handle the nonlinear term in
system model. By using the above strategies, the stability conditions have been obtained
based on the Lyapunov theory. Correspondingly, both the PCGSHF and the networked
feedback controller have been designed by solving a set of LMIs. Moreover, for choosing a
reasonable sampling period in practical situation, a stability criterion based on maximum
allowable network-induced delay rate has been proposed. Finally, one example has been
given to show the effectiveness and less conservatism of the proposed strategies.
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