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Abstract. Development of computational systems that intelligently can solve problems
represents an important research direction. Many results described in the literature prove,
that the intelligence of a computational system can offer advantages in the problems solv-
ing versus a system that does not have intelligence. The adaptation is considered to be
an important property of many intelligent systems. Sometimes the adaptation is real-
ized by learning. In this paper, we propose a novel adaptive multiagent system called
ERMS (Extended Centralized Multiagent System with Cooperative Evolutionary Reorga-
nization Capacity), which uses an evolutionary learning technique in order to improve
the efficiency of the undertaken problems-solving. ERMS represents an extension of a
previously developed multiagent system called CCER (Centralized Multiagent System with
Cooperative Evolutionary Reorganization Capacity). The adaptivity of the ERMS multi-
agent system, consists in the capacity to reorganize its structure based on the information
available about the received problems for solving. The obtained results prove that a multi-
agent system successfully can use evolutionary algorithms to discover emergent patterns
of reorganization for the efficient solving of the undertaken problems. In case of com-
plex systems composed from a large number of interacting components, such emergent
behavior of the systems, if have as results improvements (i.e., autonomy, efficiency and
flexibility) in the problems solving it could be associated with intelligence.
Keywords: Multiagent system, Evolutionary algorithm, Genetic algorithm, Natural
computation, Adaptation, Evolutionary learning, Cooperative problem solving, Intelli-
gent agent, Emergence, Complex system, Evolutionary system

1. Introduction. “Intelligent” systems (usually agent-based) are used in many domains
of sciences. The development of the next generation intelligent systems (more intelligent
than the actually developed) is an important research direction. Highly intelligent sys-
tems will be inherently complex having many interacting components (sometimes hybrid
components) that require a very long time for their development. In the case of many
very complex systems all the necessary data, information and knowledge for their develop-
ment are obviously unavailable. Another aspect consists in the fact that it is necessary to
elaborate more consecutive versions. Even if an intelligent system has some autonomy in
increasing its intelligence sometimes by adaptation, there exists a point when the system
is unable to make other improvement by itself and it is necessary a human intervention
for the increasing of the system’s intelligence.

Intelligent agent-based systems represent one of the most important approaches used
for autonomous, efficient and flexible solving of difficult problems (tasks) and/or large
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numbers of simple problems in many domains [7, 20, 44]. The main motivation consists
in the properties of the agents that differentiate them from other computable systems.
Agent-based systems can be endowed with capacities that allow to intelligently process
computational hard (difficult/complex) problems [12, 19, 25]. There are many applications
of the intelligent agents in many domains, including health care [18, 26, 32, 33, 34],
which extend traditional developments. Recent implementations include applications,
like telehealth [43], analysis of spread simulation of infectious disease [46], web-enabled
healthcare computing [8], patients monitoring [17], patients management [30, 31], medical
diagnosis [44] and ubiquitous healthcare [29].
In this paper, an adaptive multiagent system called ERMS (Extended Centralized Multi-

agent System with Cooperative Evolutionary Reorganization Capacity) is proposed. ERMS
represents an extension, in order to operate in case of larger numbers of agents, of the
CCER multiagent system (Centralized Multiagent System with Cooperative Evolution-
ary Reorganization Capacity) developed during our previous researches [23]. The results
obtained during the development of CCER and ERMS multiagent systems prove that
evolutionary learning algorithms can be successfully used by multiagent systems to estab-
lish how to adapt a more efficient problem-solving strategy when the emergent patterns
of reorganization of the systems’ structure can be discovered.
The upcoming part of the paper is organized as follows. Section 2 analyzes some aspects

related with the intelligent adaptive systems. In Section 3 the novel adaptive multiagent
system called ERMS is described – the evolutionary learning algorithm used by the ERMS
system in order to learn different reorganizations is presented. At the end of Section 3
the correctness and efficiency in operation of the ERMS system is analyzed. In Section
4, ERMS System Intelligence is considered. In Section 5, the conclusions of the research
are presented.

2. Intelligent Adaptive Systems. Many difficult problems solving require a specific
sort of computational intelligence (capacities to intelligently handle the difficulties of the
problems-solving) [12, 45]. In general a problem is considered difficult (computational
hard) based on considerations such as the solving requires a large amount of resources
(some times distributed resources); the solving requires a large quantity of problem solv-
ing knowledge (some times distributed knowledge); the solving requires a large variety of
problem solving knowledge; the problem description contains different types of uncertain-
ties (missing or erroneous data), etc. Intelligent agents must precisely and flexibly handle
the solving of difficult problems or solving large amounts of difficult or simple problems.
Cooperative agents can form multiagent systems, in that they can collaborate during the
problems solving in order to make easier their solving and to improve the accuracy of the
obtained problems solutions [12, 19, 20, 45, 47].
Many times it is difficult or even impossible to endow an agent with the necessary

knowledge at the moment of its creation. Motivations may consist in considerations,
like: some information initially is not known and/or some information are changing in
time. These reasons motivate the necessity of endowment of the agents with autonomous
learning capability [12, 19]. The purpose of learning consists in improvements in the
efficiency and accuracy of the problems-solving.
In literature there are many adaptive multiagent systems [3, 4, 9, 10, 11, 15, 16, 23, 27,

28, 38, 39]. The adaptation many times is realized by leaning. One type of adaptation
of a multiagent system consists in the reorganization of the problem-solving resources, in
order to solve more efficiently the undertaken problems [10, 11, 23]. In a multiagent system
the agents members of the system are called problem-solving resources (the agents solve
the undertaken problems by the system) [10, 11]. An agent uses different resources (i.e.,
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processing power, memory) during its life cycle for the problems solving. The significance
of adaptability of the multiagent systems described in the papers [10, 11] is to allocate
the resources that are necessary for the problems-solving. The adaptation in a multiagent
system is realized at the system’s level.

The papers [3, 15, 28] present some adaptive multiagent systems that efficiently use
the available resources in the problems-solving process. In order to satisfy either the
surplus or lack of resources, the presented multiagent systems self-organize depending on
the necessities. The agents are endowed with capacity of decomposition and composition.
The decomposition represents the capacity of an agent to create an identical copy with
itself. The copy of an agent can solve the same set of problems like the initial agent
(has the same problem-solving specializations). By composition, two agents are combined
to become one in order to free computational resources. An agent obtained as a result
of the composition of more agents has all the specializations of the agents used in the
composition.

TRACE [10, 11] is an adaptive multiagent system, formed from coalitions of agents.
The adaptability of the TRACE system consists in the capacity of each coalition to buy or
sell resources (agents). Within the frame of the TRACE multiagent system, the resources
are distributed in coalitions. The distribution is realized, depending on the necessities
or on the surplus of resources within each of the coalitions. A coalition desires to buy
resources, if it does not detain all the necessary resources for solving of problems. A
coalition can sell resources if it does not need all the resources.

3. ERMS Multiagent System Description.

3.1. Previous researches. CCER is an adaptive coalition-based multiagent system de-
veloped during our previous researches [23]. The adaptability of the system consists in
the capacity to reorganize its structure depending on the received problems for solving.
For the establishment of the reorganization an evolutionary learning algorithm is used.
For the problems allocation for solving, a novel allocation protocol is used that represents
an adaptation of a centralized problem allocation protocol as described in [12, 45].

The main advantage of the CCER multiagent system consists in the capacity to adapt
its structure in order to solve more efficiently the undertaken problems. Simulation results
show the increased efficiency of the CCER multiagent system when larger numbers of
problems are transmitted for solving [23]. CCER system can reorganize its structure
at the beginning of a problems solving cycle if some specific information, called problems
pattern about the problems transmitted for solving exist. A problems solving cycle begins
at the undertaking of a set of problems, and is finished when all the problems are solved.
The establishment of reorganization requires a polynomial complexity search in a rule
base. Thus, in the verification of the preconditions of some rules from the rule base, the
identified rule is fired, neglecting the rest of the rules.

3.2. ERMS multiagent system architecture. Each agent member of an intelligent
cooperative multiagent system must have a role. A role defines the manner in which
the agents who undertake that role contribute to the problems solving in the multiagent
system [12, 19]. An agent who undertakes a role must have a set of specializations and
necessary resources which allows to the agent to fulfill its role. A multiagent system
architecture specifies different generic information [12, 45] (i.e., existent roles, relations
between the roles, organization of the agents, specific cooperative problems solving meth-
ods used in the frame of the system, etc.) about the multiagent systems endowed with
that architecture. The information that must describe a multiagent system architecture
depends on conditions, like: complexity of the system, number of member agents, the
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problems that have to be solved, the cooperative problem solving methods that can be
used by the multiagent system, etc.
In the following, we propose a novel multiagent system architecture called ERMS (Ex-

tended Centralized Multiagent System with Cooperative Evolutionary Reorganization Ca-
pacity). We call ERMS a multiagent system with the ERMS architecture. The proposed
architecture defines: a partially centralized multiagent system organization; a specific
adaptation based on the reorganization of the system; a specific evolutionary learning al-
gorithm; a specific cooperative problems-solving and the roles that can be undertaken by
the agents. We call a problems pattern the description, values of different parameters re-
lated to a set of problems transmitted for solving, which may consists in information, like:
what type of problems are transmitted for solving, the number of problems transmitted
for solving.
In an ERMS multiagent system there are defined the following roles (see Figure 1): by

centralized problem allocation for solving denoted supervisor ; by problem-solving denoted
contractor ; by cooperative problem-solving (problem solving and local problem allocation
for solving) denoted manager. An agent who undertakes the contractor role during the
fulfilling of the role will solve problems. An agent who undertakes the manager role
during the fulfilling of the role will solve problems and allocate problems for solving to
some agents members of the system. An agent who undertakes the supervisor role during
its life cycle will allocate problems for solving to other agents. In the multiagent system
there is only one agent with supervisor role. The agent initially established with the
supervisor role is not changing its role during the multiagent system’s life cycle.

Roles

Contractor Role Manager Role Supervisor Role 

Problem Solving Problem Allocation  Cooperative Problem 

Solving

Problem allocation Problem Solving 

Figure 1. The roles in the ERMS multiagent system

An ERMS multiagent system at a problems-solving cycle is composed from a set Ms
(1) of agents, each of them having as unique identifier a natural number that is not
changed during its life cycle. Each agent, except the supervisor, is associated one of
the following abbreviations: “Ct” for contractor agents (for example, the notation Cti
has as meaning the agent with the identifier i has contractor role), “Mg” for manager
agents (for example, the notation Mgj has as meaning the agent with the identifier j has
manager role) and “Fr” for free agents (for example, the notation Frk has as meaning the
agent with the identifier k has contractor role and it operates as free agent) that illustrate
the specific of the agents contribution to the problems-solving. The agents, except the
supervisor, can change their role during the system’s operation. For example, an agent at
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a problems-solving cycle may operate as contractor and at another problem solving cycle
as manager.

Ms = Co ∪ {Su} ∪ Fr. (1)

Fr denotes a set of agents called free agents. A free agent Frh (Frh ∈ Fr, ID(Frh) =
h) has contractor role, Role(Frh) = contractor. A free agent does not belong to any
coalition. Su is the agent with the supervisor role, Role(Su) = supervisor. Co represents
the set of coalitions of agents.

A coalition of agents is composed from one or more agents with manager role and usu-
ally more agents with contractor role. In a coalition of agents each agent with contractor
role is subordinated to a single agent with manager role. Figure 2 presents a coalition
of agents denoted Coq. Mgb (Mgb ∈ Coq, role(Mgb) = manager, ID(Mgb) = b) and
Mgc (Mgc ∈ Coq, role(Mgc) = manager, ID(Mgc) = c) represent the managers of the
coalition. Ct1, Ct2, . . . , Ctx ({Ct1, Ct2, . . . , Ctx} ⊂ Coq) represent the contractors subor-
dinated to Mgb. Cta, Ctb, . . . , Ctm ({Cta, Ctb, . . . , Ctm} ⊂ Coq) represent the contractors
subordinated to Mgc. Pf , . . . , Pv represent the problems that must be solved by Mgb and
the subordinated agents. Pg, . . . , Pz represent the problems that must be solved by Mgc
and its subordinated agents. The dashed arrows between the agents used in Figure 2,
illustrate the communication and cooperation links between the agents. ta indicates a
link by cooperation type (problem allocation for solving) between the agents.

ta

Ctx

Ct2

Mgb

Ct1

EnvironmentP2

P3P4

Pv

ta ta

ta

Mgc

Cta

Ctz

Ctm

Pv

Pz

ta

ta

Figure 2. A coalition Coq of agents in the ERMS system

Figure 3 presents an ERMS multiagent system at a problems solving cycle, composed
from the disjointed coalitions Co = {Co1, Co2, . . . , Con} (∀i 6= k, Coi ∈ Co,Cok ∈
Co,Coi∩Cok = ∅), the supervisor agent Su and the free agents Fr={Fr1, F r2, . . . , F rm}.
P = {P1, P2, . . . , Py} represents the problems transmitted for solving to Su. The dashed
arrows used in Figure 3 illustrate the cooperation links in the multiagent system. tb
indicates a link by cooperation type between the supervisor agent and a free agent. tc
indicates a links by cooperation type between the supervisor agent and a coalition of
agents.

An agent Ctk with contractor role (role(Ctk) = contractor, ID(Ctk) = k) is endowed
with a specialization set Spec(Ctk) = {S1, S2, . . . , Sr}, which allows the solving of prob-
lems from a set Cl = {Cl1, Cl2, . . . , Clr} of classes of problems; where Si represents
the specialization necessary for solving of the problems from the class Cli of problems
(∀i = 1, r, Si → Cli).

An agent Mgk with manager role (role(Mgk) = manager, ID(Mgk) = k) is endowed
with a specialization set Spec(Mgk) = {S1, S2, . . . , Sr} ∪ {A1, A2, . . . , Ae}. S1, S2, . . . , Sr
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Figure 3. ERMS multiagent system at a problems solving cycle

allows the solving of the problems from a set Cl = {Cl1, Cl2, . . . , Clr} of classes of prob-
lems; where Si represents the specialization necessary for solving of the problems from
the class Cli of problems. If Mgk is manager in the coalition Coy, then A1, A2, . . . , Ae

represent knowledge detained by Mgk about the subordinated contractor agents from
Coy.
As examples of information detained by a manager agent Mgm from a coalition Cou

(Mgm ∈ Cou; role(Mgm) = manager; ID(Mgm) = m), about the subordinated contrac-
tor agents, we mention: the number of contractor agents from Cou; the specializations of
each contractor agent; the information detained about the problems that are undertaken
for solving by each contractor agent.
Su detains information about the coalitions of agents and the free agents. As examples

of information detained by Su about a free agent Frp (role(Frp) = contractor, ID(Frp) =
p), we mention: Frp specializations and capacity; the problems that are currently solved
by Frp. As examples of information detained by Su about a coalition Cor (Cor ∈ Co),
we mention: the number of member agents of Cor; the capacity of the contractor agents
members of Cor; the problems that are currently solved by Cor. The problems are
transmitted for solving to Cor by Su. Each manager from Cor transmits the obtained
problems solutions to Su. However, Su knows when in the Cor coalition is finished an
undertaken problem-solving.

3.3. The ERMS system operation. The ERMS multiagent system represents an ex-
tension of the CCER multiagent system [23]. One of the improvements consists in the use
of coalitions with more manager agents, each of them with a set of subordinated contrac-
tor agents. This improvement was realized in order to eliminate the excessive centralized
architecture of the CCER multiagent system. The centralization in a large-scale multi-
agent system may be a bottleneck in the operation of the system. Another adaptation
consists in the use of genetic problem solving specializations (problem solving methods
based on genetic algorithms).
Figure 4 illustrates a single problem-solving cycle in the ERMS multiagent system. A Ph

problem-solving begins at its undertaking and is finished when its solution Soh is obtained.
Frv (Frv ∈ Fr, role(Frv) = contractor, ID(Frv) = v) represents a free agent. Coa
(Coa ∈ Co) represents a coalition of agents. Mgy (Mgy ∈ Coa, role(Mgy) = manager,
ID(Mgy) = y) a manager in Coa. Cts (Cts ∈ Co, role(Cts) = contractor, ID(Cts) = s)
is a contractor agent in Coa subordinated to Mgy.
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Figure 4. A problem’s solving cycle in the ERMS multiagent system

In the ERMS multiagent system, each coalition and free agent can solve problems
transmitted for solving by the supervisor agent. In a coalition, each transmitted problem
is received by a manager from the coalition. In the case of a received problem, the
manager agent will solve the problem or will transmit it for solving to a subordinated
contractor agent. The manager agents from the coalitions are responsible for the problems
solutions undertaking from the subordinated contractor agents and their transmission to
the supervisor agent.

A problem denoted Ph transmitted for solving has the description Desch (2).

Desch : 〈senderh, fh, typeh, priorityh, Sq〉. (2)

In (2) there are used the following notations: senderh specifies the sender of Ph; typeh
represents the type (minimization or maximization) of Ph; fh represents the objective
function that must be minimized or maximized; priorityh represents the priority of the
problem; Sq represents the specification of the specialization to be used for the problem-
solving. It is always solved a maximization problem, a received minimization problem is
transformed into a maximization one.

To a specialization Sq is associated a set of parameters called prq (3) having an associ-
ated identifier inq.

(prq, inq) : 〈seq, oiq, omq, cdq, lnq, ncq, nq, pcq, pmq〉. (3)

seq specifies the used selection operator (for example, is used the Monte Carlo linear
selection method, seq=“Monte Carlo”). cdq describes the encoding of the genes from the
chromosomes (for example, the genes are binary encoded, cdq ∈ {0, 1}). lnq represents
the length of the chromosomes (for example, lnq = 20 denotes chromosomes composed
from 20 genes). Each chromosome obtained during a problem-solving process has the
same length. ncq represents the number of chromosomes from a generation (for example,
ncq = 50). Each generation has the same number of chromosomes. nq represents the
number of the created generations of chromosomes during a problem-solving. oiq specifies
the used crossover operator (with a single crossover point, for example). omq specifies
the used mutation operator. pcq represents the probability of crossover. pmq specifies the
probability of mutation.
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In (4) is presented a genetic problem solving specialization denoted Sq.

(Sq, idq) : 〈inq, outq, typeq,methodq〉. (4)

In (4) there are used the following notations: Sq specifies how the specialization is called
(to each specialization is associated a name); idq denotes Sq identifier; inq denotes the
identifier associated to the input parameters for Sq; outq denotes the output parameter
for the Sq specialization (the problem solution obtained after its solving); typeq represents
the type minimization or maximization; methodq contains the description of the problem-
solving method. A specialization is defined by a problem-solving method, the problem
type and the input parameter values with that are initialized the parameters of the genetic
algorithm.
An agent with contractor role receives problems specified in the form (2). The agent

based on the problem description establishes the necessary problem-solving specialization
by the form (4). The result obtained after the running of the genetic method described
in the specialization represents the problem solution. The solving of a problem using
a genetic algorithm does not supposes the interpretation of a syntactically described
code. However, it does not decreased the problem-solving time. The manager agents can
solve problems like the contractor agents. A manager agent must have specializations,
which allows problems allocation for solving to contractor agents. A manager agent must
distribute a problem to a contractor agent if it does not have the necessary capacity to
solve the problem.
A problem-solving specialization does not represent a code difficult to use in the probl-

ems-solving. The form (4) can be adapted for problems solving using different problem
solving methods based on evolutionary algorithms (evolutionary programming, genetic
programming, evolutionary strategies, etc.).

3.4. The adaptivity of the ERMS multiagent system. In the following, we con-
sider an ERMS multiagent system, denoted ASE. The problems transmitted for solv-
ing at a problems-solving cycle may match a problems pattern. A problems pattern de-
scribes different information related with the transmitted problems for solving. Formula
(5) presents the general form of a problems pattern denoted Pati specified by the spe-
cializations denoted S1, S2, . . . , Sn used in the problems-solving; numbers of problems
denoted nr1, nr2, . . . , nrn by each specialization and the associated priorities denoted
priority1, priority2, . . . , priorityn.

Pati : 〈S1, nr1, priority1;S2, nr2, priority2; . . . ;Sn, nrn, priorityn〉 (5)

ASE system reorganization is described by a set Rl (6) of rules detained by Su in a
rule base.

Rl = {Rl1, Rl2, . . . , Rlk}. (6)

An Rli (Rli ∈ Rl) rule has the form (7).

(Rli, Idi) : 〈Pati〉 → 〈Insti〉. (7)

Idi represents the Rli rule identifier (each rule has as identifier a unique natural number).
Pati represents a problems pattern. Insti defines an instance of the ERMS multiagent
system architecture, distribution of the agents in coalitions and allocation of roles to the
agents.
ASE system can reorganize autonomously its structure at the beginning of each probl-

ems-solving cycle, if the problems pattern is known at the beginning of the problems-
solving cycle, and Su has a rule in its rule base whose precondition matches the prob-
lems pattern. A reorganization determination implies a search by Su in its set Rl =
{Rl1, Rl2, . . . , Rlk} (6) of rules. The rule whose precondition matches the known problems
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pattern is selected. The postcondition of the selected rule defines the new instantiation
of the ASE system. Su, after establish the multiagent system instance, announces each
agent to which coalition must migrate and what role must undertake or must operate as
a free agent. Each agent will migrate autonomously into the coalition which must belong
or will operate as a free agent. The determination of a new instance of the ASE system
has a polynomial complexity.

Fundamental aspects of the evolutionary algorithms has been analyzed by many authors
[1, 5, 13, 20]. Evolutionary learning techniques that are based on methods of evolutionary
computation [23, 24], represent a subclass of learning techniques [12, 19]. In the fol-
lowing, an evolutionary learning algorithm called Evolutionary Reorganization Learning,
which allows the construction of a rule by the form (7), denoted Rli is described. Each
rule detained by Su will be created using the learning algorithm. ASE system has no+1
member agents (a supervisor agent and no agents that can operate in the frame of the
coalitions undertake contractor or manager roles or can operate as free agents with con-
tractor role). Each agent, except the supervisor agents is attached a unique identifier (in
the system does not exists two agents with the same identifier).

Algorithm – Evolutionary Reorganization Learning

{In: Pati – a problems pattern}
{Out: Rli – the constructed rule}
Step 1. The creation of the initial generation of chromosomes.

t = 1.

@Initialize the chromosome population P (t).

Step 2. Search for the best-fitted instantiation of the ASE architecture.

While (t ≤ gen) do

@Create a copy Cry of the best-fitted chromosome from P (t).

@Select chromosomes from P (t) using a selection method. Choose chromosomes from
P (t) to enter in the mating pool mp. Let P1 be the selected chromosomes.

@Using the rc crossover operator applied with the probability pr recombine the
chromosomes in mp forming the population P2.

@Mutate the chromosomes in P2 using the operator mc, with the probability pm.

@Replace in P2 the worst-fitted chromosome with Cry. Let P2 be the obtained
population of chromosomes.

t = t+ 1.

P (t) = P2 (the new generation of chromosomes is constructed).

EndWhile.

Step 4. Construction of the rule that describes the ASE system’s organization.

@Select the best-fitted chromosome Cry from P (t).

@Generate a unique rule identifier denoted Idi.

@Based on the selected chromosome Cry construct the Rli rule.

(Rli, Idi) : 〈Pati〉 → 〈Insti〉.
EndEvolutionaryReorganizationLearning.
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gen, n, pm, pr, no are parameters of the algorithm. gen represents the number of gener-
ations of chromosomes constructed during a learning process. Let us denote with P (t) the
t ’th generation of chromosomes. In P (1) each chromosome is generated by random. Each
generation has the same number n of chromosomes. Each chromosome has no genes. A
chromosome Crw = [G1, G2, . . ., Gno] specifies an instance of the ASE architecture.
Except Su, to each agent Agj (ID(Agj) = j) a gene Gj = (vj[1], tj[2], wj[3]) corresponds

in each chromosome. The first layer parameter value vj from the gene Gj specifies the
affiliation of Agj to the coalition with the identifier vj. Each coalition is identified with a
natural number vk, where vk ∈ [1, no]. All the agents with the same value vk associated
to their corresponding gene are members of the same coalition, the coalition with the
identifier vk. A gene that has a value different from all other genes’ value means that
the corresponding agent to the gene is a free agent. The second layer value tj (tj ∈ T ,
where T = {′m′,′ c′}) from the gene Gj specifies the role of the Agj agent. If tj =′ m′

then role(Agj) = manager. If tj =
′ c′ then role(Agj) = contractor. If tj =

′ c′ and Agj is
not a free agent, then wj value specifies the identifier of the manager agent from the same
coalition to who will be subordinated Agj. A free agent, denoted Agj, has contractor role
(role(Agj) = contractor, tj =′ c′) and wj = 0 (does not subordinated to any manager
agent). An offspring generation is created using specific selection, crossover and mutation
operators.
By mutation, denoted mc, are generated new chromosomes by small variations of the

genes’ values in the chromosomes. We define mc as an application by the form (8). Cr
specifies the chromosome space.

mc : Cr → Cr. (8)

The mutation is applied on each layer of each gene Gj = (vj[1], tj[2], wj[3]) from each
chromosome with the probability pm, pm = {pmv, pmt}, where pmv, pmt, are the corre-
sponding probabilities to the mutation of vj and tj. pmt represents the probability to be
created a contractor agent that will operate in the frame of a coalition. 1−pmt represents
the probability to be created a manager agent, where pmt > 1 − pmt. By mutation, the
vj value may increase or decrease, the new value of vj must be between 1 and no.
If vj specifies that the agent is a free agent then there is not applied the mutation to

the rest of the layers. tj is set to
′c′ (tj =

′ c′ – the agent will operate as having contractor
role) and wj is set to 0 (wj = 0 – the agent is not subordinated to any manager agent).
If vj does not specify a free agent then there is applied the mutation to the second layer

tj that could change its value, the new value of tj must be in the set T = {′m′,′ c′}, where
tj ∈ T . If tj =

′m′ then wj value is set to 0. If tj =
′c′ then is randomly generated one of

the identifiers of manager agents from the same coalition and the identifier is set to wj.
In case of each coalition is verified if all the managers of the coalition have subordinated

contractor agents. The role of a manager that does not have subordinated contractor
agents is changed into contractor and the agent is subordinated randomly to a manager
agent from the same coalition that have at least on other contractor.

The crossover rc is used to create new chromosomes by combining the genetic informa-
tion of parent chromosomes. We define rc as an application by the form (9).

rc : Cr2 → Cr2. (9)

rc realizes a (2, 2) transformation, two parents are combined to obtain two offspring.
rc is applied with the probability {pr; {prv, prt, prw}}; where pr represents the probability
of the chromosomes to be selected for inclusion in the mating pool, prv, prt, prw represent
probabilities to crossover the layers 1, 2 and 3 in the chromosomes. During the crossover
of two chromosomes there are recombined the values of the genes from the same layer: [1]
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for the vi values (that specify the agents membership to coalitions); [2] for the ti values
(that specify the agents roles) and [3] for the wi values (if an agent is contractor then wi

specify its manager agent to who the contractor agent is subordinated).
Each chromosome of a population is evaluated using a real-valued fitness function Fit

by the form (10), where ∀Crb ∈ Cr, F it(Crb) ≥ 0, which counts how efficiently the
multiagent system with the structure specified by the chromosome Crb can solve the
undertaken problems at a problems-solving cycle.

Fit : Cr → R+. (10)

A chromosome’s fitness is evaluated simulating the problems-solving that matches the
problems pattern. The efficiency of the problems-solving at a problems solving cycle, has
as meaning the problems solving time (all the undertaken problems at the beginning of
the problems-solving cycle are solved). Let Crh (Crh ∈ Cr) and Crk (Crk ∈ Cr) two
chromosomes. Fit(Crh) > Fit(Crk) means that Crh is best-fitted then Crk (it is solved
a maximization problem, an initially transmitted minimization problem is transformed to
a maximization one). The best-fitted chromosome Cry from the least generation P (gen)
specifies the postcondition of the constructed Rli rule.

For each gene Gj = (vj, tj, wj) from a chromosome Crw must be satisfied the following
validity restrictions:

A). Let vj = nrj, then nrj ∈ [1, no] and must have the values 1,. . . , nrj − 1 in the first
layer of the Crw chromosome;

B). Let tj = trj, then trj ∈ {′m′,′ c′};
C). Let wj = wrj. If trj =

′ c′ and nrj does not have a unique value (it does not specify
a free agent), then wrj must specify the identifier of a manager agent from the same
coalition (coalition with the identifier nrj) as the agent with the identifier j. If trj =

′ m′

then wrj = 0. If trj =
′ c′ and nrj has a unique value (specify a free agent), then wrj = 0.

D). Let tj = trj. If trj =
′ m′ then it must have at least one subordinated contractor

agent.
In the case of each invalid chromosome obtained during a learning process (are not

satisfied all the restrictions (A), (B), (C) and (D)) a transformation Trf (11) is applied
that corrects the invalid genes values.

Trf : Cr → Cr. (11)

The validity of each randomly generated chromosome from the initial generation is ver-
ified. In case of an invalid chromosome is applied the transformation Trf (11). During
a learning process, the validity of each newly obtained chromosome by applying the mu-
tation mc or crossover rc is verified. A chromosome is considered valid if it specifies a
correct multiagent system structure.

A survival mechanism based on the fitness measure Fit is applied to select the chromo-
somes of the new generation from the offspring and parent generations. In the Evolution-
ary Reorganization Learning algorithm two types of selections are used. The selection for
crossover operator is used to decide which members of the recent generation P (t) will be
used as parents of the new generation P (t+1). The selection for the replacement operator
is used to obtain, which chromosomes from P (t) and their offspring will effectively enter
in the new generation P (t+1). The best-fitted chromosome Crz from the last generation
P (gen) represents the solution (a valid multiagent system structure).

3.5. Correctness in operation of the ERMS system. During its operation for the
reorganization, the ERMS system uses a set of learned rules. All the rules are correct,
their postcondition specify correct reorganization of the ERMS system. The correctness
of the Evolutionary Reorganization Learning algorithm can be theoretically demonstrated.
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Each chromosome obtained during a learning process, represents a valid instantiation of
the ERMS multiagent system architecture. Only themc (8) mutation and rc (9) crossover
operators can modify the genes values from the chromosomes. A transformation Trf (11)
is applied to each obtained invalid chromosome. However, at the end of each learning
process a correct multiagent system instantiation is obtained. In every new generation,
the best-fitted chromosome from the previous generation is transferred, which guarantees
that the best multiagent system instantiation is not lost during the learning process.
The ERMS system can reorganize its coalitions at the beginning of each problems-

solving cycle, if there is known at the beginning of the problems-solving cycle the problems
pattern and there is a rule whose precondition match that pattern. In case of selection
of a rule at the beginning of a problems pattern, the postcondition of that rule specifies
the necessary correct reorganization of the system. If it is not matched any rule at the
beginning of a problems solving cycle then the system remains with the previous structure.
For the validation of the ERMS multiagent system, there have been realized experimen-

tal simulations for the learning processes and the testing of the system’s operation with
some learned rules by sending to the system problems at the beginning of problem-solving
cycles with known and unknown pattern. The simulations purposes were to establish the
measure in that the distribution of agents in coalitions and allocation of roles to the
agents, influences the efficiency of the problems-solving. During the simulations, they
used agents endowed between 1 and 16 problem-solving specializations (a specialization is
a problem-solving method where some parameters could be initialized during a problem-
solving). Requirements for an agent to solve a problem is to have the necessary role (role
that allows problems-solving), the necessary problem-solving specialization and resources.
We have simulated learning processes were generated at least gen = 57 generations

of chromosomes. The problems have been solved in problems-solving cycles. At each
problems-solving cycle the problems have been transmitted for solving at the beginning
of the cycle. In the case of each problems pattern, there have been realized 50 simula-
tions for the construction of the rule based on the problems pattern. The necessity to
run multiple times learning processes on the same data was because it has been used
an evolutionary learning technique (as in any heuristic search in the problem space run-
ning the same evolutionary algorithm on the same data with the same parameters many
converge to different solutions). The most appropriate parameters values used during
the simulations were: mutation probability pm = {pmv, pmt} = {0.0093, 0.8}; crossover
probability {pr; {prv, prt, prw}} = {0.09; {0.2, 0.3, 0.33}}. There were made experiments
for the following conditions: numbers of problems transmitted for solving (denoted prno):
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150; numbers of agents (denoted no):
10, 20, 25, 30, 35 and 40; chromosomes numbers (denoted n) in the generations (during
a learning process each generation having the same number of chromosomes): 20, 25, 30
and 35.
Figures 5-8 present the changing of the average problem-solving time (expressed in

ms milliseconds), from generation to generation (each generation where composed from
30 chromosomes), for the first 29 generations of chromosomes using 25 agents, and 57
generations of chromosomes using 20 agents for the construction of 3 rules.
Figure 5 presents the time decrease using no = 20 agents, for the construction of 3 rules,

based on 3 problems patterns, each of them composed from prno = 70 problems. The
using of the rules has an improvement (as time decrease) of ∼ 28% for Rla, ∼ 37% for Rlb,
and ∼ 25% for Rlc. By using no = 20 agents that solve prno = 70 problems arranged in
patterns the average improvement obtained during the simulations was approximatively
by 29%.
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Figure 6 presents the time decrease using no = 20 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 140 problems.
The using of the rules has an improvement of ∼ 20% for Rld, ∼ 23% for Rle, and ∼ 20%
for Rlf . By using no = 20 agents that solve prno = 140 problems arranged in patterns
the average improvement obtained during the simulations was approximatively by 22%.

Figure 7 presents the time decrease using no = 25 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 70 problems.
The using of the rules has an improvement of ∼ 30% for Rlg, ∼ 40% for Rlh, ∼ 20% for
Rli. By using no = 25 agents that solve prno = 70 problems arranged in patterns the
average improvement obtained during the simulations was approximatively by 31%.

Figure 8 presents the time decrease using no = 25 agents, for the construction of 3
rules, based on 3 problems patterns, each of them composed from prno = 140 problems.
The using of rules has an improvement of ∼ 21% for Rlj, ∼ 33% for Rlk, ∼ 19% for Rll.
By using no = 25 agents that solve prno = 140 problems arranged in patterns the average
improvement obtained during the simulations was approximatively by 24%.

During a problems-solving at a problems solving cycle there are always some costs
associated with the computation time. There is a cost for checking if the problems sent for
solving respects a known pattern (there is a rule in the rule base that has as precondition
the problems pattern which have been learned during a learning process). If the problems
do not respect any pattern then there is a cost without any improvement. If at the
beginning of a problems-solving cycle is verified a rule, then there is a cost for the checking
of the reorganization.

No.1 No.5 No.9 No.13 No.17 No.21 No.25 No.29 No.33 No.37 No.41 No.45 No.49 No.53 No.57

Rla 814.2 814 809.1 791.2 760.1 730.3 720.1 719 700.1 690.8 670.2 645.1 640 639.9 636.4

Rlb 981.7 966 940.1 910.4 899.7 830.5 821.3 809.2 799.1 795 791.9 750.6 734.5 723.1 716.5

Rlc 1051. 1007. 995 981.7 980.9 971 961.4 945.2 923.1 910.3 890.6 873.6 851.4 837 838.1
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Figure 5. Construction of the rules Rla, Rlb, Rlc, generations 1-57,
no = 20, prno = 70, n = 30

No.1 No.5 No.9 No.13 No.17 No.21 No.25 No.29 No.33 No.37 No.41 No.45 No.49 No.53 No.57

Rld 1809.5 1790.1 1760.3 1739.4 1719 1701.9 1680.6 1650 1645.3 1613.4 1590.7 1547.3 1523.2 1510.2 1507.9

Rle 1963.5 1940.2 1890.1 1845 1795.3 1740.6 1701.5 1690.3 1640.6 1630.2 1619.7 1610.9 1601 1590.2 1589.9

Rlf 2103.5 1997.2 1940.3 1907.7 1870 1860 1845.5 1813.6 1790.3 1795.7 1780.9 1770.5 1750.4 1751.3 1752.9
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Figure 6. Construction of the rules Rld, Rle, Rlf , generations 1-57,
no = 20, prno = 140, n = 30
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No.1 No.3 No.5 No.7 No.9 No.11 No.13 No.15 No.17 No.19 No.21 No.23 No.25 No.27 No.29

Rlg 723.8 720.1 712 709.3 682 675.1 670.2 650.5 640 610.5 600.1 590.3 561.8 557 556.7

Rlh 785.4 780.1 760.3 741.7 701 692.7 650.7 610.4 609.1 600.5 581.7 570.2 569.6 566 561

Rli 841.4 839.9 810.2 803.6 791.2 783.9 777.6 769.2 752.9 731.9 720.6 710 707 705.7 701.1
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Figure 7. Construction of the rules Rlg, Rlh, Rli, generations 1-29,
no = 25, prno = 70, n = 30

No.1 No.3 No.5 No.7 No.9 No.11 No.13 No.15 No.17 No.19 No.21 No.23 No.25 No.27 No.29

Rlj 1447.6 1400.3 1395 1380.7 1350.1 1330.3 1310.1 1295.1 1280.2 1271.1 1209.1 1199.4 1198.6 1199.2 1196.3

Rlk 1570.8 1560.2 1551.1 1329.2 1311.8 1312.3 1300.2 1295.1 1296.7 1280.2 1190.7 1187.4 1187.7 1180.2 1181

Rll 1682.8 1680.7 1609.4 1595.7 1560.4 1549.3 1517.4 1523 1512.9 1511.4 1510.9 1509.1 1499.7 1480.2 1414.1
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Figure 8. Construction of the rules Rlj, Rlk, Rll, generations 1-29,
no = 25, prno = 140, n = 30

The testing of the system was realized using 25 agents (rules constructed for a system
composed from 25 agents) by sending to it 60% known and 40% unknown problems pat-
terns. The results of simulations show an average improvement of about 19.14% decrease
in the solving time when the system reorganizes its structure versus the system does not
(the average decrease of the solving time was 23.24%, with 4.1% reorganization costs).
The optimal number of parameters related to the number of agents was 25. The most
appropriate number of chromosomes in the simulation settings was 30. A smaller number
of chromosomes have increased the number of necessary generations, increasing the total
learning time. A larger number of chromosomes have not increased the convergence time,
and after 29 and 57 generations it does not have significant improvement.

4. Considerations Related with the Intelligence – ERMS System Intelligence.
In numerous studies are given definitions and hypotheses related with different types of
biological intelligence, like human intelligence [14, 36, 37, 40], animal intelligence [2] and
plant intelligence [41, 42]. Based on some recent studies [2, 14, 36, 37, 40, 41, 42], we
can conclude that the biological intelligence in general, human intelligence particularly
could not be defined unequally because it is not completely understandable. Some of
the difficulties in its understanding consist in aspects like the biological complexity and
variety. Human intelligence cannot be defined but may be measured from different points
of view. The psychometric approach is by far the most widely used in practical settings
for measurement of the human intelligence [36].
The humans have attained the actual level of intelligence during a very long evolution.

As long as the intelligence of the humans and computational systems are completely
different, they cannot be directly compared; therefore, the intelligence must be evaluated
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based on different considerations. In many researches the biological intelligence represents
a source of inspiration for the development of intelligent systems.

We consider the “intelligence” a property (or a set of properties) of a system (usually an
agent) that emerges in some improvements in the problems-solving, many times consist-
ing in increased autonomy, precision and flexibility of the problems-solving. Commonly
the computational systems intelligence is considered just based on some properties, like
capacity to: learn, adapt, evolve etc. Such considerations as they are only specified could
not be considered rigorous for a system’s intelligence assessment.

An agent must have only the necessary intelligence. Sometimes, unnecessary intelli-
gence, usually in the case of solving very simple problems, may decrease the efficiency of
the problems-solving. Usually, an intelligent agent makes some computations during the
problems-solving that improves the efficiency and flexibility of difficult problems-solving.
But such computations, in case of simple problems, became unnecessary and time con-
suming. The establishment of the necessary intelligence for an agent is an important
aspect that must be analyzed at its development cycle.

For illustrative purposes, we consider as example the assessment of a system’s intelli-
gence based on the capacity to learn knowledge that allows new problems-solving. There
are different aspects that must be taken into consideration at the evaluation of the intel-
ligence:

• The learning time. The system can learn on-line or off-line;
• The quantity of learned knowledge. The system can learn more or less knowledge;
• The accuracy/quality of learned knowledge. The learned knowledge could be more
or less accurate;

• The usefulness of the learned knowledge. The learned knowledge could be more or
less useful. It could happen that the system will not use the learned knowledge;

• The consumption of computational resources during the learning. The learning could
require more or less computational resources (could be more or less time consuming);

• The consumption of computational resources during the problems-solving. The use
of the learned knowledge may require more or less computational resources. We may
consider for example an extremely intelligent system that uses numerous resources
for solving of a simple problem making useless computations.

Our consideration is that even if it is not possible to give a unified definition for the
intelligence of a system in general, for the evaluation of a system’s intelligence we consider
necessary the following aspects to be established:

1. existence of one or more properties based on which the system could be consid-
ered intelligent. The intelligence is manifested by evolution (the system evolve au-
tonomously), for example.

2. elaboration of a metric that allows the measurement of the intelligence (allows a
quantitative evaluation of quality). The metric must indicate the existence of the
intelligence. Sometimes it is better to indicate a degree of intelligence, like: no
intelligence, limited intelligence, normal intelligence, increased intelligence, extreme
intelligence.

A metric (general evaluator) that allows the measurement of the intelligence of a system
must take into consideration aspects, related with the:

• specific and type of the system. For example, the system is a: static software agent ;
mobile software agent ; mobile robotic agent ; static robotic agent.

• specific, number and complexity of the problems that must be solved by the system.
Usually a difficult problem solving requires more intelligence. Different types of
problems could require different type of intelligence for their solving.
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• the autonomy of the system in attaining the intelligence;
• the necessary cost and duration for attaining of intelligence;
• the measurable improvements that emerge based on the detained intelligence;
• measurable time in that the use of intelligence has as result improvements.

5. Conclusions. The main purpose of our research was a study of the intelligence that
emerges in an adaptive system composed from relatively simple cooperating agents. We
have proposed a multiagent system called ERMS capable of solving relatively large num-
bers of problems using genetic algorithms. Many real life problems-solving require the
use of genetic algorithms or combinations of them with other methods [1, 5, 6, 13, 20].
Moreover, in the papers [21, 22] is described a novel class of mobile software agents
called ICMAE (Intelligent Cooperative Mobile Agents with Evolutionary Problem Solving
Specialization), that uses problem-solving specializations based on evolutionary problem-
solving techniques.
The properties of the ERMS system that could be associated with the intelligence

consist in the adaptability of the system, manifested by its capacity to autonomously
reorganize its structure. The system is able to autonomously learn, using an evolution-
ary learning technique, how to adapt its structure. As a metric for the evaluation of
the systems’ intelligence we have considered the problems-solving time resulted from the
systems’ reorganization based on the specific/pattern of the problems sent for solving.
ERMS multiagent system represents an extension of the CCER multiagent system [23]

developed during our previous researches. The development presented in this paper and
the previously developed CCER multiagent system proves that computational system,
composed from interacting components (agents), that use methods based on evolutionary
computation for learning the required adaptability, exhibits at the level of the system an
emergent intelligent adaptive behavior.
Usually, the intelligence of a system gave advantages in some situations, but it could

have in some conditions disadvantages as well. We have established some general prin-
ciples that must guide the development of intelligent systems and estimation of their
intelligence. Usually a system’s intelligence increases its complexity which the system
must be able to handle autonomously inside. The complexity of a system must be hidden
from the external parties, to the humans and agents that request problems-solving from
the system.
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