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Abstract. This paper deals with the problem of robust H∞ fault detection for a class of
linear discrete time-varying systems with norm bounded model uncertainty. A generalized
unknown input is introduced to represent the model uncertainty and, based on this, an
observer-based fault detection filter (FDF) with accommodation of unknown input and
fault is proposed. Then the problem of robust fault detection is formulated in a framework
of finite horizon H∞ filtering and the design of robust H∞-FDF is converted into a
minimum problem of indefinite quadratic form. A sufficient and necessary condition for
the minimum is derived by using a Krein space approach and a solution to the H∞-
FDF is obtained by computation of Riccati recursions. A numerical example is given to
illustrate the effectiveness of the proposed method.
Keywords: Linear discrete time-varying system, Model uncertainty,H∞ fault detection,
Krein space, Riccati recursion

1. Introduction. During the past three decades, model-based fault detection (FD) has
received much attention and significant progress has been achieved; see, for example,
[1, 2, 3, 5, 7, 8, 11, 13, 14, 17, 18, 20] and references therein. For linear systems subject
to L2 norm bounded unknown input, there are two typical H∞ approaches to robust
FD. One scheme is to use H∞ norm as a measure of robustness of residual to unknown
input, while the H∞ norm or H− index is used as a measure of sensitivity of residual to
fault. Then the design of observer-based FDF can be formulated into an optimization
problem in a framework of H−/H∞ or H∞/H∞ maximization and a trade-off between the
sensitivity and the robustness can be achieved; see, e.g., the frequency domain co-inner-
outer factorization solution in [6] and the linear matrix inequality (LMI) based solution in
[21]. Another scheme focuses on robust FD in the sense of H∞ filtering; see, e.g., the LMI
based solutions in [4, 12, 19, 24]. In [10], a comparison of the two typical FD schemes was
given and it was revealed that both of them allowed the achievement of the same level
performance.

In contrast to the numerous existing robust FD results for linear time invariant (LTI)
systems, only a few studies have been devoted to linear time-varying (LTV) systems. In
[23], the problem of robust FD for linear discrete time periodic systems was dealt with by
extending the result in [6]. In [15, 16, 22], the result of [6] was extended to LTV systems.
It has been demonstrated in [15, 16] that the robust FD problem under different perfor-
mance indices, such as the H−/H∞, H2/H∞ and H∞/H∞ sensitivity/robustness ratio,
can be solved by a unified optimal solution. In [25], an observer-based FDF with resid-
ual feedback was proposed for linear discrete time-varying (LDTV) systems and, through
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building a relationship with Krein space projection, a solution to the H∞-FDF was ob-
tained by computation of Riccati recursions. In [26], a unified solution to the robust FD
problem of finite horizon H∞/H∞ or H−/H∞ maximization was developed for LDTV
systems. However, it should be pointed out that model uncertainty and unknown input
are inevitable in practice. The approaches in [15, 16, 22, 26] are not applicable to uncer-
tain LDTV systems, because the solution of the H−/H∞ or H∞/H∞ based optimization
problem will not exist anymore when model uncertainty appears. The result in [25] did
not consider the influence of model uncertainty which may cause performance degrada-
tion of the H∞-FDF for uncertain LDTV systems. To the authors’ best knowledge, the
problem of robust FD is still open and challenging when model uncertainty and unknown
input are taken into account simultaneously, which motivates the present study.
In this paper, we focus our study on observer-based robust FD in the framework of finite

horizon H∞ filtering for LDTV systems subject to l2 norm bounded unknown input and
norm bounded model uncertainty. A generalized unknown input will be first introduced
to represent the influence of the model uncertainty. Then an improved observer-based
FDF will be developed of which the estimation and accommodation of model uncertainty,
unknown input and fault are considered. Inspired by [25], the problem of robust FD will
be solved by using a Krein space approach.
Notation. Elements in Krein space will be denoted by boldface letters and elements

in the Euclidean space of complex numbers will be denoted by normal letters. The super-
scripts ‘−1’ and ‘T ’ stand for the inverse and transpose of a matrix, respectively. δij = 0
for i 6= j and δii = 1. Rn denotes the n-dimensional Euclidean space. I is the identity ma-
trix with appropriate dimensions. 〈·, ·〉 denotes the inner product in Krein space. diag(· · · )
denotes a block-diagonal matrix. θ(k) ∈ l2[0, N ] means

∑N
k=0 θ

T (k)θ(k) <∞. L{{θi}Ni=1}
denotes a linear space spanned by sequence θ1, · · · , θN . For a random variable α in Krein
space, α ⊥ L{{θi}Ni=1} means that α is orthogonal with L{{θi}Ni=1}. Proj{α|θ1, · · · , θN}
stands for the orthogonal projection of α onto linear space L{{θi}Ni=1}.

2. Problem Formulation. Consider the following LDTV systemsx(k + 1) = (A(k) + ∆A(k))x(k) + (B(k) + ∆B(k))u(k) + Bd(k)d(k) +Bf (k)f(k)
y(k) = (C(k) + ∆C(k))x(k) + (D(k) + ∆D(k))u(k) +Df (k)f(k) + v(k)
x(0) = x0

(1)
where x(k) ∈ Rn, y(k) ∈ Rm, u(k) ∈ Rp, d(k) ∈ Rq, v(k) ∈ Rm and f(k) ∈ Rl are the
state, measurement output, control input, unknown input, measurement noise and fault,
respectively; u(k), d(k), v(k), f(k) ∈ l2 [0, N ]; x0 denotes the initial state; A(k), B(k),
Bd(k), Bf (k), C(k), D(k) and Df (k) are known matrices with appropriate dimensions;
∆A(k), ∆B(k), ∆C(k) and ∆D(k) are the uncertain model matrices described by[

∆A(k) ∆B(k)
∆C(k) ∆D(k)

]
=

[
E1(k)
E2(k)

]
Σ(k)

[
F1(k) F2(k)

]
(2)

where E1(k), E2(k), F1(k) and F2(k) are known matrices with appropriate dimensions,
Σ(k) ∈ Rl1×l2 is unknown and satisfies

ΣT (k)Σ(k) ≤ I, ∀k ∈ [0, N ] (3)

For the purpose of residual generation, we first consider the following observer-based
FDF  x̂(k + 1) = A(k)x̂(k) +B(k)u(k) +H(k)(y(k)− C(k)x̂(k)−D(k)u(k))

rf (k) = V (k)(y(k)− C(k)x̂(k)−D(k)u(k))
x̂(0) = 0

(4)
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where x̂(k), rf (k) denote state estimation and residual, respectively.
Let e(k) = x(k)− x̂(k). Applying to (1) and (4) yields

e(k + 1) = (A(k)−H(k)C(k))e(k) +Bd(k)d(k)−H(k)v(k)

+ (Bf (k)−H(k)Df (k))f(k) + (∆A(k)−H(k)∆C(k))x(k)

+ (∆B(k)−H(k)∆D(k)))u(k)
rf (k) = V (k)(C(k)e(k) +Df (k)f(k) + v(k) + ∆C(k)x(k) + ∆D(k)u(k))
x(0) = x0, e(0) = x0

(5)

Substituting (2) into (5) and introducing

ϕ(k) = Σ(k)(F1(k)x(k) + F2(k)u(k))

we then have
e(k + 1) = (A(k)−H(k)C(k))e(k) +Bd(k)d(k)−H(k)v(k)

+ (Bf (k)−H(k)Df (k))f(k) + (E1(k)−H(k)E2(k))ϕ(k)
rf (k) = V (k)(C(k)e(k) +Df (k)f(k) + v(k) + E2(k)ϕ(k))

(6)

A typical way is to handle ϕ(k) as an unknown input and formulate the finite horizon
robust FD problem in order to find H(k) and V (k) such that∑N−1

k=0 ‖rf (k)− f(k)‖2

xT0 P
−1
0 x0 +

∑N
k=0 ‖w(k)‖2

< γ2 (7)

where γ is a given positive scalar, w(k) =
[
dT (k) fT (k) ϕT (k) vT (k)

]T
, and P0 is a

given positive definite weighting matrix. There is no doubt that this may lead to large
conservatism.

In order to improve the performance of the residual generator, we propose a structure
of FDF with the estimation and accommodation of f(k), d(k) and ϕ(k). For this purpose,
the following modified FDF is established

x̂(k + 1|k) = A(k)x̂(k) + B(k)u(k) +H1(k)ε(k)

x̂(k + 1) = x̂(k + 1|k) +H2(k)ε(k) +H3(k)r(k)

ε(k) = y(k)− C(k)x̂(k)−D(k)u(k)

ε(k + 1|k) = y(k + 1)− C(k + 1)x̂(k + 1|k)−D(k + 1)u(k + 1)

r(k) = V1(k)ε(k) + V2(k + 1)ε(k + 1|k)
x̂(0) = 0

(8)

where x̂(k + 1|k), x̂(k) denote the one-step state prediction and state estimation, respec-
tively; Hi(k) (i = 1, 2, 3), V1(k) and V2(k + 1) are parameter matrices to be designed;

r(i) =
[
rTf (i) rTϕ (i) rTd (i)

]T
; rϕ(k) and rd(k) stand for the estimation of ϕ(k) and

d(k), respectively.
Now, the problem of finite horizon robust H∞ FD can be re-formulated in order to find

Hi(k) (i = 1, 2, 3), V1(k) and V2(k + 1) such that (7) is satisfied.

Remark 2.1. It is worth pointing out that the uncertain matrices ∆A(k), ∆B(k), ∆C(k)
and ∆D(k) in (1) may be norm bounded type, polytopic type or stochastic ones. In this
paper, only the norm bounded type described by (2) and (3) is dealt with. Moreover, the
way of handling model uncertainty as unknown input is well known in robust FD for LTI
systems, but it is a novel idea to consider the estimation and accommodation of f(k),
d(k), ϕ(k) in the residual generator.
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Remark 2.2. Different from the scheme of finite horizon H∞/H∞ and H−/H∞ opti-
mization in [26], this paper deals with the problem of robust FD in the framework of H∞
filtering [25], which can be regarded as a finite horizon time-varying version of [4]. If
H3(k) = 0, V2(k + 1) = 0, N → ∞ and system (1) is LTI, then (8) with (7) leads to the
H∞ filtering formulation of FD in [4], which can be considered as a special case of this
paper. If the accommodation of model uncertainty and unknown input is not taken into
account, then (8) becomes the observer-based FDF in [25]. The key feature of the pro-
posed robust FD scheme is the simultaneous estimation and accommodation of the model
uncertainty, unknown input and fault. Compared with the H∞ − FDF in [25], the robust
FDF (8) can achieve better FD performance when model uncertainty appears.

Remark 2.3. It has been shown in [9, 25] that the H∞ filtering problem can be formu-
lated as calculating the minimum of a certain quadratic form and, through establishing
a relationship with the orthogonal projection and innovation analysis in Krein space, a
necessary and sufficient existence condition for the minimum can be derived. A solution
to the robust H∞-FDF can be obtained by computation of Riccati recursions. Inspired by
these, the similar techniques with [25] will be employed to solve the formulated robust FD
problem.

3. Main Results.

3.1. The H∞-FDF problem and indefinite quadratic form. We start with the
introduction of the following indefinite quadratic form

JN = xT0 P
−1
0 x0 +

N∑
k=0

‖w(k)‖2 − γ−2

N−1∑
k=0

‖rf (k)− f(k)‖2

−ρ2
N−1∑
k=0

(‖rϕ(k)− ϕ(k)‖2 + ‖rd(k)− d(k)‖2) (9)

where ρ > 0 is a sufficient small scalar. Referring to the robust H∞-FDF problem, we
note that (7) is satisfied for all nonzero x0 and w(k) if JN > 0. Let

vf (i) = rf (i)− f(i), vϕ(i) = rϕ(i)− ϕ(i), vd(i) = rd(i)− d(i) (10)

vs(i) =


[

v(i)
vfs(i)

]
, i ≤ k − 1

v(k), i = k
, vfs(i) =

 vf (i)
vϕ(i)
vd(i)

 , fs(i) =

 f(i)
ϕ(i)
d(i)

 (11)

vsN =
[
vTs (0) vTs (1) · · · vTs (N)

]T
(12)

fsN =
[
fT
s (0) fT

s (1) · · · fT
s (N)

]T
(13)

QvsN = diag(Qvs(0), Qvs(1), · · · , Qvs(N)) (14)

Qvs(k) =

{
diag(I,−γ2I,−ρ−2I), k ≤ N − 1
I, k = N

(15)

Then, JN can be rewritten as the following indefinite quadratic form

JN =

 x0
fsN
vsN

T  P0 0 0
0 I 0
0 0 QvsN

−1  x0
fsN
vsN

 (16)

For the sake of notation simplicity, we further denote

ys(i) =

{
ya(i), i ≤ k − 1
y(k), i = k

, ya(i) =

[
y(i)
r(i)

]
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Bsf (i) =
[
Bf (i) E1(i) Bd(i)

]
, Dfd(i) =

[
Df (i) E2(i) 0

]
Cs(i) =

{
C̄(i), i ≤ k − 1
C(k), i = k

, C̄(i) =

[
C(i)
0

]
Ds(i) =

{
D̄(i), i ≤ k − 1
D(k), i = k

, D̄(i) =

[
D(i)
0

]
Dsf (i) =

{
D̄fd(i), i ≤ k − 1
C(k), i = k

, D̄fd(i) =

[
Dfd(i)
I

]
Hs(i) =

{
H̄(i), i ≤ k − 1
H1(k), i = k

, H̄(i) =
[
H1(i) H2(i)

]
for k = 0, 1, · · · , N . Rewrite (1) as

x(i+ 1) = A(i)x(i) +Bsf (i)fs(i)

ys(i) = Cs(i)x(i) +Ds(i)u(i) +Dsf (i)fs(i) + vs(i)

x(0) = x0

(17)

It is evident that (7) is satisfied if JN subject to (8) and (17) has a minimum over
{x0, fsN} and its value at the minimum is positive. Thus, the design of robust H∞-FDF
can be converted into the minimum problem of indefinite quadratic form JN .

Remark 3.1. The ρ in (9) is a weighting positive scalar. Increasing ρ means weighting the
influence of the estimation error of model uncertainty and unknown input more strongly.
To guarantee the feasibility of min JN > 0, the allowed maximal ρ and minimal γ should
be considered. From the viewpoint of H∞ fault filtering, the ρ is usually set as a sufficient
small positive scalar.

3.2. Existence conditions for the minimum of JN . In this subsection, we will in-
troduce a stochastic Krein space system model and build a relationship between the
minimum problem of JN with Krein space orthogonal projection. Similar to [25], a suffi-
cient and necessary condition for the minimum will be given in terms of a certain Krein
space Gramian matrix (essentially a Krein space variance matrix).

Consider the following Krein space stochastic system
x(i+ 1) = A(i)x(i) +B(i)u(i) +Bsf (i)fs(i)

ys(i) = Cs(i)x(i) +Ds(i)u(i) +Dsf (i)fs(i) + vs(i)

x(0) = x0

(18)

where x(i), fs(i), u(i) and vs(i) are Krein space vectors and

ys(i) =

{
ya(i), i ≤ k − 1
y(k), i = k

, ya(i) =

[
y(i)
r(i)

]
(19)

vs(i) =


[

v(i)
vfs(i)

]
, i ≤ k − 1

v(k), i = k
, r(i) = fs(i) + vfs(i) (20)

〈 x0

fs(i)
vs(i)

 ,
 x0

fs(j)
vs(j)

〉 = diag(P0, Iδij, Qvs(i)δij) (21)

The following Lemma 3.1 presents an existing condition for the minimum of JN .
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Lemma 3.1. [25] The JN subject to (17) has a minimum over {x0, fsN} if and only if
Rys(k) = 〈ys(k),ys(k)〉 has the same inertia with Qvs(k) and, if this is the case, we have

min JN =
N∑
k=0

yTs (k)R
−1
ys
(k)ys(k) (22)

We should mention that it is difficult to compare the inertia of Rys(k) with Qvs(k).
As shown later, innovation re-organization provides the block diagonal factorization of a
matrix equivalent to Rys(k), and thereby allows us to do it easily.
Define innovations

ỹa(i, 1) = ya(i)− C̄(i)x̂(i, 1)− D̄(i)u(i), Rỹa(i, 1) = 〈ỹa(i), ỹa(i)〉 (23)

ỹ(i, 2) = y(i)− C(i)x̂(i, 2)−D(i)u(i), Rỹ(i, 2) = 〈ỹ(i, 2), ỹ(i, 2)〉 (24)

where x̂(0, 1) = 0, x̂(0, 2) = 0; x̂(i, 1) and x̂(i, 2) denote the orthogonal projections of x(i)
onto linear space spanned by {ỹa(j, 1)}i−1

j=0 and {{ỹa(j, 1)}i−2
j=0, ỹ(i− 1, 2)}, respectively.

Furthermore, let

r̃(k) = r(k)− r̂(k|k + 1), Rr̃(k) = 〈r̃(k), r̃(k)〉 (25)

ỹr(k) =
[
ỹT (k, 2) r̃T (k)

]T
, Rỹr

(k) = 〈ỹr(k), ỹr(k)〉 (26)

ỹrs(k) =

{
ỹr(k), k ≤ N − 1
ỹ(N, 2), k = N

, Rỹrs
(k) = 〈ỹrs(k), ỹrs(k)〉 (27)

where r̂(k|k + 1) is the projection of r(k) onto L{{ỹa(i, 1)}k−1
i=0 ; ỹ(k, 2), ỹ(k + 1, 2)}. By

using projection formulas, we have

y(0) = ỹ(0, 2)

r(0) = r̃(0) + r̂(0|1) = r̃(0) + Proj{r(0)|ỹ(0, 2), ỹ(1, 2)}
= r̃(0) + 〈r(0), ỹ(0, 2)〉R−1

ỹ (0, 2)ỹ(0, 2) + 〈r(0), ỹ(1, 2)〉R−1
ỹ (1, 2)ỹ(1, 2)

y(1) = ỹ(1, 2) + Proj{y(1)|y(0)} = ỹ(1, 2) + Proj{y(1)|ỹ(0, 2)}
= ỹ(1, 2) + 〈y(1), ỹ(0, 2)〉R−1

ỹ (0, 2)ỹ(0, 2)

r(1) = r̃(1) + r̂(1|2) = r̃(1) + Proj{r(1)|ỹa(0, 1); ỹ(1, 2), ỹ(2, 2)}
= r̃(1) + 〈r(1), ỹa(0, 1)〉R−1

ỹa
(0, 1)ỹa(0, 1) + 〈r(1), ỹ(1, 2)〉R−1

ỹ (1, 2)ỹ(1, 2)

+ 〈r(1), ỹ(2, 2)〉R−1
ỹ (2, 2)ỹ(2, 2)

...

y(i− 1) = ỹ(i− 1, 2) + ŷ(i− 1, 2)

= ỹ(i− 1, 2) + Proj{y(i− 1)|ỹa(0, 1), ỹa(1, 1), · · · , ỹa(i− 3, 1); ỹ(i− 2, 2)}

= ỹ(i− 1, 2) +
i−3∑
j=0

〈y(i− 1), ỹa(j, 1)〉R−1
ỹa
(j, 1)ỹa(j, 1)

+ 〈y(i− 1), ỹ(i− 2, 2)〉R−1
ỹ (i− 2, 2)ỹ(i− 2, 2)

r(i− 1) = r̃(i− 1) + r̂(i− 1|i)
= r̃(i− 1) + Proj{r(i− 1)|ỹa(0, 1), ỹa(1, 1), · · · , ỹa(i− 2, 1); ỹ(i− 1, 2), ỹ(i, 2)}

= r̃(i− 1) +
i−2∑
j=0

〈r(i− 1), ỹa(j)〉R−1
ỹa
(j, 1)ỹa(j, 1)

+ 〈r(i− 1), ỹ(i− 1, 2)〉R−1
ỹ (i− 1, 2)ỹ(i− 1, 2)
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+ 〈r(i− 1), ỹ(i, 2)〉R−1
ỹ (i, 2)ỹ(i, 2)

y(i) = ỹ(i, 2) + ŷ(i, 2)

= ỹ(i, 2) + Proj{y(i)|ỹa(0, 1), ỹa(1, 1), · · · , ỹa(i− 2, 1); ỹ(i− 1, 2)}

= ỹ(i, 2) +
i−2∑
j=0

〈y(i), ỹa(j, 1)〉R−1
ỹa
(j, 1)ỹa(j, 1)

+ 〈y(i), ỹ(i− 1, 2)〉R−1
ỹ (i− 1, 2)ỹ(i− 1, 2)

Let

ysk =
[
yT
s (0) yT

s (1) · · · yT
s (k)

]T
, Rysk

= diag(Rys(0), Rys(1), · · · , Rys(k))

ỹsk =
[
ỹT
rs(0) ỹT

rs(1) · · · ỹT
rs(k)

]T
, Rỹsk

= diag(Rỹrs(0), Rỹrs(1), · · · , Rỹrs(k))

It is easy to find

ysk = Φkỹsk (28)

where

Φk = Ψk


I 0 0 · · · 0

φk(2, 1) φk(2, 2) 0 · · · 0

φk(3, 1) φk(3, 2) φk(3, 3)
. . .

...
...

...
...

. . . 0
φk(k + 1, 1) φk(k + 1, 2) φk(k + 1, 3) · · · φk(k + 1, k + 1)

ΨT
k

Ψk = diag(I, ψ, · · · , ψ), ψ =

[
0 I
I 0

]
φk(i, i) =

[
I 0

〈r(i− 2), ỹ(i− 1, 2)〉R−1
ỹ (i− 1, 2) I

]
, i = 2, 3, · · · , k + 1

φk(i, 1) =

[
〈y(i− 1), ỹ(0, 2)〉R−1

ỹ (0, 2)
〈r(i− 2), ỹ(0, 2)〉R−1

ỹ (0, 2)

]
, i = 2, 3, · · · , k + 1

φk(i, j) =

[
〈y(i− 1), ỹ(j − 1, 2)〉R−1

ỹ (j − 1, 2) 〈y(j − 1, 2), r̃(j − 2)〉R−1
r̃ (j − 2)

〈r(i− 2), ỹ(j − 1, 2)〉R−1
ỹ (j − 1, 2) 〈r(i− 2), r̃(j − 2)〉R−1

r̃ (j − 2)

]
i = 3, 4, · · · , k + 1, j = 2, 3, · · · , i− 1

Thus, we have

Rysk
= ΦkRỹsk

ΦT
k (29)

which implies that Rysk
is equivalent to Rỹsk

. Therefore, Rys(k) and Rỹrs(k) have the
same inertia.

On the other hand, it is obvious from the definition of r̃(k) and the orthogonality that

r̃(k) ⊥ L{{ỹa(i, 1)}k−1
i=0 ; ỹ(k, 2), ỹ(k + 1, 2)}

Hence,

Rỹrs(k) =

[
〈ỹ(k, 2), ỹ(k, 2)〉 〈ỹ(k, 2), r̃(k)〉
〈r̃(k), ỹ(k, 2)〉 〈r̃(k), r̃(k)〉

]
= diag(Rỹ(k, 2), Rr̃(k)) (30)

for k ≤ N−1, Rỹrs(N, 2) = Rỹ(N, 2). This means that Rỹrs(k) is a block diagonal matrix.
According to Lemma 3.1, JN has a minimum if and only if Rys(k) and Qvs(k) have the

same inertia. In view of (15) and (30), the inertia of Rỹrs(k) and Qvs(k) coincide if and
only if Rỹ(k, 2) > 0 and Rr̃(k) < 0. This gives the following Theorem 3.1.
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Theorem 3.1. The JN subject to (8) and (17) has a minimum over {x0, fsN} if and only
if Rỹ(k, 2) > 0 and Rr̃(k) < 0.

Remark 3.2. Theorem 3.1 provides a sufficient and necessary condition for the existence
of the minimum of JN . In the next subsection, the calculation of Rỹ(k, 2) and Rr̃(k) will
be given by using an orthogonal projection in Krein space.

3.3. The recursive calculation of Rỹ(k,2) and Rr̃(k). Inspecting (20) and (21), it
is easy to see that

〈r(i), r(j)〉 = 0, 〈r(i),y(j)〉 = 0, ∀i > j

Thus, the projection of r(i) onto L{ỹa(j, 1)}i−1
j=0 can be calculated from

r̂(i, 1) = Proj
(
r(i)|L{ỹa(j)}i−1

j=0

)
= 0

Let e1(i) = x(i)− x̂(i, 1). It follows from (18), (19) and (23) that

ỹa(i, 1) = C̄(i)e1(i) + vs(i) + D̄fd(i)fs(i) (31)

Rỹa(i, 1) = C̄(i)P1(i)C̄
T (i) + D̄fd(i)D̄

T
fd(i) +Qvs(i) (32)

Then, the projection of x(i) onto L{ỹa(j, 1)}i−1
j=0 can be calculated by

x̂(i+ 1, 1) =Proj(x(i+ 1)|L{ỹa(j)}ij=0)

=Proj(x(i+ 1)|L{ỹa(j)}i−1
j=0) + Proj(x(i+ 1)|L{ỹa(i)})

=A(i)
i−1∑
j=0

〈x(i), ỹa(j, 1)〉R−1
ỹa
(j, 1)ỹa(j, 1) +B(i)u(i)

+ 〈x(i+ 1), ỹa(i, 1)〉R−1
ỹa
(i, 1)ỹa(i, 1)

=A(i)x̂(i, 1) +B(i)u(i) +K1(i)ỹa(i, 1)
x̂(0, 1) = 0

(33)

where

K1(i) = (A(i)P1(i)C̄
T (i) +Bsf (i)D̄

T
fd(i))R

−1
ỹa
(i, 1) (34)

P1(i+ 1) = A(i)P1(i)A
T (i) + Bsf (i)B

T
sf (i)−K1(i)Rỹa(i, 1)K

T
1 (i) (35)

P1(0) = P0 (36)

Likewise, define e2(i) = x(i)− x̂(i, 2). Applying to (18) and (24), we get

ỹ(i, 2) = C(i)e2(i) + v(i) +Dfd(i)fs(i) (37)

Rỹ(i, 2) = C(i)P2(i)C
T (i) +Dfd(i)D

T
fd(i) + I (38)

Let x̂(i, 2) = x̂(i, 1). Then the projection of x(i+1) onto L{{ỹa(j, 1)}i−1
j=0; ỹ(i, 2)}, i.e.,

x̂(i+ 1, 2), can be given by

x̂(i+ 1, 2) =
i−1∑
j=0

〈x(i+ 1), ỹa(j, 1)〉R−1
ỹa
(j, 1)ỹa(j, 1) +B(i)u(i)

+ 〈x(i+ 1), ỹ(i, 2)〉R−1
ỹ (i, 2)ỹ(i, 2)

= A(i)x̂(i, 2) +B(i)u(i) +K2(i)ỹ(i, 2) (39)
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where

K2(i) = (A(i)P2(i)C
T (i) +Bsf (i)D

T
fd(i))R

−1
ỹ (i, 2) (40)

P2(i) = A(i− 1)P2(i− 1)AT (i− 1) +Bsf (i− 1)BT
sf (i− 1)

−K2(i− 1)Rỹ(i− 1, 2)KT
2 (i− 1) (41)

P2(i− 1) = P1(i− 1) (42)

Furthermore, we obtain the projection of r(k) onto L{{ỹa(i)}k−1
i=0 ; ỹ(k, 2), ỹ(k + 1, 2)}

as follows:

r̂(k|k + 1) =
k−1∑
i=0

〈r(k), ỹa(i, 1)〉R−1
ỹa
(i, 1)ỹa(i, 1) + 〈r(k), ỹ(k, 2)〉R−1

ỹ (k, 2)ỹ(k, 2)

+ 〈r(k), ỹ(k + 1, 2)〉R−1
ỹ (k + 1, 2)ỹ(k + 1, 2)

= 〈r(k), ỹ(k, 2)〉R−1
ỹ (k, 2)ỹ(k, 2)

+ 〈r(k), ỹ(k + 1, 2)〉R−1
ỹ (k + 1, 2)ỹ(k + 1, 2)

= (Bsf (k)−K2(k)Dfd(k))
TCT (k + 1)R−1

ỹ (k + 1, 2)ỹ(k + 1, 2)

+DT
fd(k)R

−1
ỹ (k, 2)ỹ(k, 2) (43)

Hence,

Rr̃(k) = 〈r(k)− r̂(k|k + 1), r(k)− r̂(k|k + 1)〉
= 〈r(k), r(k)〉 − 〈r̂(k|k + 1), r̂(k|k + 1)〉
= (1− γ2)I −DT

fd(k)R
−1
ỹ (k, 2)Dfd(k)− (Bsf (k)−K2(k)Dfd(k))

T

×CT (k + 1)R−1
ỹ (k + 1, 2)C(k + 1)(Bsf (k)−K2(k)Dfd(k)) (44)

Now the calculation of Rỹ(k, 2) and Rr̃(k) can be summarized in Algorithm 1:
Step 1. Set P0 > 0, γ > 0 and ρ > 0;
Step 2. Calculate K1(i) and P1(i) (i = 0, 1, · · · , k − 1) using (34)-(36);
Step 3. Let P2(k − 1) = P1(k − 1). Update P2(k) using (41) with i = k; calculate

K2(k), P2(k + 1) using (40) and (41) with i = k, k + 1;
Step 4. Calculate Rỹ(k, 2) and Rỹ(k + 1, 2) using (38) with i = k, k + 1;
Step 5. Calculate Rr̃(k) using (44).

Remark 3.3. So far, we have obtained the recursions for computing Rỹ(k, 2), Rr̃(k) and
the way for checking the existence condition of the minimum of JN . In the next subsection,
a recursive state estimation and residual generation will be derived by choosing Hi(k)
(i = 1, 2, 3), V1(k) and V2(k + 1) such that min JN > 0.

3.4. A solution to the H∞-FDF. Suppose that x̂(i, 1) (i ≤ k−1), x̂(k, 2) and r̂(k|k+1)
are obtained from the Krein space projection formulas of x̂(i, 1) (i ≤ k − 1), x̂(k, 2) and
r̂(k|k + 1), respectively. Let

r̃(k) = r(k)− r̂(k|k + 1),

ỹ(k, 2) = y(k)− C(k)x̂(k, 2)−D(k)u(k),

ỹr(k) =

[
ỹ(k, 2)
r̃(k)

]
,

ỹrs(k) =

{
ỹr(k), k ≤ N − 1
ỹ(N, 2), k = N
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ỹsk =
[
ỹTrs(0) ỹTrs(1) · · · ỹTrs(k − 1) ỹT (k, 2)

]T
ysk =

[
yTs (0) yTs (1) · · · yTs (k − 1) yT (k)

]T
Similar to (28), it is easy to have ysk = Φkỹsk. Substituting into (22) and applying (29)

yields

min JN = yTsNR
−1
ysN

ysN = ỹTsNR
−1
ỹsN

ỹsN

=
N∑
k=0

ỹT (k)R−1
ỹ (k, 2)ỹ(k) +

N−1∑
k=0

r̃T (k)R−1
r̃ (k)r̃(k)

Choosing

H1(k) = K2(k),
[
H1(k) +H2(k) H3(k)

]
= K1(k) (45)

V1(k) = DT
fd(k)R

−1
ỹ (k, 2) (46)

V2(k + 1) = (Bsf (k)−K2(k)Dfd(k))
TCT (k + 1)R−1

ỹ (k + 1, 2) (47)

where K1(k), K2(k) and Rỹ(i, 2) (i = k, k + 1) are calculated by (34), (40) and (38),
respectively; it is easy to verify that

x̂(k) = x̂(k, 1), x̂(k + 1|k) = x̂(k + 1, 2) (48)

In view of (8), (43) and (48), we have r(k) = r̂(k|k + 1). Therefore,

min JN =
N∑
k=0

ỹT (k, 2)R−1
ỹ (k, 2)ỹ(k, 2) > 0 (49)

From the above analysis, we thus have the following result.

Theorem 3.2. Suppose that K1(i) (i ≤ k−1), K2(k), Rỹ(i, 2) (i = k, k+1) and Rr̃(k) are
respectively calculated by (34), (40), (38), (44). If Rỹ(i, 2) > 0, Rr̃(k) < 0 are satisfied,
then the FDF (8) with parameter matrices given by

H1(k) = K2(k) (50)

H2(i) = K1(i)

[
I
0

]
−K2(i) (51)

H3(i) = K1(i)

[
0
I

]
, i ≤ k − 1 (52)

V1(k) = DT
fd(k)R

−1
ỹ (k, 2) (53)

V2(k + 1) = (Bsf (k)−H1(k)Dfd(k))
TCT (k + 1)R−1

ỹ (k + 1, 2) (54)

is a robust H∞-FDF satisfying (7).

Having obtained a solution to the parameter matrices Hi(k) (i = 1, 2, 3), V1(k) and
V2(k + 1), one can get r(k) according to (8). Now the calculation of residual rf (k) is
summarized in Algorithm 2:
Step 1. Set k = 0, x̂(0) = 0;
Step 2. Calculate ε(k), x̂(k + 1|k), ε(k + 1|k) and r(k) in turn by (8);
Step 3. Calculate residual signal rf (k) by rf (k) =

[
I 0 0

]
r(k);

Step 4. Let k = k + 1, go to Step 2, till k = N .

Remark 3.4. As a summary of this section, we should like to say that the results of
robust FD for uncertain LDTV systems are new, but the used techniques in Krein space
are the same with [9, 25]. The major contribution of this paper is the consideration of
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the estimation and accommodation of model uncertainty, unknown input and fault in the
residual generation.

4. A Numerical Example. Consider system (1) with

A(k) =

 0.2e−
k

100 0.6 0
0 0.5 sin(k)
0 0 0.7

 ,
Bf (k) =

 0.2
1.8
0.3

 , Bd(k) =

 1.3
0.5
0.6


F1(k) =

[
0.1 0 0

]
, C(k) =

[
−0.5 1.5 0

]
, Df (k) = 2

E1(k) =
[
1 0 0.5

]T
, E2(k) = 1, u(k) = 0

In order to show the effectiveness of the proposed method, we first design a robust H∞-

FDF using Algorithm 1 and Theorem 3.2, i.e., the Case 1. Set x(0) =
[
1 −1 2

]T
,

P0 = I, γ = 0.85 and ρ = 0.1. Let v(k) = 0.1 cos(k), d(k) be uniformly distributed
random numbers between −0.5 and 0.5. We calculate rf (k) using Algorithm 2 for the
case of an impulse fault and sine wave fault, respectively. Figure 1 shows the fault and
the corresponding residual rf (k) for N = 100.

Moreover, it is easy to know from (7) that, for any chosen x0 and w(k) such that

xT0 P
−1
0 x0 +

∑N
k=0 ‖w(k)‖2 6= 0, the smaller Jvf (N) = ΣN−1

k=0 ||rf (k)− f(k)||2 is, the better
is the H∞-FDF performance. To show the influence of γ, the corresponding Jvf (N) of
unit impulse fault is calculated also for different γ, which is listed in the following Table
1.

In addition, the relationship between ρ and γ is also considered. The allowed minimal
value of γ is greater than 0.8, while the allowed maximal value of ρ is less than 1. Table
2 shows the corresponding maximal ρ for some different values of γ.

Table 1. The Jvf (N) for different γ

γ 0.85 0.95 1.05 1.15 1.25
Jvf (N) 3.3666 3.5257 3.6987 3.7813 3.8294

Table 2. The maximal ρ for different γ

γ 0.81 0.85 0.90 0.95 1.00
ρ 0.02 0.30 0.73 0.87 0.99
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Figure 1. Case 1: the impulse fault (left), sine wave fault (right) and
corresponding residual
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Figure 2. Case 2: the impulse fault (left), sine wave fault (right) and
corresponding residual
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Figure 3. The two cases Jvf (k) with the impulse fault (left) and the sine
wave fault (right)

To further show the improvement of residual performance compared with [25], we con-
sider ϕ(k) as unknown input, set γ = 0.85 and design H∞-FDF using the method of [25],
i.e., Case 2. The impulse fault, sine wave fault and the corresponding rf (k) of Case 2 are
shown in Figure 2, respectively. As a comparison with Case 1, the evolutions of the two
cases Jvf (k) are also presented in Figure 3. It can be seen that better performances are
achieved by applying the new developed robust H∞-FDF.

5. Conclusion. The problem of robust H∞ FD has been investigated for LDTV systems
subject to norm bounded model uncertainty. A modified observer-based FDF with the
estimation and accommodation of unknown input, fault and model uncertainty has been
proposed as a residual generator. It has been shown that the design of robust H∞-FDF
can be converted into a minimum problem of indefinite quadratic form and the minimum
problem can be solved by applying orthogonal projection and innovation analysis in Krein
space. A sufficient and necessary condition for the minimum has been derived and a
solution to the robustH∞-FDF has been given in terms of Riccati recursions. A numerical
example has been given to illustrate the effectiveness of the proposed method.
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