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ABSTRACT. Broadband beamformers are known to be sensitive to errors and mismatches
in their array elements. This paper proposes a robust minimax beamformer design which
takes into account sensor element characteristics. The design formulation minimizes ro-
bust integral squared error subject to relaxation constraints on the peak deviation error
for the beamformer. The advantage of the proposed formulation is that the design al-
lows a trade-off between the peak deviation error and the sensitivity of the minimazx error
with respect to variations in sensor element characteristics. This improvement has been
achieved with almost no increase in complexity compared with the original minimazx prob-
lem. Design examples demonstrate that the proposed beamformer is less sensitive with
respect to variations in sensor element characteristics when compared to the traditional
minimaz beamformer with a minor degradation in beamformer performance.
Keywords: Robust beamformer design, Minimax, Second order cone programming

1. Introduction. Broadband beamformers have been extensively studied due to their
wide application in many areas including radar, sonar, imaging, wireless communications,
speech and acoustics [1-8]. The two best-known multi-microphone speech enhancement
techniques are: fixed and adaptive beamformers. In this paper, we concentrate on the
design of fixed beamformers [7,8].

Traditionally, the design of fixed beamformers is formulated using a least squares or a
minimax criterion. The least squares beamformer in general has a low integral squared
error and a large peak deviation error. The minimax beamformer, on the other hand, has
a low peak deviation error and a large integral squared error. In practice, it is important
to obtain a trade-off between the integral squared error and the peak deviation error.

In general, fixed broadband beamformers using small-size microphone arrays are sen-
sitive to errors in the sensor element characteristics. Thus, a robust beamformer design
has been developed for the least squares criterion to reduce the sensitivity of the beam-
formers. Robust least squares beamformers incorporate the array characteristics model
into the design [7, 8, 9]. These beamformers, however, often have large peak deviations
errors which make them less useful for applications that require low peak deviation error.
In [10], the design of robust broadband beamformers with minimax criterion was investi-
gated. The formulated problem, however, is more complicated than the original minimax
problem as additional minimax constraints are added to ensure low sensitivity to model
errors for the beamformer.

In this paper, we investigate the design of a robust minimax beamformer to reduce its
sensitivity with respect to amplitude and phase variations in sensor element characteris-
tics. A design formulation is proposed in which the formulated robust integral squared
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error is minimized subject to constraints on the peak deviation error. The advantage
of the proposed formulation is that the complexity for solving the proposed problem is
approximately the same as for the traditional minimax problem. In addition, a trade-off
between the peak error deviation and the sensitivity of the beamformer subject to vari-
ations can be achieved by adjusting the peak deviation error for the beamformer. The
proposed problem is formulated as a second order cone programming problem (SOCP),
which can be solved efficiently using a SOCP technique such as SeDuMi [12]. Design
examples show that the proposed robust beamformer significantly reduces the sensitivity
of the minimax beamformer to variations in the sensor element characteristics. In addi-
tion, the proposed method performs better with a greater degree of freedom to vary the
peak deviation error than the method developed in [11], which considers the worse case
performance.

The paper is organized as follows. In Section 2, we present the array geometry and the
frequency response of the broadband beamformer. From this, the design of beamformers
with least squares and minimax criterions are presented in Section 3. The design of robust
least squared beamformer is discussed in Section 4. A new design of robust minimax
beamformer using SOCP technique is developed in Section 5. Design examples are given
in Section 6 and the conclusions are in Section 7.

2. Array Geometry. Consider the design of a microphone array with N elements. For
simplicity, we consider far-field signaling modeling and a linear microphone array. The
optimization method, however, is applicable for more general formulations. Here, each
microphone is connected to an L-dimensional FIR filter with real coefficients,

h, = [hn(0), .., hn(L = 1)]T, 0<n <N —1. (1)
The response of the broadband beamformer for a normalized frequency w € 2 and an
angle ¢ € ® is given by

N—-1L-1

Gw,¢) =D hy(l)e 1 - e7iwm®) (2)

n=0 (=0
where 7,,(¢) is the delay in number of samples,

_ fsdn COS ¢

c

() (3)

The constant ¢ = 343 ms~! is the speed of sound, f; is the sampling frequency and d,, is

the distance between the n'" microphone and the center of the microphone array. Denote
by h an NL x 1 real valued coefficient vector,

h=lhy,....,hy ]’ (4)
then the beamformer response in (2) can be expressed as
G(w,¢) =h'g(w,¢) (5)
where g(w, ¢) is an NL x 1 vector,
g(w, p)=[e 1m0 [ e IwN-1(9)] '® [1,..., e’j(L’l)“’]T

and ® represents the Kronecker product.
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3. Least Squared and Minimax Beamformers. Denote by Hy(w,$) the desired
beamformer response at a frequency w and an angle ¢. The design of non-robust beam-
forrner With least squared criterion can be formulated as minimizing the integral squares
error |

//Ww¢ ~ Hy(w, )P do

_hT//ngbdqbdw —th// p(w, ¢) d¢dw+//|Hdw¢|d¢dw
(6)

where

Qw, ¢) = R(g(w, 0)g" (v, )
p(w,p) = 8w, ¢)Hy(w, §)
and §R() denotes the real part. Thus,
J(h)=h"Qh—2h"R(p) + ¢ (7)

QzLLQM@MW
=AAM%@MW

and c is a constant. The least squares solution is given by

hrs =Q 'R(p). (8)

The design of a beamformer with minimax criterion, on the other hand, can be formu-

lated as:
min e
{ h 9)

where

|H(w, ¢) — Hy(w,9)| <&, Vw € Q, ¢ € .
This problem can be written as

m&ns 10
Ve (w, ) +ef(w,0) <e, VweQ, ¢ d o)

where
67-((4), d)) = thT‘(wa d)) - Hd,r‘(wa d))
6i(w7 ¢) = thi(wa ¢) - Hd,i(wa ¢)

Here, g, (w, ¢), 8i(w, ¢), Hy,(w, ) and Hy;(w, ¢) denote the real and the imaginary parts
of g(w, ¢) and Hy(w, @), respectively. The optimization problem (10) is equivalent to

m&ne
er(w, 9) (11)
(s, [ ei(w, ) ]) € Qeoney Yw €D, ¢p € P
where the quadratic cone is defined as
Qeone = {(6,%) € Rx R*: e > ||x||} (12)

and ||-|| is the Euclidean norm. The problem (12) is a SOCP which can be solved efficiently
using a SOCP software such as SeDuMi [12].
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4. Robust Least Squared Beamformer. Fixed beamformer design is highly sensitive
to errors in microphone characteristics such as gain, phase and microphone position,
especially for small size microphone arrays [8]. Thus, when designing a robust beamformer
the characteristics of the microphones must be taken into account. Here, we assume that
each microphone n, 1 < n < N —1, has a variation of the form ¢,,e =/ where ¢, and 7, are
independent random variations for the amplitude and the phase, respectively. As such,
robust integral squared error J,.(h) is obtained by integrating the squared error deviation
over the possible regions of the microphone characteristics. To simplify the model, we
assume that all microphones characteristics have the same probability density functions
(pdf), fa(c) and fe(7y), for their magnitude and phase, respectively. In general, the model
for the pdf can be obtained from the microphone manufacturers.
As with [8], the robust integral squared error can be given as

J,(h) =h"Q,h —2h'p, +¢, (13)
where
Q, = ((MszﬂN + (07 — p2oS)Iy) ® lL) ©Q
and
pr = pe(LR(P) + 153(p)).

Here,

e = /cfa(c) de, o= /CZfa(C) de,
and

s = [costfatn . u; = [ sin()a(r)d

Y Y

Also

oy = (15)" + (113)?
where 1y represents an N x N matrix with all elements being one and Iy is an N x N
identity matrix. In addition, ® represents matrix element-to-element multiplication, %()
denotes the imaginary part of a complex number and ¢, is a constant. The robust least
square solution is given by

hr,LS — (Qr)_lpr- (14)

5. Robust Minimax Beamformer. Least squares and minimax beamformers are very
sensitive to variations in the microphone characteristics. In [10], the design of robust
broadband beamformer with minimax criterion is investigated. The formulated problems,
however, are more complicated than the original minimax problem as additional minimax
constraints are required to be satisfied within the variation regions. In the following, we
will discuss: (i) the proposed robust minimax beamformer which requires approximately
the same complexity to solve as the original minimax problem; and (ii) the approach
develop in [11] which takes into account the worse case performance optimization for
comparison purpose.
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5.1. Proposed robust minimax beamformer. We propose a formulation for robust
minimax beamformer that minimizes the robust integral squared error subject to relax-
ation constraints on the peak deviation error. The advantage of this formulation is that
the complexity when solving the proposed problem is approximately the same as the orig-
inal minimax problem as the number of constraints remains the same. In addition, the
formulation allows a trade-off between the peak deviation error and the amount of sensi-
tivity in the beamformer with respect to variation in beamformer element characteristics.
Accordingly, the optimization problem can be formulated as

{ min J,(h) = h"Q,h—2hTp, +¢

|H(w,¢) — Hy(w,9)| <, Vw e, p € (15)

where « is an upper bound on the frequency response deviation for all w and ¢. For (15)
to have a feasible solution, « is chosen such that o > )5, where ),/ is the optimal
peak deviation error for the minimax optimization problem (11). Since the matrix Q, is
symmetric and positive definite, we can do a Cholesky factorization

Q. =R'R.
Let
p=R")"pr
then the robust integral squared error J,(h) can be expressed as
J;(h) =|Rh—p|* - p, Q. 'p, +c. (16)

As the term —p Q. 'p, + c is a constant, minimizing J,(h) is equivalent to minimizing
the norm [[Rh — p||. As such, the problem (15) can be reformulated as:
m&nv
IRh — p|| <~ (17)
VeR(w, @) + e(w,0) < a, YweQ, ¢ €.
The problem (17) is solved by using discretization. Denote by N,, and N, and the number

of discretized points for w and @, respectively. Let x = [vy; h], then (17) can be expressed
in the standard SOCP formulation as

minbx
|Apx — p|| <bTx
||Ai,kX — ci,k” S «, Vl S 7 S Nw, 1 S k S N¢,
where b =11, 0,..., 0]", Ay =[0 R] and
A-'k — 0 C:(wia ¢k) Cip = Hd,r(wia d)k)
" 0 CiT(wiaﬁlsk) T Hyi(wi, ér) |-

Alternatively, the problem can be written as

m&nfy
(7? Rh — f)) € Qcone (18)
er(wia ¢k)
<a, [ ei(wi, Pk ]) € Qeone:
V1<i<N,1<k<N,.

The above optimization problem can be solved accurately using SOCP software such
as SeDuMi. In the design example, the robust minimax optimization problem (18) will
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be solved for different levels of o and the sensitivity of the obtained solution with respect
to variations in the sensor element characteristics will be investigated.

5.2. Robust minimax with worst case performance optimization. The perfor-
mance of the proposed robust beamformer is compared with the approach developed in
[11] that takes into account the worse case performance optimization. As in [11], for the
case that the norm of the distortion vector Ag(w, ¢) of g(w, ¢) is bounded by some known
positive constant -, i.e.,

|1Ag(w, &) < 7, (19)
the minimax design with worst case performance optimization can be formulated as
minmax max  |[h"(g(w, ) + Ag(w, ¢)) — Ha(w, 9)|. (20)

hwo ||Agw,e)l<y

The optimization problem (20) can be formulated as

min e
h (2
{ |hT(g(w7 ¢) + Ag(wa d))) - Hd(wa ¢)| < g, Vw € Qa ¢ € (I)a ||Ag(w7 ¢)|| < -
By using (19) and the triangle inequality, the constraint in (21) can be bounded as
Ih”(g(w, ¢) + Ag(w, ¢)) — Ha(w, 9)| < [h'g(w, ¢) — Ha(w, )| + [h" Ag(w, ¢)]
< |h"g(w, ¢) — Ha(w,d)| + 7.
As such, the optimization problem (21) can be approximated as
min
iy (22)
|h'g(w,¢) — Hy(w, 9)|+7|h]| <&, Vw e, ¢ € D.
This problem can be reformulated as a SOCP as
min €
7,h

IhTg(w, ) — Hy(w, d)| < 7, Vw € Q, ¢ € ® (23)
y|[h|| <e—T.

We now estimate v in (19) for the farfield case with variations in the microphone array
characteristics such as gain and phase errors. Denote by d, and d, the maximum absolute
deviation for the gain and the phase, respectively. By extending the derivation in [11] for
the nearfield case, 7 can be obtained as:

7=\ NL((1 +6,) (1 + 8, — 2cos,) +1). (24)

6. Design Examples. Consider the design of an equispaced linear broadband beam-
former with N = 10, L. = 40 and the common spacing of 0.04 m between microphone
elements. The desired beamformer has a spectral passband [300, 3800] Hz and a spectral
stopband [0,200] U [3950, 4000] Hz with a sampling frequency f; = 8000Hz. Also, the
spatial passband is ®, = [0, 15°] and the spatial stopband is ®, = [25°,180°].

The beamformer desired response Hy(w, ¢) is given by

[ eNe (w, ) € Q, x B,
Hd(wﬁ)—{o, (w,0) € Qe x P, UQ, x DU Oy x D,

where Ny is the desired delay, Ny = L/2. The magnitude and the phase of the micro-
phone array are assumed to follow uniform distributions in the intervals [0.998,0.102] and
[—0.002, 0.002], respectively. The number of discretization points for w and ¢ are 256 and
128, respectively.

(25)
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The robust minimax optimization problem is optimized for 14 equispaced points « in
the range [anrar, aps] where apg is the peak error deviation for the robust least squares
solution. Figure 1 shows robust integral squared error .J,.(h) for different solutions in the
trade-off curve. The robust integral squared error is reduced significantly by 73.6 dB from
the minimax solution with an increase of only 0.3dB in the peak error deviation. Also,
the peak error deviation can be reduced by 3dB from the robust least squares solution
with an increase of 1.6 dB in the robust integral squared error.

Table 1 shows the performance of the: (i) least squares beamformer, (ii) robust least
squares; (iii) minimax beamformer; (iv) trade-off robust beamformers, (v) and the mini-
max beamformer design with the worse case performance optimization [11]. To calculate
the peak deviation error with variation, Monte Carlo simulation is employed with 500
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O Robust least squares solution
¢ Minimax solution
=—8— Robust solutions N

70

50

40
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Robust integral squared error
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-20 | | | | |
-11 -10 -9 -8 -7 -6 -5
Peak deviation error

FiGure 1. Robust integral squared error with different peak variation errors

TABLE 1. Performance of robust and non-robust beamformers

Peak Robust integral | Peak deviation
Beamformers deviation | squared error error with
error J.(h) variations
Least squares —6.22dB 28.15dB 29.53dB
Robust least squares —5.29dB —13.02dB —5.01dB
Minimax —10.26 dB 75.65dB 76.80 dB
Trade-off beamformer 1| —9.0dB —7.21dB —4.46 dB
Trade-off beamformer 2 | —8.5dB —10.31dB —6.49dB
Trade-off beamformer 3| —8.0dB —11.85dB —7.00dB
Robust minimax [11] | ¢ g4p | _394qp —6.90dB
worst case optimization
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FIGURE 2. Beampattern for minimax beamformer
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FIGURE 3. Beampattern for the trade-off beamformer 2 in Table 1
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FIGURE 4. Beampattern for minimax beamformer with variations in the
sensor element characteristics

Beamformer magnitude response (dB)
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FIGURE 5. Beampattern for the trade-off beamformer 2 in Table 1 with
variations in the sensor element characteristics
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variations in the magnitude and the phase of the microphone characteristics. The table
shows (i) the peak deviation error, (ii) the robust integral squared error .J.(h) and (iii)
the peak deviation error from Monte Carlo simulation with variations in the magnitude
and the phase of the sensor element characteristics.

From Table 1, it can be seen that the least squares and minimax beamformers are very
sensitive with respect to deviation in the amplitude and the phase of the sensor element
characteristics. The robust least squares beamformer has a low sensitivity with respect to
deviation in the sensor element characteristics, but the peak deviation error remains high.
The table also exhibits three solutions in the trade-off curve with the lower bound on the
peak deviation error 7 ranges from —9dB to —8dB. As such, the peak deviation errors
for the trade-off beamformers deviate less than 3dB from the minimax solution. It can
be seen from the table that the trade-off beamformers are less sensitivity with respect to
variations. Also, an increase in the peak deviation error bound results in a reduction in
the sensitivity in the beamformer. For the trade-off beamformer with a bound v = —9dB,
the beamformer is 1.26 dB worse off in the peak deviation error when compared to the
minimax beamformer with an improvement of 81.26 dB in the peak deviation error with
variation.

The last row in the table displays the solution obtained from [11] for the minimax
solution with the worse case performance optimization. It can be seen from the table that
the robust integral squared error for the solution is higher than the trade-off solutions as
it considers only the worst case situation. Also, the solution has approximately 1.1dB
higher in the peak deviation error than the trade-off solution 3 with a slightly higher in
peak deviation error with variations. In addition, the solution obtained from [11] does
not allow a control on the peak deviation error for the robust solution.

Figures 2 and 3 show the beampatterns for the minimax beamformer and a trade-off
robust beamformer in Figure 1 with v = —8.6dB. The peak deviation error is slightly
increased for the trade-off robust beamformer when compared with the minimax beam-
former. Figures 4 and 5 show the beampatterns for the minimax beamformer and the
trade-off robust beamformer for the case with variations in the magnitude and the phase
of the sensor element characteristics. It is clear that the beampattern for the robust
beamformer maintains in the presence of errors especially at low frequencies.

7. Conclusions. This paper investigates the performance of a robust minimax beam-
former that is less sensitive to variations in sensor element characteristics. The proposed
design minimizes the robust integral squared error for the beamformer subject to con-
straints on the peak deviation error. The advantage of the proposed formulation is that
the complexity for solving the proposed problem is approximately the same as for the
minimax problem while allowing a control in the trade-off between the peak deviation
error and the sensitivity of the beamformer to variation errors. Design examples demon-
strate that the proposed robust beamformer has significantly reduced the sensitivity of
the minimax beamformer towards sensor element errors.
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