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ABSTRACT. As one of the many high-end industrial solutions, the flexible manufactur-
ing system (FMS) has attracted many research initiatives over the years because of its
competitiveness and rapid development. The recent trend in globalization has led to an
egression of distributed, unique, and independent units of production centers. The FMS
in a distributed system (FMSDS) is considered as a multi-factory environment, where jobs
are processed by FMSs. Problems in FMSDS are related to the allocation of jobs to facto-
ries, independent assignment of job operation of machines, and operations sequencing on
the machine. In addition, impact of the maintenance as one of the core parts of produc-
tion scheduling has been previously neglected, thereby affecting the overall performance of
the production schedule. Hence, this work considers maintenance as part of production
scheduling. The objective of this study is to minimize the global makespan throughout the
multi-factory network. This paper proposes a modified chemical reaction optimization al-
gorithm to solve the problems in FMSDS. The molecule encoding explicitly represents the
information on the factory, job, and maintenance; whereas a greedy decoding procedure
exploits flexibility and determines job routing. An improvised crossover operator is used
to improve the solutions by refining the most promising individuals of each generation.
The proposed approach is compared with other algorithms, and algorithm performance is
tested with several parameter refinements. Satisfactory results were achieved where about
1% to 26% deviations are observed when compared to other algorithms. The contribution
of the study and the potential future works has also been discussed.

Keywords: Production scheduling, Flexible manufacturing system, Distributed system,
Machine maintenance, Chemical reaction optimization

1. Introduction. Production scheduling problems in the manufacturing sector have at-
tracted research attention for several years. The rapid advancement of technology and
the highly competitive market have introduced various alternatives to solve production
scheduling problems. Exact approaches have become insufficient amidst the complex and
challenging environment of the production scheduling floor. Production scheduling can be
considered as an allocation problem in which a limited amount of resources (i.e., machines)
are allocated to a number of tasks over a time horizon. Production scheduling problems
are one of the NP-hard problems, and the feasible solutions for which are available in
significant numbers for different task-resource assignments [1].

Competitive market demand and challenging manufacturing environment have changed
the way organizations achieve success and competitive edge. The flexible manufacturing
system (FMS) is the result of the growing demand for both quantity and quality such
that the combination of the efficiency of high-production lines and the flexibility of job
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shops correspond well with mid-volume batch production and mid-variety of products
[2]. Expensive equipments or machines that act as both resources and investment have
indirectly increased the importance of effective and well-rounded performance as well
as the efficient utilization of available resources. Extensive studies on FMS have been
conducted since the 1980s. These studies are mostly focused on allocation, scheduling,
loading, and control problems in FMS.

Generally, the single-factory production scheduling problem is concerned with the min-
imization of the total operating cost and completion time while fulfilling the orders of the
machine assigned to process job operations. With the increasing globalization of market
demand, the emergence of the distributed system (DS) has been significantly emphasized.
A DS involves multi-factory production that is geographically distributed but remains
effective in independently processing product parts. Each factory has unique production
efficiency and constraints that depend on machine availability, labor costs and skill, and
transportation facilities. These factors yield distinctive production lead times, operating
costs, and completion times [3, 4]. Therefore, an exact solution to the production sched-
uling problem is difficult to establish, particularly because of the different process plan
combinations in DS. Recent studies that consider these features of FMS have been re-
ported [3, 5, 6]. With regard to the problem of the FMS in distributed systems (FMSDS),
the optimization of the production schedule involves three hierarchical problems that need
to be solved sequentially or simultaneously [7, 8]:

1. Allocation of the most suitable factory for the job (assignment problems).

2. Routing of the most suitable machine for each of the assigned operations of the job

within the given factory (routing problem).

3. Sequencing the most suitable assignment of the operations to machines over the time

span (sequencing problem).

In a real manufacturing environment, machine maintenance is unavoidable. Unex-
pected machine breakdown (stochastic unavailability) and scheduled preventive mainte-
nance (deterministic unavailability) are the main causes of machine unavailability [9].
Machine preventive maintenance (PM) has attracted the attention of many researchers in
the manufacturing domain because of its direct effects on production rate, product qual-
ity, machine availability and utilization ratio [4]. Nonexistent machine PM also disrupts
the predetermined plan or scheduling because of process mismatching. Hence, considering
PM in production scheduling plays a major role in perpetuating machine availability and
utilization ratio while maximizing the facility with minimum cost and reducing unforeseen
breakdown. To the best of our knowledge, the first work to address all features of FMSDS
and consider PM is that of Chan et al. [4], which proposed the genetic algorithm with
dominated genes.

2. Related Work. A series of studies on scheduling problems in FMS has been carried
out. One of the classic solutions proposed for scheduling problems in FMS is the heuristic
search algorithms. Several authors have proposed heuristic search or heuristic functions
in solving the scheduling problems in FMS with respect to certain performance criteria
[10, 11, 12, 13, 14, 15, 16, 17]. Most of the proposed solutions, which consider materials
availability [10, 11], resource availability and its associated constraints [12, 13, 17|, and
the dynamic nature of the scheduling procedure [14], fail to integrate dynamic or reactive
settings. Nevertheless, the consideration for dynamic and real-time scheduling environ-
ments has increased through the effort of Wang et al. [15] and Wang et al. [16]. Stochastic
and unexpected events have also been considered in real scheduling environment.
Attempts have been made to solve scheduling problems in FMS by using artificial
intelligence (Al)-based algorithms. Specifically, the classical Al approach has been used
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to solve scheduling problems in FMS [18, 19]. However, studies that consider machine
availability, machine breakdown, or maintenance, and so on in solving dynamic scheduling
problems in FMS are scarce. This gap in the literature is a result of the complexity of these
scheduling problems and the various conflicting performance criteria [18]. Nevertheless,
Lee [19] managed to propose a scheduling solution that can adapt to dynamically changing
environments in the FMS through the continuous learning of historical data.

A larger portion of existing studies employ meta-heuristic algorithms that are nature-
inspired or based on swarm intelligences or phenomenon mimicking. On the one hand,
nature-inspired algorithms can be defined as algorithms derived from natural behaviors—
from behaviors or processes of molecular reactions to complex cortical maps of the biolog-
ical organization [20]. The artificiality represented in biological processes has inspired re-
searchers to employ various computing optimization algorithms, such as genetic algorithm
(GA) [21], simulated annealing [22, 23], shuffled frog leaping algorithm [24], and symbi-
otic evolutionary algorithm [25]. On the other hand, swarm intelligence or “collective”
intelligence refers to the decentralized and self-organized problem-solving behavior, which
is derived from the interactions of individual agents with other agents, in reacting to the
local environments. Examples of such algorithms include ant colony optimization (ACO)
[26], particle swarm optimization (PSO) [27], artificial immune system (AIS) [28], artificial
bee colony (ABC) [29], and the recently adopted biogeography-based optimization (BBO)
[30] and cuckoo search (CS) [31]. Another rare derivation of meta-heuristic algorithms is
the algorithm that mimics a certain natural phenomenon. This phenomenon-mimicking
algorithm refers to the optimization processes conducted through the emulations of nat-
urally occurring phenomenon. Examples include the harmony search algorithm [32] that
mimics the improvisation process of a musical performance and tabu search [33] that
imitates the phenomena of accursed or “taboo” belief of the search process behavior.

Although certain limitations have been identified in the utilization of meta-heuristics
algorithms to solve the scheduling problems in FMS [34], the efforts to employ these
algorithms have been continuous in the last 25 years. Some existing studies focus on static
scheduling environments in FMS with either single [25, 31, 35, 36, 37, 38, 39] or multiple
[40, 41] performance criteria. In addition, the implementation of the meta-heuristics with
respect to the problem domain tends to be arduous. However, attention toward dynamic
scheduling environments has increased because of the importance of reducing scheduling
time [42], the difficulty in scheduling and the short validity of implementations [43], and
the need to enhance productivity by incorporating alternative scheduling plans or routing
(34, 38].

Proposed in 2010 by Lam and Li [44], the chemical reaction optimization (CRO) algo-
rithm is fairly new in optimization domains. The CRO algorithm is based on the free-form
molecule behavior in a container that is characterized in the theory of conservation of en-
ergy. Such behavior intensifies through on-wall ineffective collision and inter-molecular
ineffective collision while balancing the diversification features through decomposition and
synthesis operators that renown for relative escapes in the local optimum. Given the fairly
stable convergence rate of the CRO algorithm, global optimum can be achieved quickly.
The promising results of CRO have increased the number of studies that employ the CRO
algorithms to solve various problem domains. Sun et al. [45] proposed a hybrid CRO with
the Lin-Kernighan search to solve the well-known travelling salesman problem, whereas
Truong et al. [46] proposed a hybrid CRO with a greedy strategy algorithm to solve the
0-1 knapsack problem. Alatas [47] proposed a modified version of CRO, the efficiency of
which was tested on a well-known benchmark mathematical function. To solve the same
test problem, Yang et al. [48] also proposed a modified CRO (MCRO) that incorporates



216 M. N. A. KHALID AND U. K. YUSOF

the global-best solution information into the search equation and thus improves the ex-
ploitation strength of the original CRO. CRO has also been adopted in many assignment
and scheduling problems [44, 49, 50, 51].

Several studies have dealt with scheduling problem in FMS through bio-inspired popula-
tion-based meta-heuristic algorithms. These algorithms have evidently been reported as
prominent and dominant in most optimization domains. To the best of our knowledge,
the first work to address a similar problem under consideration using the CRO algorithm
is that of Li and Pan [51]. However, the CRO algorithm is rarely employed in the manu-
facturing domain, particularly in solving the scheduling problem. Such rarity introduces
a great opportunity to pioneer this algorithm. In addition, CRO features which are capa-
ble of escaping the local optimum and exploring diverse solution space to achieve global
optimum serve as a potent motivation to undertake CRO as a solution for the underlying
problems in FMSDS subject to maintenance. The objectives of this study is to propose
an MCRO algorithm with guided initialization mechanism to yield optimal makespan for
a production scheduling plan while considering the impact of maintenance inclusion.

3. The FMSDS Problem. The problem in FMSDS can be stated as follows: a number
of jobs (i) are expected to be received in the distributed network, and a suitable factory
(f =1, ..., F) will be assigned to the jobs such that a corresponding production schedule
is generated. Each individual factory has a number of machines (h =1, 2, ..., Hy) with
varying efficiencies or operating lead times (7;;7,) in producing various product types.
Each job has up to N; operations, and every operation can be performed in more than
one machine (not all) in the same factory. The travel time between factory f and job i is
denoted as D;;.

Each machine conforms to a maximum machine age (M), which is equal to the cu-
mulated processing time of operations. As outlined in Chan et al. [4], a maintenance
procedure must be carried out right after the completion of the current operation when
the machine age reaches the threshold denoted as M. After every maintenance, the ma-
chine age of the particular machine is reset to 0.

The objective of the study is to minimize the total maximum makespan of the last job
operation. The objective function is defined in Equation (1). Completion time (C;) is
defined as the summation of the completion time of the last operation NN; of job ¢ and
the delivery time between the factory f and the job i, as defined in Equation (2). The
decision variables are as follows: x;; which is denoted true if job 7 is allocated to factory
[ 0ijrne, which is denoted true if operation j of job ¢ occupies time slot £ on machine A
in factory f; and ;; ¢, which is denoted true if machine £ in factory f is maintained after
operation j of job 4; Once the decision variable is determined, the starting time value of
operation j of job i (S5;;), the ending time of operation j of job i (E;;), and completion
time (C;) can be calculated.

Objective Z : min(max{C;}). (1)

Ci = Ein;, + Z Dirxiy- (2)
The problem is subject to the following constraints:

Every operation can only begin after the completion of the prior operation.

An operation continues until it finishes without any disruption.

The assigned time slot must be equal to the required operation time.

Each operation must be carried out on a single machine throughout the horizon.
Each operation must be executed on a single machine at each unit of time.
Each machine must handle only a single operation at each unit of time.

Each job can only be assigned to a single factory.

OOt W
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4. CRO Algorithm for FMSDS.

4.1. Generic CRO. The CRO algorithm loosely mimics what happens to molecules in a
chemical reaction system within a closed container. A chemical system undergoes a chem-
ical reaction when it is unstable, that is, when it possesses excessive energy. The system
manipulates itself to release the excessive energy and consequently achieve stability. This
manipulation is called chemical reaction. The molecules represent the solution for the
considered problem and are characterized by several properties. A molecule is composed
of several atoms and is characterized by the individual properties of such atoms (i.e.,
atom type, bond length, angle, and torsion) [44]. Any change in the atom characteristic
will distinguish the molecules. As such, changes in molecular structure are tantamount
to switching to another feasible solution. FEach molecule possesses two kinds of energy,
namely, potential energy (PE) and kinetic energy (KE). PE corresponds to the objective
function of a molecule, whereas the KE of a molecule represents its ability to escape from
a local minimum.

The CRO algorithm is governed by the two fundamental laws of thermodynamics:
conservation of energy and state of equilibrium. The first one states that an energy can
neither be created nor destroyed; energy can be transformed from one form to another or
from one entity to another. Each chemical substance possesses PE and KE, whereas the
surrounding energy is symbolically represented by a central energy buffer. The second
law states that the entropy of the system tends to increase; entropy refers to the degree
of disorder measure. All reacting systems tend to reach a state of equilibrium, in which
their potential energy drops to a minimum. In CRO, this phenomenon is depicted in the
conversion of PE to KE and by gradually losing (K Ej.s) of the energy of the chemical
molecules to the surroundings (buffer).

The basic CRO involves four elementary reactions: on-wall ineffective collision, de-
composition, inter-molecular ineffective collision, and synthesis. These elementary reac-
tions can be categorized into single molecular reactions and multiple molecular reactions.
The on-wall ineffective collision and decomposition reactions are single molecular reac-
tions, whereas the inter-molecular ineffective collision and synthesis reactions are multiple
molecular reactions.

e The on-wall ineffective collision reaction occurs when a molecule hits the wall and
then bounces back. Some attributes of the molecule (w) change after the on-wall
collision. In this case, the molecule becomes a new molecule (w') if the given condi-
tion is satisfied. After the on-wall ineffective collision,the molecule w loses a portion
of KE to the buffer. By losing KE to the environment, the molecule can improve
convergence and local search abilities.

e The decomposition reaction is used to mimic the process in which the molecule hits
the wall and then decomposes into two or more pieces. Two situations should be
considered for the decomposition reaction: (1) the molecule has enough energy to
complete the decomposition; (2) otherwise, the molecule should obtain energy from
the energy buffer.

e The intermolecular ineffective collision is the process in which two or more molecules
share information and then produce another set of two or more molecules. This
reaction mimics the process in which two molecules collide with each other and then
bounce away.

e The synthesis reaction is the process in which more than one molecule collides and
combines together. Suppose two molecules wl and w2 collide with each other. A
new molecule w' is then produced.
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4.2. Proposed MCRO.

4.2.1. Antibody encoding and decoding. The information encoded in the molecule of the
MCRO algorithm for FMSDS must specify the allocation of each job to the factory, the
routing of every job through the machine, and the sequence of the operations. This
encoding scheme follows the simple operation-based encoding method proposed by Jia et
al. [7] for distributed scheduling problems without routing flexibility. Relevant extension
that includes the flexibility issues of FMSDS is considered in the encoding scheme. The
size of an atom (atom,) in a single molecule is equal to the total number of operations
of all the jobs. Each molecule is represented by a triplet notation (f, i, p), where (f)
represents the factory, (i) represents the assigned job, and (p) represents the PM flag.
Note that all the operations of the same job are represented by different atoms within
the same molecular structure. An operation is interpreted according to the order of
atom occurrence on the molecule, given that the order for the operation of a job is fixed.
Following the adoption of a simple representation by Jia et al. [7], no information about
alternative machine routes is explicitly encoded into the atom. This information will be
retrieved during the decoding phase. A sample individual is given in Figure 1.

(o0 ) (o0 ) (22 ) (220 ) (152 ) (220 ) (221)

FIGURE 1. A sample molecular encoding

Assume job 1, job 2, and job 3 have two, two, and three operations, respectively, such
that a molecule consists of seven atoms. Each atom consists of three types: “2, 1, < p >.”
“1, 2, < p >, and “l1, 3, < p >.” In this case, jobs Ny and N, are processed in factory
Fy, and Nj is processed in factory Fs.

In the decoding process, the information provided by each molecule is exploited to
generate a schedule plan in which the PE of each molecule is evaluated. The objective of
the FMSDS is to minimize the global makespan of the factory network so that the affinity
of an individual is inversely related to the global makespan.

As previously discussed, molecules explicitly represent information on job assignments
to factories, and the order of the atomic structure is relevant in determining the priority
of each operation without consideration of the information on job routing. To simplify the
encoding scheme, the flexibility problem is considered in the decoding phase, during which
the scheme can dispatch job operations to one of the alternative machines of the selected
factory. The information on job routing is thus implicitly encoded in the decoding process.
Based on the order determined by the molecular structure, operations are considered
sequentially. When the respective operation is dispatched to a machine, the starting time
equals the completion time of the last operation assigned to the machine. If the considered
operation requires more than one machine, the decoding process selects the routing that
guarantees the lowest current local makespan; the machine that completes all assigned
operations in the shortest time is chosen. If different routings lead to the same current
makespan, then the machine with the smallest processing time is chosen. If the available
machines have the same smallest current makespan and processing time, any of them is
randomly selected to give the optimization algorithm the opportunity to search different
regions of the solution space. The decoding process is completed by adding the delivery
time (according to the factory where the job is assigned) as soon as all the operations
have been scheduled, thus obtaining the local and global makespans.
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4.2.2. Population initialization. The initial population is determined by three phases.
In the first phase, jobs are randomly generated until all the operations of the jobs are
generated. In the second phase, jobs are assigned randomly to factories, and the related
operations of the jobs are amended to satisfy the factory allocation constraints. In the
final phase, the maintenance flag is generated randomly. This process is repeated until
all individuals of the population (popy) are initialized.

Each molecule is initialized with an initial KE of 10000, which is enough energy for each
molecule to accelerate the CRO processes. After population initialization, each molecule
is evaluated to update its PE value. Given the variable populations of CRO, a minimum
limitation popy > 3 is imposed, and a relatively small popy is initialized. The KE loss
rate K E), s is defined as the amount of KE lost by an individual molecule every time an
elementary reaction of CRO occurs. The buffer is also initialized with a value of zero.

4.2.3. The elementary reactions. In performing the elementary reactions of CRO, a proba-
bilistic p.o; value is used to determine whether a uni-molecular or inter-molecular reaction
occurs. If a randomly generated value rand > p.o, then an inter-molecular reaction oc-
curs; otherwise, a uni-molecular reaction occurs. In the case of a uni-molecular reaction, a
randomly selected molecule w is considered for on-wall ineffective collision, which is mod-
ified by the mechanism in Section 4.1 to produce a new updated molecule w’". Molecule
w' is considered as a replacement for molecule w provided that it satisfies the following:

PE,+ KE, > PE, (3)

If the condition in Equation (3) is not satisfied, then decomposition reaction occurs.
That is, molecule w is modified based on the mechanism in Section 4.1, whereas molecule
w' is considered as the two new molecules produced by the decomposition operator. Re-
ciprocally, the two molecules are selected randomly to perform the mechanism in Section
4.1. Consequently, two molecules w’l and w; are produced. The two molecules replace
molecule w given that the following condition is satisfied:

PE,+KE, > PEy + PE, (4)

In the case of inter-molecular reaction, two molecules w; and ws are selected randomly
to perform inter-molecular ineffective collision. These two new molecules will replace the
two selected molecules (w; and ws) if the condition given below is satisfied:

PE,, + KE,, + PE,, + KE,, > PE, + PE,, (5)

If the condition in Equation (5) is not met, synthesis reaction occurs. That is, two
molecules w; and wy are randomly selected to perform the synthesis mechanism in Section
4.1, in which two molecules are produced. The best molecule is selected as the new
molecule w'. This new molecule w’ is considered in the population, whereas the two
molecules w; and wy are removed, given that the following condition is satisfied:

PE,, + KE,, + PE,, + KE,, > PE,, (6)

Based on all the elementary reactions above, a greedy algorithm is embedded to main-
tain the performance of the algorithms in producing effective solutions and to enhance the
convergence rate. If any of the conditions in Equations (3), (4) and (5) are satisfied; the
solution must be satisfactory such that molecule w' > w. When more than one solution
is available, either one of the two solutions must satisfy the aforementioned conditions.
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4.2.4. Modified ineffective collisions. Similar to the mutation operator in the GA, the on-
wall ineffective collision via the MCRO algorithm in the canonical CRO generates a new
neighboring molecule from a given one. In this study, several neighboring approaches are
used in the on-wall ineffective collision function to improve the exploitation capability of
the algorithm. Given molecule w, two positions r; and ry, where 1 <17y < ry < atom,, are
randomly generated. The neighboring approaches are described as follows:

e End-to-end swapping mechanism (EESM), which involves the reversal of each ele-
ment between the first and the last atomic structure of atom,;

e Simple swapping mechanism (SSM), which involves the swapping of the two atomic
structures at r; and ry.

The two approaches are given in Figures 2 and 3, respectively. However, the proba-
bility of performing the above mechanisms is equalized. If the condition of ineffective
collision is true, then the probability of selecting between the EESM and SSM is 0.5. The
high exploitation level of the MCRO algorithm is utilized to give good molecules several
chances to manipulate their atomic structures while allowing the less promising ones to
participate in the iteration. In other words, the search moves towards promising regions
while guaranteeing the diversity of the solution candidates and preventing a premature
convergence of the method.

In the case of multiple factories and maintenance considerations, the following atomic
twitching mechanisms are conducted: random factory assignment (RFA) and random
scheduled maintenance (RSM). These mechanisms are aimed at exploring several solutions
in the search space with different assignments of jobs to factories and varied scheduled
maintenance. Note that to maintain consistency in the atomic structures of the remaining
molecules and to meet the factory constraint, all atomic structures must reflect the new
job assignments; that is, all atomic structures related to the selected job in the molecule
must be updated. This condition is demonstrated in Figure 4.

4.2.5. Modified synthesis. The synthesis reaction is used to produce a single molecule by
combining two or more molecules. In the proposed MCRO, the crossover function is
embedded in the synthesis process. The synthesis reaction is realized in three phases.

( 1,30 ) 1,3,0 ( 1,21 )( 2,1,0 ) 1,31 ( 1,2,0 )( 21,1 )

( 1,30 ) 1,31 ( 1,21 )( 2,1,0 ) 1,3,0 ( 1,2,0 )( 2,11 )

FIGURE 2. An illustration of SSM

N
( 1,30 )( 1,3,0 )( 1,21 )( 2,1,0 )( 1,31 )( 1,2,0 )( 2,11 )

J

(o ) (20 ) (or ) (20 ) (oex ) (om0 ) (230 )

FIGURE 3. An illustration of EESM
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FIGURE 4. Atomic twitching: RFA and RSM
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FIGURE 5. [llustration of TX

o

First, two molecules w; and wy are selected from the current population popy. Second,
the crossover operator is applied to the two selected molecules to produce w’l and w;.
Third, the best child molecule is selected as the new molecule w’. The selection is carried
out by comparing w; and wo with wl and w2 and assessmg whether any of the following
conditions are satisfied: w| < wi, wy < Wy, Wy < Wy OF Wy < Wy.

The crossover operator employed is similar to that in GA. The information encoded
between parent molecules is exchanged to produce two child molecules. However, the
crossover operator in the proposed MCRO is the trajectory crossover (TX) introduced
by Rodriguez-Tello et al. [52] because of the encoding scheme limitation of the molecule.
TX generates a new child molecule while exploring trajectories that connect two parents
(w; and wy). Starting from one parent, called the initial solution, a trajectory in the
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neighborhood space is produced and serves as a guide toward the alternate parent, called
the guiding solution. This process is achieved by choosing moves that introduce attributes
contained in the guiding solution; each new solution in the trajectory corresponds to an
individual.

In the TX operator, the child inherits any atomic structures common to both parents.
Starting at a random position of the parents, their atomic structures are examined from
left to right in a cyclic manner. If the elements at the position being examined are the
same, that position is skipped; otherwise, a swap is performed between two elements in
parent w; or in parent ws, whichever produces the best solution. In this way, the atomic
solutions at the analyzed position become alike. This process is repeated until all atomic
positions have been considered. All molecules obtained using this process are the valid
offspring of w; and w,; the best child molecule w' among all molecules is returned. This
process is illustrated as Figure 5.

4.2.6. Termination condition. The termination condition is based on the number of it-
eration Itery used. Given the relatively large and unknown limitation of the dataset
in this problem, neither the time limit nor the objective limit is used respectively. The
maximum number of iterations used in this study is set to 5000, which is large enough
to achieve a feasible solution and to conduct comparative analyses. Figure 6 shows the
overall flowchart of the proposed MCRO algorithm.

5. Computational Results. The performance of the MCRO was tested under differ-
ent settings. Four datasets were considered. The first, second, and third datasets were

Initialize Chemical Reaction
Optimization Parameters:

( START ) > 1. Initia Population Size N Generate Initia
2. Molecule Callision Rate (Mol Coll) Molecule Population
3. Initidize Buffer =0 T
4. Stopping Criterion (Iteration Number)

N Next Stopping
~No————>| ) > S
Iteration Criterion?
b Yes
Generate Rand | No
Replace current between [0,1] | h
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Better? Select Random! >
y Rand > Select Randomly A END
) § Two Molecules, ®1 [«—No Mol Coll Y

and 2

Single Molecule, ®

Synthesis
condition ismet?2

Decomposition
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Yes ’10 Yes '\10
Synthesize Inter-mol ecul ar Decompose On-wall Ineffective
Ineffective Collision P Collison
Perform Trajectory Perform I neffective Perform | neffective
Crossover on Two Collision Mechanisms on Collision Mechanisms on
Molecules Two Molecules A SngleMolecule

F1GURE 6. Flowchart of the proposed MCRO
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obtained from Chan et al. [4, 53, 54], whereas the fourth dataset was obtained from
the benchmark data of Fisher and Thomphson [55]. Two separate experiments were
conducted. The first experiment used the first, second, and third datasets, whereas the
second experiment used the fourth dataset. The first experiment compared the MCRO
with other algorithms designed for FMSDS, namely ACO by Kumar et al. [38], GADG
by Chan et al. [4, 53, 54], modified GA with dominant gene by Chung et al. [56], and
improved GA (IGA) by De Giovanni and Pezzella [8]. The second experiment compared
MCRO with other algorithms that were employed in the same dataset; the algorithms
were modified GA by Jia et al. [7] and IGA by De Giovanni and Pezzella [8]. MCRO was
implemented in C# compiler and ran independently on a personal computer equipped
with a 2.0 GHz Intel Core i5 processor and 2 GB RAM.

All the datasets considered in this study are summarized in Table 1. MCRO parameters
were calibrated for the preliminary test on all datasets described above. The settings of
the four parameter options for each datasets considered are given in Table 2.

Results of the first and second experiments are given in Table 3. The first column
reports the dataset name of testing instance, and the following column represents the
compared algorithms consecutively with the relative deviation of makespan with respect
to the proposed MCRO. The relative deviation is defined as in Equation (7).

dev = [(MKcomp - MKIIA)/MKcomp] * 100% (7)

MKjr4 is the makespan obtained by the proposed MCRO, and M K, is the other
algorithm that was presented for comparison. As given in Table 3, MCRO outperforms
other algorithms by obtaining optimal results for most datasets in both experiments con-
sidered in this study. Results that were denoted as “n.a.” indicate that the algorithm

TABLE 1. Datasets parameters/properties

Data labels F' H; i N; Reference
fjs01 1 3 5 4 [4, 53, 54]
fis02 1 10 100 n.a. 53]

dfijs0la 2 3 10 4 [4, 56]
dfisotb 2 3 10 4 [4, 56]
Mt06 1 6 6 6 [55]
Mt10 1 10 10 10 [55]
mt20 1 5 20 5 [55]

*a without maintenance integration, *b with maintenance integration
*n.a.: not available/no specific numbers of operation (flexible)

TABLE 2. MCRO control parameters

Parameter fjs01,02 dfjs01la dfjs01b Mt06,10,20
Generation No. 500 100 5000 5000
Run No. 5 5 5 )
Collision Probabilities (peo) 0.3 0.5 0.7 0.8
Options No. 4 4
Based on Option:
Population Size (popy) 5 10 15 30

Kinetic Energy Loss Rate (K Fj,s5)  0.01 0.05 0.1 0.2
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TABLE 3. Comparison of the results of the first and second datasets

Experiment 1

Data Name Ant Colony dev (%) GADG 1,2,3 dev (%) MGADG dev (%) IGA dev (%) CRO

fjs01 42 +26.19 36 +13.89 35 +11.43 35 +11.43 31
fjs02 n.a. n.a. 227 +0.88 n.a. n.a. n.a. n.a. 225
dfjsOla n.a. n.a. 42 +16.67 n.a. n.a. 37  +541 35
dfjsO1b n.a. n.a. 122 +23.77 93 0.00 n.a. n.a. 93
Experiment 2
Data Name MGA dev (%) IGA dev (%) CRO
Mt06 35 +12.73 35 +12.73 48
Mt10 972 +1.95 930 —2.47 953
Mt20 1207 +13.59 1172 +11.01 1043
Average Improvement +9.42 +7.09

Makespan results for Mt06 dataset

Makespan

Generation No (x10)

—e— Average —— Best

FIGURE 7. Makespan results for Mt06 dataset

consideration of the datasets is unavailable. The relative deviation obtained by MCRO
compared with that of other algorithms for Experiment 1 are between 5% < dev < 26%),
whereas relative deviation for Experiment 2 is between 11% < dev < 14%. In total,
results obtained by ITA relatively deviate between 1% < dev < 15%. Regardless of the
run numbers, the optimal solution was achieved by MCRO compared with other algo-
rithms. Thus, few test runs justify the capabilities of our proposed MCRO against other
algorithms.

In terms of iteration sizes (generations), MCRO requires more iterations to converge
compared with IGA because of the complexity of its operator in each iteration. Nev-
ertheless, MCRO outperformed the other algorithms in the first test and in two out of
three datasets in the second test (dataset Mt06 and Mt20). In addition, Figure 7 shows
the decrease of the average makespan and the best makespan over five runs for the Mt06
dataset with 6 jobs and 6 machines. The figure indicates that our algorithms improved
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Parameter analysis of ITA

KE loss rate
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0o 0.05
0o 0.1
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FIGURE 8. Parameter analysis

the average makespan very rapidly; the best global makespan (48) was achieved after 420
generations.

Regardless of the inclusion or exclusion of maintenance in FMSDS, MCRO still obtains
superior results with the iteration numbers (generations) that of in Chan et al. [4, 53, 54].
MCRO also considers various combinations of parameters. Determining the appropriate
parameters greatly influences the solutions and the probability of reducing premature con-
vergence. As such, the appropriate parameter combinations were identified by analyzing
different combinations of parameters. Specifically, the collision probabilities (peo;) and
KE loss rate (K Ej,ss) were investigated by capturing the value of average relative devi-
ation (ARD) of the solution candidate. The detailed results of the different parameter
combinations are graphically shown in Figure 8. The p.,; values are 0.3, 0.5, 0.7, and 0.8.
The KE,,s values are 0.01, 0.05, 0.1, and 0.2.

6. Result Analysis and Discussions. From our observation, we could argue, with
reference to Figure 8, that higher numbers of p.,; is better suited with higher numbers
of KEjpss (€.g., Peon of 0.7 or 0.8 that coupled with K Ej, of either 0.1 or 0.2). This is
mainly because higher p.,; implies more collision happens in the molecular level which
consequently resulted in higher loss of kinetic energy. As such, the potential solutions
are less likely to deviate but only with small variation. On the other hand, we can
observe two distinct situations with opposing values of p.,; and K Ej,gs. Firstly, “rapid”
collision situation where high value of p..y; is coupled with low value of K Ej,;s. Secondly,
“impacted” collision situation where low value of p.yy; is coupled with high value of K Ej,,;.
Both situations produce higher ARD of the solution candidate which implies superior
diversity in the populations. However, both situations are uncertain in order to achieve
global optimum or worse, trapped in local optimum. Nevertheless, any cases of p..
and K FEj,,; would not guarantee the global optimum. As indicated in Figure 8, we can
conclude that the combination of the lowest and highest K E,s; considered in this study
with any peo; produces an optimal result with small deviations. However, the best possible
parameter combinations, as indicated in Figure 8, are the combinations of any p..; with
KE, of 0.05 and 0.1.

The problem in FMSDS subject to machine maintenance is considered as another al-
ternative to reduce cost and to increase overall productivity. Such outcome is possible
because a large number of machines can operate at an optimum level, and the possibility
of machine breakdown can be reduced. Based on the results, we found that incorporating
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machine maintenance policy still maintains overall system performance, optimizes pro-
duction scheduling plan, and reduces possible machine unavailability. Acknowledging the
work of Jia et al. [7], we relish diversity and quick solution’s evaluation because of the
simplified encoding scheme in the proposed MCRO. From the results obtained by MCRO,
optimum solutions are obtained with large iteration sizes, which are countered with fast
computational time. Such feature indirectly promotes high productivity, equating signif-
icant resource usage. In addition, the solution obtained is relatively close compared with
other algorithm’s solutions applied in similar field. The greedy decoding scheme always
guarantees a superior solution which consequently improves solution quality in each eval-
uation process. Therefore, MCRO is evidently suitable and competitive in solving the
problem in FMSDS subject to machine maintenance. However, several gaps are identified
in the proposed MCRO which are summarized as follows:

1. Impacts of the parameters (pey and K Ej,ss): CRO parameters are shown
to have little impact on the solutions, whereas most meta-heuristic algorithms are
largely dependent on parameters tuning in achieving good search results [57]. How-
ever, suitable parameter value, with respect to the problem domain, also plays roles
in determining how much activity happens during CRO molecular processes which
consequently produce much better results.

2. Stability versus optimality: Growing iterations numbers throughout the search
progress had shown the ability of CRO to achieve optimum results. In addition, the
considered size of the populations in this study which are considered small may also
affect the results (less diverse). Larger population sizes would hypothetically reduce
the iteration size needed, but potentially lead to high computational cost because
of the dynamic population growth nature of the CRO (synthesis and decomposition
molecular processes which decrease and increase population numbers, respectively).

3. Computational complexity: Due to intricate molecular processes involved in
CRO, achieving optimum results requires careful emphasis on the detail of the mol-
ecule representation. More constraints and restrictions would impede possibility of
diversifying the solution as well as achieving the global optimum. Otherwise, a dif-
ferent representation strategy to reduce the computational complexity of CRO is
needed.

The MCRO has been proposed to solve the problem in FMSDS subject to machine
maintenance. However, much considerable effort is required in order to merely solve a
single aspect of real-world problems. Further improvements can be made on the following
aspects with respect to the FMSDS problems:

1. Given the stochastic nature of MCRO, possible extension of MCRO with an artificial
neural-network in order to find system-specific parameters or operating strategies
to efficiently and effectively produce high quality solutions. Alternatively, possible
integrated development with an expert system for obtaining scheduling knowledge
in an FMSDS environment.

2. Rescheduling strategies can be incorporated in MCRO to improve solution quality
in a real-time operation. Instead of focusing strategies on the algorithms, the strate-
gies of handling the problems itself may provide fruitful results which consequently,
enhance overall productivity.

3. MCRO can be coupled with an efficient machine maintenance strategy to improve
solution reliability and quality. However, careful analysis on the matter should be
emphasized because of probable increased computational complexity of the solution
presentation.
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4. Worst-case scenarios (i.e., machine breakdown) can be simulated to further test
MCRO capabilities. Flexible and dynamic nature of the real production schedul-
ing problems can further test the limits of MCRO in producing optimal solution.
Furthermore, possible enhancements can also be identified.

5. A systematic methodology can be developed to add value to the major MCRO
operators (e.g., collision, synthesis, and decomposition) specific to the scheduling
problem.

6. Other hardware elements of the manufacturing system can be included to develop
an integrated scheduling task. Therefore, MCRO can be applied in every element
of the manufacturing system individually or in parallel, by conducting micro-level
management of the elements of the manufacturing system using MCRO.

7. Conclusion and Future Work. This study proposed the MCRO algorithm to solve
the problem in FMSDS subject to machine maintenance. The MCRO parameters and
operators were presented, and comparisons with other algorithms in similar fields were
conducted to justify the overall performance and optimization capabilities of the proposed
MCRO algorithm. The satisfactory results obtained in this study serve as a motivation
to extend this work to other complex and challenging environments of manufacturing,
such as conforming to different technological requirements, considering cost reduction
while inducing profit, managing skilled but scarce labor, and dynamically adapting to the
costumer or consumer demands.

Nevertheless, datasets obtained from the literature and benchmarks are mere represen-
tations of real-word manufacturing problems, which are significantly more complex and
difficult to comprehend. Achieving conceivable results that satisfy the actual manufactur-
ing problem is still far from reality. Future work may include the extended or hybridized
design of the MCRO algorithm, comparison of different maintenance strategies, large job
and factory data, and consideration of comprehensive parameters and analytical results.
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