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ABSTRACT. In this paper, we present a comprehensive study of the Negative Selection
Algorithm (NSA)-based motor fault detection and diagnosis. The NSA only needs the
feature signals of the healthy motors for generating the motor fault detectors. Different
from the conventional fault detection approaches, no prior knowledge of the motor fault
types is assumed to be known beforehand. Based on the motor fault detection results, the
NSA can be further applied for the fault diagnosis. The applicability of our motor fault
detection and diagnosis method is examined using the Fisher’s iris data classification and
three real-world motor fault detection and diagnosis problems in computer simulations.
Keywords: Artificial Immune Systems (AIS), Negative Selection Algorithm (NSA),
Fault detection, Fault diagnosis, Motors, Electrical machines, Mobile robots

1. Introduction. The Artificial Immune Systems (AIS) are inspired by the principles of
the natural immune systems [1], and are considered as one kind of popular computational
intelligence methods [2]. The AIS have the distinguishing features of pattern recognition,
anomaly detection, optimization, data analysis, machine learning, etc. They have drawn
growing interests from researchers with various backgrounds during the past decade [3,4].
The Negative Selection Algorithm (NSA) is an important AIS method, which is based
on the theory of the maturation of the T cells and self/nonself discrimination in the
biological immune systems. It was firstly developed by Forrest et al. in 1994 for the real-
time detection of computer viruses [5], and has also been widely applied in such diverse
engineering areas as communication network security [6], milling tool breakage monitoring
[7], and aircraft fault detection [8].

This paper first proposes an NSA-based motor fault detection scheme, in which the
detectors are generated from only the feature signals of the healthy motors. It does not
need any prior information of the faults to be detected. Furthermore, based on the fault
detection results, we employ the NSA to deal with the motor fault diagnosis problem.
The validity of the proposed motor fault detection and diagnosis approach is also verified
using numerical simulations of several practical problems.

The remaining part of this paper is organized as follows. The basic principles of the
NSA are presented and explained in Section 2. We propose and discuss the NSA-based
motor fault detection scheme in Section 3. A new motor fault diagnosis system using the
NSA is further built up in Section 4. Section 5 demonstrates the simulation results of
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our motor fault detection and diagnosis method with four case study examples. Finally,
a few conclusions and remarks are drawn in Section 6.

2. Principles of Negative Selection Algorithm (NSA). The natural immune sys-
tem is an efficient self-defense system that can protect the human body from being affected
by foreign antigens or pathogens [1]. One of its most important functions is pattern recog-
nition and classification. In other words, the biological immune system is well capable of
distinguishing the self, i.e., normal cells, from the nonself, such as bacteria, viruses and
cancer cells. This interesting capability is implemented mainly by two types of lympho-
cytes: B cells and T cells. Both the B cells and T cells are produced in the bone marrow.
However, for the T cells, they must pass through a so-called negative selection procedure
in the thymus thereafter. Only those that do not match the self proteins of the body
will be released out to circulate, while the remaining others are eventually destroyed.
The censoring of the T cells can actually prevent our immune system from attacking the
body’s own proteins.

Forrest et al. firstly propose the Negative Selection Algorithm (NSA) [5] to mimic the
aforementioned T cells maturation mechanism of the biological immune system, as shown
in Figure 1. This approach can be conceptually described as follows [9]. Defining the self,
we first collect a data set containing some representative self samples. Next, the candidate
detectors are randomly generated, and compared with the self set. Note, like the above
negative selection of the T cells, only those detectors that do not match any element
of the self sample set are retained. To put it into more details, let [z, 2o, -, 2] and
[wy, ws, -+ ,wr] denote a self sample and a candidate detector, respectively, where L is
their common order. The matching degree d between [z1,xo,- -, 2] and [wy, wy, - - -, wy)]
can be calculated based on the Euclidean distance:

L

d= Z (l‘l — wi)Z. (1)

=1

d is then compared with a preset threshold A\, and the detector matching error F is
obtained:

E=d-\ (2)

If E > 0, detector [wy,ws, -+ ,wy] fails to match self sample [z, x5, -+, 2], and if

[wy, ws, -+, wr] does not match all the self samples, it will be included in the detector set.
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FIGURE 1. Negative Selection Algorithm (NSA)
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FIGURE 2. Self and nonself samples

On the other hand, if F < 0, we consider that [wy, ws,--- ,wr] matches [y, 29, -, 2],
and it is, thus, rejected. After a certain number of qualified detectors are generated by
such a negative selection procedure, they are used to detect the anomaly (nonself samples)
in the fresh data. That is, when [wy, ws, - - ,wr] matches a new sample [y1,yo,- -, yn],
the existing anomaly can be detected. The general relationship between the self and
nonself samples is illustrated in Figure 2.

The original NSA has been shown to have some drawbacks in handling real-world
problems [10]. Thus, during the recent years, various types of the modified NSA have
been studied to yield improved performances. For example, Ji and Dasgupta propose
a variant NSA on the basis of variable-sized detectors (V-detectors) [11,12]. In the V-
detectors NSA, each self sample has a vicinity (self radius). A V-detector is randomly
positioned, and its radius is dynamically changed until it reaches the margin of the nearest
self sample. Stibor et al. compare the V-detectors NSA with the Bayesian classification
method and one-class Support Vector Machine (SVM) in the anomaly detection [13]. The
performance of the V-detectors NSA is discovered to be sensitive to several parameters,
such as the self radius. In summary, the past years have witnessed the great successes
of employing the NSA in anomaly detection, computer networks security, fault detection,
etc.

3. Negative Selection Algorithm (NSA) in Motor Fault Detection. Fault de-
tection/diagnosis methods are indeed crucial in modern industry to ensure the normal
working conditions of plants, such as electrical machines, motors, and processes [14-16].
Especially, those motor faults may result in serious performance degradation and even
eventual system failures, if not properly detected as well as handled. Therefore, motor
status monitoring and fault detection are important but demanding topics in the electrical
engineering field. Generally, we can consider the anomaly in the feature signals acquired
from the faulty motors is caused by incipient faults. Hence, fault detection is converted to
a representative problem of anomaly detection [17], i.e., self/nonself discrimination, in the
characteristic time series, which can be handled by utilizing the NSA. A few variants of
the NSA with applications in motor fault detection have also been proposed and studied
by the authors of the present papers [18-21]. Similar to Figure 2, Figure 3 shows the
normal, abnormal, and faulty feature signals of the motors. Note that the faulty feature
signal is only a subset of the abnormal one.

In this section, we present an NSA-based motor fault detection scheme, as illustrated
in Figure 4. Our approach consists of three main stages. Firstly, the feature signals of the
healthy motors are sampled and preprocessed. They are usually split into non-overlapping
or overlapping windows in the signal preprocessing unit, denoted by [z, 29, -+, zN], as
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FIGURE 4. Negative Selection Algorithm (NSA) in motor fault detection

the input patterns of the NSA detectors. Secondly, with the negative selection principle,
a given number of eligible detectors, S, are generated. Thirdly, the feature signals of the
motors under examination are sampled, preprocessed, and matched with these detectors.
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Fault detection results can be obtained based on the statistics of the activated detectors.
A detector is considered activated, if £ < 0. For the feature signals from the working
motors, the numbers of both incorrectly activated detectors and correctly activated ones,

A and B, are counted. The quantitative performance criterion, fault detection rate 7, is
defined:

=g X 100%. (3)

We must emphasize that the proposed motor fault detection technique is independent
of any motors and faults, and can, thus, be a general-purpose solution to a large variety
of fault detection problems.

4. Negative Selection Algorithm (NSA) in Motor Fault Diagnosis. Motor fault
diagnosis generally consists of two principal phases. The first step is to detect the existence
of any incipient faults, and the second stage targets at identifying the correct kinds of
the faults that have been detected. Inspired by the above idea, we propose a two-level
NSA-based motor fault diagnosis scheme, as shown in Figure 5, in this section. The NSA
detectors are first used to find out if there are any motor faults occurring. Based on the
further analysis of the characteristics of the activated NSA detectors, the motor faults
detected can be next classified into different types.

Motor Feature Motor Fault Motor Fault
Signals o Detection . . Diagnosis
Activation of NSA _ | Analysis of Activated
Detectors - NSA Detectors

FI1GURE 5. Hierarchical NSA-based motor fault diagnosis scheme

Actually, the first stage of the motor fault detection has been described and explained
in Section 3. In the NSA-based motor fault diagnosis stage, as shown in Figure 6, the
activated detectors are analyzed so as to properly classify the faults already previously
detected. There are two main phases involved here: detector training and motor fault
classification. In the detector training phase, suppose there are a total of S detectors
generated, and K kinds of motor faults to be classified. The numbers of the activation of
each detector for every fault is first counted and recorded, which can be denoted as N7
(1=1,2,--- ,Kand j =1,2,---,5). For Fault 7, all the activated detectors are ranked
according to N7. However, to avoid unnecessarily complicated computation, we only
select the top M;, e.g., M; = S x 20%, detectors among them to be the ‘characteristics
detectors’ of Fault 7. Each characteristics detector is also assigned with a fault diagnosis
weight w? as follows:

N/
wh=—"— =12 Kandk=12,--- M. (4)

¢ M; )
> N/
Jj=1

Obviously, those characteristics detectors with higher values of w! have more impact
on the fault diagnosis results. We emphasize that the selection of the characteristics
detectors and calculation of the fault diagnosis weights depend on the motor fault data
available. In other words, a representative set of motor faults and their corresponding
feature signals must be collected off-line in advance and applied in the training of the
NSA detectors. In the motor fault diagnosis phase, for the incoming feature signals from
the operating motors under inspection, the activation status of the NSA detectors is first
examined. Those activated detectors are then matched with the characteristics detectors
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FiGurE 6. NSA-based motor fault diagnosis stage

of each fault, and the fault diagnosis results can be obtained on the basis of the weights of
the matched detectors. For example, suppose for Fault i, there are L; matched detectors.
The fault diagnosis weights of this fault w? are added together in order to get v;:

L;
vi=Y wf, i=1,2-- K (5)
k=1

All the v; (i =1,2,---, K) are calculated and compared with each other, and the fault
corresponding to the largest value of v; will therefore be identified to yield the motor fault
diagnosis result.

Our hierarchical NSA-based motor fault diagnosis scheme has a few distinguishing
features. Firstly, with a two-level structure, both the fault detection and fault diagnosis
results can be simultaneously obtained. Secondly, different from the conventional model-
based fault detection approaches, it does not require the domain information of the motor
faults to be detected. Lastly, the computational complexity of our solution including
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the generation and training of the NSA detectors as well as matching between the NSA
detectors and feature time series signals is rather low, which makes it a suitable candidate
for time-critical applications. In the next section, the effectiveness of the proposed NSA-
based motor fault detection and diagnosis method will be empirically verified using several
case studies in computer simulations.

5. Simulations. In this section, we investigate our NSA-based fault detection and diag-
nosis schemes with a few numerical examples.

A. Motor rotor and stator fault detection using the NSA. The validity of the proposed
NSA-based motor fault detection scheme is first examined using the faults of rotor and
stator. As we know that appropriate monitoring of the working conditions of the motors
is important in maintaining their normal status. Thus, a typical fault example of broken
rotor and stator is investigated in our simulations. Nevertheless, it should be pointed out
that the present paper does not aim at building any real-world motor fault detection and
diagnosis systems. All the fault detection and diagnosis problems are deployed here only
as representative testbeds, and to simplify the presentation, most of the relevant technical
details are not considered.

In this motor fault detection case study, the feature signals are the stator current from
the healthy motor as well as faulty ones with existing defects on the rotor and stator.
These time series signals are shown in Figures 7(a)-7(c), respectively.

There are totally 10,000 samples collected in the above feature signals. All the time
series have been split into sliding windows with the width of ten, i.e., L = 10, after data
preprocessing. The overlapping width between two neighboring windows is one. The
number of the NSA detectors generated is S = 100, and the fault detection threshold A
of the detectors is A = 310. These simulation parameters are usually determined based
on experiments. That is to say, they can be solely chosen on the basis of trial and error,
because of their application dependent characteristics. There is no analytic way yet to
choose the best values. For example, large A may increase the generalization of the NSA
detectors but can reduce their sensitivity to the occurrence of incipient faults. Particularly,
the healthy stator current signals are divided into two different parts, and each part has
500 sliding windows. The first part is deployed to generate the NSA detectors only, and
the second part together with 1,000 sliding windows (500 from rotor fault and 500 from
stator fault) extracted from the faulty feature signals are for exploring the fault detection
performance of our NSA detectors.

The fault detection rate is calculated based on the numbers of the activated NSA
detectors, as given in (3). In the numerical simulations, the numbers of the detectors
activated by the fresh healthy feature signal as well as feature signals from the faulty
rotor and stator are illustrated in Figures 8(a)-8(c), respectively. The fault detection
results obtained are provided in Table 1. It can be concluded that satisfactory detection
performances are achieved for both the rotor and stator faults. Note that generation of
the NSA detectors in our scheme is independent of the types of the motor faults. In other
words, we do not need any background information of the faults to be detected in advance.
This unique property is indeed useful under the circumstances, where such knowledge is
difficult if not impossible to acquire.

TABLE 1. Detection results of rotor and stator faults

A B n
Rotor Fault 11 84 88.42%
Stator Fault 11 76 87.36%
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FIGURE 7. Stator current signals of healthy and faulty motors
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FIGURE 10. Current signals of faulty motor (rotor fault) with four different loads

It is well known that industrial motors often operate with changing loads in practice.
The loads can have a significant impact on the dynamical characteristics of the motors,
making our fault detection task even more difficult than the above case of fixed loads.
Therefore, the NSA-based fault detection scheme is also investigated for the detection of
the motor faults with variant loads. The rotor current signals of a healthy motor loaded
with four typical loads are shown in Figures 9(a)-9(d). These loads, namely C, O, S and
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U, can cover the full load range of this running motor. Obviously, both the amplitudes
and shapes of the current waveforms are affected by the different loads. We only use the
rotor fault as an example. The currents of the faulty motor with the rotor fault under
the different four loads are illustrated in Figures 10(a)-10(d).

As discussed above, in the data preprocessing stage of our NSA-based motor fault
detection scheme, the feature signals from the motors need to be preprocessed. Since the
amplitudes of both the healthy and faulty time series are heavily dependent on the motor
loads, we have to not only split them into sliding windows (as aforementioned) but also
normalize them. More precisely, the above feature signals are normalized so that they
can fall into the range of [—1,1]. Each 10,000-sample time series in Figure 9 should be
normalized separately. As a matter of fact, the normalization is a crucial preprocessing
step to guarantee the successful generation of all the NSA detectors.

Due to the feature signal normalization, the detector threshold is set to be 2.575 this
time. A total of 1,000 NSA detectors are generated. The numbers of the activated
detectors for the healthy and faulty motors with four different loads are shown in Figures
11 and 12, respectively. The corresponding fault detection results are summarized in
Table 2. We can observe that although moderately acceptable fault detection rates can
still be achieved, they significantly vary according to the existing motor loads as well. For
example, from Table 2, the detection rates under the loads of C and O are much higher
than that under the loads of S and U. Thus, how these working loads can influence the
performance of our NSA-based motor fault detection scheme is an interesting issue to be
explored.

B. NSA-based fault detection in mobile robots. Mobile robots have been widely employed
in modern industry. It is well known that the practical terrain for the mobile robots
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FIGURE 11. Numbers of activated NSA detectors for healthy motor
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TABLE 2. Fault detection rates of faulty motors with different loads

A B n
Fault C 4 47 92.16%
Fault O 0 63 100%
Fault S 8 15 65.22%
Fault U 109 230 67.85%

is usually rough or rugged. One of the most important requirements for the mission-
oriented mobile robots is to have the ability to adapt to various missions, e.g., different
payloads, terrains, sizes, and stability margins. Reconfiguration is an efficient approach for
designing the mobile robots that meet these requirements. The geometrical trafficability
is the basic character of a mobile robot, including the static stability, the height of center
of gravity, the clearance, wheelbase and wheel stance, etc. As the static stability is a
fundamental metric to describe the geometrical trafficability, calculation of the static
stability is necessary. A reconfigurable wheeled mobile robot has been developed with
alternative size and trafficability metrics to adapt to uneven terrain [22,23]. Its chassis
length and height, caster and camber of the wheels, longitudinal and lateral length of the
chassis can be adjusted or changed to obtain different stability and maneuverability. The
essential variables of our reconfigurable mobile robot together with their values used here
are explained in Table 3 [24]. The isometric view of the prototype of the mobile robot
with coordinates system in the four wheels is shown in Figures 13(a)-13(c). Unfortunately,
many practical factors, e.g., severe working conditions and aging, can cause incipient
faults in the mobile robots. How to efficiently detect these faults at the early stage is
undoubtedly important in maintaining their healthy status.
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TABLE 3. Parameters of mobile robot prototypes and their values

Parameters Values Parameters Values
distance from centre of wheel 0.238 radius of wheel r 0.110
longitudinal pivot (m) (m)
distance from mass centre of 0.138 mass of rocker arm 1.0
steering assembly to longitudinal distance m,, (kg)
distance from longitudinal pivot to 0.035 mass of steering 28
latitudinal pivot Ay (m) assembly m,, (kg)
distance from mass centre of 0.111 mass of wheel of 443
chassis box to differential pivot robot m,, (kg)
distance from bottom of chassis 0.161 mass of chassis box 15.6
box to differential pivot ., (m) Moy (kZ)
mass of wheel mechanism m,,, 8.23 caster of front -12-28
kg) wheel and rear
mass of robot m (kg) 48.5 front wheel camber | -12-28
and rear wheel £,
variable distance from differential | 0.0368 to | vanable length of 0.52to
pivot to latitudinal pivot & (m) 0.1035 wheel base 7 (m) 0.658

Size Reconfiguration Prototype
changes chfn_gu

pessssssssd

FI1GURE 13. Isometric view of mobile robot prototype with coordinates system
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FIGURE 14. Speed signals of healthy and faulty mobile robots in straight-
forward movement mode on sand ground: (a) healthy mobile robot, (b)
faulty mobile robot with broken wheel no. 1

A representative broken wheel fault of the mobile robots is investigated in our simu-
lations. In this mobile robot fault detection case study, the feature signals are collected
from the wheel speeds of the reconfigurable mobile robot with four wheels explained above,
when the mobile robot is in the straightforward movement mode on the sand ground. Fig-
ures 14(a) and 14(b) show the wheel speed signals from a healthy mobile robot as well as
a faulty one with the broken wheel no. 1, respectively.

The number of these feature signal samples deployed is around 1,500, and the number
of the NSA detectors to be generated is S = 100. The fault detection threshold A is
A = 3 x 10%. As aforementioned, all the time series have been split into non-overlapping
windows with the width of ten, i.e., L = 10, after data preprocessing. Particularly, the
healthy speed signals are divided into two different parts with 500 samples (50 signal
windows) each. The first part is deployed to generate the NSA detectors, and the second
part together with 500 samples extracted from the faulty speed signals are for exploring
the fault detection performance of the detectors generated.

In the simulations, the numbers of the detectors activated by the fresh healthy and
faulty speed signals are illustrated in Figures 15(a) and 15(b), respectively. For these
activated detectors, we obtain A = 24 and B = 292. Thus, from (3), the fault detection
rate n is calculated to be 92.4%.

The same NSA-based fault detection configuration is also used for detecting the broken
wheel fault in other movement modes of the mobile robot on the sand ground. As an
illustrative example, the speed signals of the healthy and faulty mobile robots in the
self-turning movement mode are demonstrated in Figures 16(a) and 16(b), respectively.

The fault detection results acquired are summarized in Table 4. Apparently, the fault
detection rates for our mobile robot are fairly high. However, as we can observe, the
difficulty of detecting this broken wheel fault heavily depends on the movement modes of
the mobile robot. From Table 4, it is easiest to detect the fault when the mobile robot is in
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TABLE 4. Fault detection rates of mobile robots in different movement

modes on sand ground

Movement Modes A B n
Straightforward 24 292 92.4%
Self-turning 59 381 86.6%
Self-turning Mobile with Speed Difference 20 1440 98.6%
Self-turning with Speed Difference 41 268 86.7%
Single Akarman Mobile 0 3933 100%
Dual Akarman Mobile 1 632 99.8%
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the single Akarman movement mode, while fault detection in the self-turning movement
mode is the most challenging task among the six movement modes.
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C. NSA-based anomaly detection and classification in Fisher’s iris data. Fisher’s iris data
is a well-known benchmark for pattern classification and clustering methods [25,26]. Four
attributes, i.e., sepal length, sepal width, petal length, and petal width, of a total of 50 iris
specimens are measured from each of the three species: Setosa, Versicolor and Virginica.
Figures 17 and 18 illustrate the distributions of Fisher’s iris data in the sepal length-sepal
width and petal length-petal width dimensions, respectively.

To validate the proposed NSA-based fault detection/diagnosis scheme, we here con-
sider Setosa as the normal samples, and the other two species, Virginica and Versicolor,
anomalies. Thus, the effectiveness of the NSA detectors can be examined by the detection
and classification of the Virginica and Versicolor species. In our simulations, the number
of the detectors employed is 1,000, and the detector radius r = 0.6. The specimens of
each of the three species are divided into two equal parts. The beginning 25 specimens
of Setosa are first used to generate the NSA detectors. The numbers of the activated
detectors for Setosa, Virginica and Versicolor are illustrated in Figures 19(a)-19(c), re-
spectively. The anomaly detection results of Virginica and Versicolor are given in Table
5. Apparently, the anomaly detection rates of these two anomalous species are 86.73%
and 83.72%, respectively.

Furthermore, the first 25 specimens of Virginica and Versicolor are employed to train
their characteristics detectors for classification. The 10 characteristics detectors with clas-
sification weights are selected and shown in Tables 6 and 7, respectively. The classification
performances of the characteristics detectors are investigated using the remaining 25 spec-
imens. Tables 8 and 9 demonstrate the activated detectors of Virginica and Versicolor,
respectively, and the classification results are provided in Table 10. More precisely, for
the classification of Virginica from Versicolor, there is 0.9237 vs. 0, and for the classifi-
cation of Versicolor from Virginica, we get 0.8261 vs. 0. Therefore, it is found out that
our NSA detectors can not only detect the anomaly of Virginica and Versicolor, but also
successfully classify these two species.

D. NSA-based motor fault diagnosis. (1) Motor rotor and stator fault diagnosis. In this
case study, the NSA-based motor fault diagnosis scheme is applied to classify two different
kinds of motor faults: rotor fault and stator fault. The feature signals are measured
from the current of the healthy motors and faulty motors (with two faults) with existing

TABLE 5. Anomaly detection of Virginica and Versicolor in Fisher’s iris data

A B n
Virginica 28 183 86.73%
Versicolor 28 144 83.72%

TABLE 6. Characteristics detectors of Virginica with classification weights

Detectors| 984 | 305 512 935 692 228 374 783 79 252
Weights [0.1271]0.1186]0.1186|0.1102]0.1102]0.0932|0.0847]0.0847|0.0763|0.0763

TABLE 7. Characteristics detectors of Versicolor with classification weights

Detectors| 419 82 609 239 | 490 570 324 530 542 654
Weights |0.1594|0.1449]0.14490.1304|0.1014]0.0870|0.0580]0.05800.0580|0.0580

TABLE 8. Activated detectors of Virginica

[ Detectors [ 984 [ 305 [ 512 | 692 | 535 | 374 [ 228 [ 252 [ 783 | 575 |
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TABLE 9. Activated detectors of Versicolor

[ Detectors [ 239 [ 419 [ 609 [ 570 | 82 | 530 | 944 | 838 [ 413 [ 490 |

TABLE 10. Classification results of Virginica and Versicolor

() V2
Virginica 0.9237 0
Versicolor 0 0.8261

TABLE 11. Detection results of rotor and stator faults

A B n
Rotor Fault 15 162 91.53%
Stator Fault 15 193 92.79%

TABLE 12. Characteristics detectors of rotor fault with fault diagnosis weights

Detectors| 214 | 517 | 934 88 153 156 356 | 820 664 | 679
Weights 0.1296|0.0926|0.0926|0.0741]0.0556 |0.0556|0.0556|0.0556 |0.0370|0.0370
Detectors| 744 | 795 888 907 | 935 | 988 7 155 242 306
Weights [0.0370]0.0370|0.0370{0.0370{0.0370|0.0370]0.0185{0.0185|0.0185]0.0185

defects on the rotor and stator. These time series signals are shown in Figures 20(a)-20(c),
respectively.

There are totally 10,000 samples collected in the above feature signals. Again, all the
time series have been split into sliding windows with L = 10 after data preprocessing.
The overlapping width between two neighboring windows is one. The number of the NSA
detectors to be generated is S = 1,000, and the matching threshold A of the detectors
is A = 320. Note that these parameters may considerably affect the fault detection and
diagnosis performances, such as robustness to noisy feature signals. Similarly, the healthy
current signals are divided into two different parts, and each part has 4,000 signal windows.
The first part is deployed to generate the NSA detectors only, and the second part (fresh
healthy feature signals) together with 4,000 sliding windows extracted from the faulty
feature signals are used for exploring the fault detection & diagnosis capabilities of our
NSA-based scheme.

In the motor fault detection phase, the numbers of the detectors activated by the fresh
healthy and faulty feature signals from the broken rotor and stator (only the beginning 500
sliding windows) are illustrated in Figures 21(a)-21(c), respectively. The fault detection
results obtained are given in Table 11. It can be concluded that reasonable detection
performances with the fault detection rates of 91.53% and 78.26% has been respectively
achieved for the rotor and stator faults.

In the motor fault diagnosis phase, both the two faults have the same numbers of
characteristics detectors, i.e., My = Ms; = 20. Like in the preprocessing of the healthy
feature signals used in the fault detection stage, the faulty feature signals are also divided
into two parts: the first part is employed to train the characteristics detectors, and the
second part is for examining the fault diagnosis capability of the proposed scheme. The
characteristics detectors together with the fault diagnosis weights of the rotor and stator
faults are selected, calculated, and given in Tables 12 and 13, respectively. Note that
the characteristics detectors have been numbered, and Table 13 does not show those
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TABLE 13. Characteristics detectors of stator fault with fault diagnosis weights

Detectors| 888 75 837 | 507 | 155 | 311 | 214 | 119 | 359 | 934 | 993
Weights [0.1884|0.1594]0.1449(0.1304(0.1014|0.1014|0.0870{0.0290|0.0290(0.0145{0.0145

TABLE 14. Activated detectors of rotor fault

Detectors | 214 | 744 | 17 | 896 | 795 | 935 | 993 | 298 | 777 | 934
Detectors | 119 | 242 | 243 | 542 | 753 | 345 | 737 | 951 | 102 | 384

TABLE 15. Activated detectors of stator fault

Detectors | 214 | 311 | 507 | 737 | 934 | 741 | 847 | 517 | 888 | 75
Detectors | 637 | 935 | 242 | 611 | 659 | 837 | 962 | 94 | 277 | 306

TABLE 16. Fault diagnosis results of rotor and stator faults

() V2
Rotor Fault | 0.9855 | 0.7778
Stator Fault | 0.5507 | 0.6481

detectors of the stator fault after the 11*" one, because their fault diagnosis weights are
all zeros. Tables 14 and 15 respectively provide the activated detectors of the rotor and
stator faults. The fault diagnosis results acquired are summarized in Table 16. As we
can observe that when v; = 0.9855 > v, = 0.7778, the rotor fault is identified, and
when vy = 0.6481 > v; = 0.5507, the fault detected is classified to be the stator fault.
Apparently, both the two faults have been correctly classified. In other words, our scheme
is well capable of yielding a good motor fault diagnosis performance.

(2) Motor bearings fault diagnosis. Bearings are indispensable components in rotating
machinery. Therefore, appropriate monitoring of their conditions is crucial to guarantee
the normal operation of motors [27]. Since the defects on the inner raceway, outer raceway,
as well as balls are typical faults of bearings, we will examine the proposed motor fault
diagnosis scheme using these three faults in our simulations. Two illustrative examples of
the bearings fault are provided in Figures 22(a) and 22(b).

The feature signals are collected from a vibration sensor mounted on top of the eight-
ball bearings with a motor rotation speed at 1,782 rpm. Figures 23(a)-23(d) show the
vibration signal samples from the healthy bearings and those faulty bearings with the
inner raceway, outer raceway, and ball faults, respectively.

The relevant simulation parameters in the generation of the NSA detectors are given
as follows:

number of feature signal samples used: 20,000,

number of detectors: S = 5, 000,

window width: N = 10,

matching threshold: A = 0.0775.

There are a total of 20,000 new samples in each of the three verification time series.
The beginning 10,000 samples are taken from healthy bearings, and the following 10,000
samples are from three faulty bearings with the corresponding inner race, outer raceway,
and ball faults. The fault detection performances of our detectors for the inner raceway,
outer raceway, and ball faults are verified and illustrated in Figures 24(b)-24(d), respec-
tively. The detection rates of the NSA detectors for the above three different bearings
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FI1GURE 22. Two illustrative examples of bearings fault
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FIGURE 23. Features signals of healthy and faulty bearings: (a) healthy
bearings, (b) faulty bearings with inner raceway fault, (c) faulty bearings
with outer raceway fault, (d) faulty bearings with ball fault

TABLE 17. Fault detection rates of NSA detectors

A B n
Inner Raceway Fault 64 534 89.3%
Outer Raceway Fault 64 425 86.91%
Ball Fault 64 1368 95.53%

faults are summarized in Table 17. As we can see from Table 17, the fault detection
rates of the inner raceway, outer raceway, and ball faults are 89.3%, 86.91% and 95.53%,
respectively. That is to say, the NSA-based motor fault detection stage is well capable of
achieving an acceptable fault detection performance.
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FIGURE 24. Numbers of activated NSA detectors

TABLE 18. Top 10 characteristics detectors of inner raceway fault with
fault diagnosis weights

Detectors| 3257 | 3784 | 4408 | 395 | 3752 | 987 | 530 | 2598 | 4305 | 4431

Weights [0.0407]0.0378]0.0291|0.0262|0.0262 |0.0233]0.0203{0.0203 |0.0203|0.0203

TABLE 19. Top 10 characteristics detectors of outer raceway fault with
fault diagnosis weights

Detectors| 2598 | 3257 | 1823 | 3784 | 2886 | 395 | 1773 | 1244 | 4348 | 105

Weights [0.0373]0.0313]0.0254]0.0239{0.0239|0.0239{0.0209{0.0179{0.0179|0.0164

TABLE 20. Top 10 characteristics detectors of ball fault with fault diagnosis weights

Detectors| 2598 | 3257 | 4305 | 1244 | 2516 | 3784 | 987 | 4281 | 4348 | 898

Weights [0.0620]0.0388|0.0349(0.0349|0.0271|0.0233]0.0233{0.0194 |0.0194|0.0155

TABLE 21. Top 10 activated detectors of inner raceway fault

[ Detectors | 3257 | 395 | 2598 [ 2857 | 3238 | 4408 [ 3444 [ 4348 [ 105 | 1627 |

TABLE 22. Top 10 activated detectors of outer raceway fault

[Detectors | 2598 [ 1696 | 1823 | 3257 | 1244 | 395 [ 987 [ 2516 | 2886 | 3819 ]

TABLE 23. Top 10 activated detectors of ball fault

| Detectors | 25698 [ 4305 | 987 | 1244 | 2516 | 2759 | 4281 [ 1415 | 1619 | 3257 |
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TABLE 24. Fault diagnosis results of motor bearings faults

U1 (%) Vs

Inner Raceway Fault | 0.7035 | 0.5775 | 0.6537

Outer Raceway Fault | 0.5262 | 0.6047 | 0.5701
Ball Fault 0.6599 | 0.6744 | 0.7552

In the motor fault diagnosis phase, the numbers of the characteristics detectors for
the three bearings faults are all chosen to be 100, i.e., My = M, = M3 = 100. To
simplify our presentation here, only the top 10 characteristics detectors and their fault
diagnosis weights of the inner raceway, outer raceway, and ball faults are shown in Tables
18-20, respectively. Tables 21-23 demonstrate the top 10 activated detectors of these three
faults. The fault diagnosis results are provided in Table 24. Obviously, for the diagnosis
of the inner raceway fault, we have v; = 0.7035 > w3 = 0.6537 > vy = 0.5775, and
for the outer raceway fault, there is vy = 0.6047 > v3 = 0.5701 > v; = 0.5262. From
vy = 0.7552 > vy = 0.6744 > v; = 0.6599, the ball fault is identified from the other two
faults. Therefore, we can conclude that all the three bearings faults have been correctly
classified. The proposed NSA-based motor fault detection and diagnosis scheme is indeed
effective and flexible in coping with multiple fault detection and diagnosis problems.

6. Conclusions. In this paper, a novel NSA-based motor fault detection and diagnosis
scheme is presented and discussed. The proposed approach has a unique hierarchical
structure, in which the motor faults can be detected and identified in the first and second
stages, respectively. The Fisher’s iris data classification problem and three practical motor
fault diagnosis examples including a case study of the mobile robot fault detection are
used to examine and demonstrate its effectiveness. Different from the conventional motor
fault detection solutions, the NSA-based method does not require the availability of any
prior fault knowledge beforehand, and only the feature signals from the healthy motors
are needed. Note that our scheme is independent of the types of the motors and faults
under consideration. That is, it is not only limited to the electric motors, and can be
generalized for the fault detection and diagnosis of other kinds of plants, such as power
systems, chemical processes, mechanical engineering, and telecommunications networks.
In the future work, we are going to further examine the feasibility of this NSA-based
motor fault detection and diagnosis method with various sorts of motor faults.
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