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ABSTRACT. This paper is devoted to be concerned with the mean square exponential sta-
bility of a stochastic fuzzy cellular neural network with distributed delays. With the help
of the stochastic analysis approach and Ité differential formula, a set of sufficient condi-
tions on mean square exponential stability have been established. Finally, an example is
given to demonstrate that the proposed criterion is useful and effective.
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1. Introduction. Over the past decades, since the important applications of cellular
neural networks (CNNS) in various fields such as signal process, combinatorial optimiza-
tion, image processing and recognition problems, they have been extensively studied [1,2].
In CNNS, processing of moving images requires the introduction of delay in the signals
transmitted among the cells [3]. It is well known that time delays are often a source of in-
stability of cellular neural networks, therefore, considerable attention has been paid to the
problem of stability analysis of cellular neural networks with delays, and a lot of research
results have been reported, see for example, [4-13]. In real nervous systems, stochas-
tic disturbances are nearly inevitable and affect the stability of cellular neural networks
[14,15]. Recently, stability analysis of stochastic cellular neural networks with time delays
has received much attention, see, for example, [5-13]. In mathematical modelling of real
word problems, we encounter two inconveniences, i.e., the complexity and the uncertainty
or vagueness. In order to take vagueness into consideration, fuzzy theory is considered as
a suitable setting [16]. There are many papers that deal with this topic, and one can see
[17-24,33-36].
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In 2006, Huang [25] had investigated the exponential stability of the following fuzzy
neural networks with distributed delay

dZL'Z' = -
o = —diwi(t) + Y aifila; (D) + Y ey + 1
o =
+ A / ) fi(a;(s)ds + N\ Tn,
j=1
+ \/ Bij / ki(t = s) fi(x;(s))ds + \/ Hijpy,
T ]:1
xi(t) = %(t), -7 <t <0, (1)
where 1 = 1,2, -+, x;, u;, I; denote the state,input and bias of the 7th neuron, respectively.

The integer n corresponds to the number of units in a neural networks. f; denotes the
signal propagation function of the jth unit. d; > 0 represents the rate with which ith
neuron will reset its potential to the resting state in isolation when disconnected from
the network and external inputs. a;;,b;; are elements of feedback template and feed-
forward template. «;;, Bi;, T;; and H;; are elements of fuzzy feedback MIN template,
fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward
MAX template, respectively. A and \/ denote the fuzzy AND and fuzzy OR operation,
respectively. 0 < 7(t) < 7, 7(t) represents transmission delay at time ¢ and 7(¢) : Ry —
[0,7] is continuously differentiable function such that 7(¢) < k < 1. ki(s) > 0 is the
feedback kernel, defined on the interval [0, 7] when 7 is a positive finite number or [0, +00)
while 7 is infinite. Kernels satisfy fOT kj(s)ds =1, j = 1,2,--- ,n. The initial conditions
of (1.1) are of the form z;(t) = ¢;(t), —7 <t < 0, where ¢; is bounded and continuous
on [—7,0] when 7 is finite or (—oc, 0] when 7 is infinite, i = 1,2,--- | n.

Here we shall point out that in practical implementation of neural networks, stochastic
phenomenon usually appears in the electrical circuit design of neural networks, for ex-
ample, the synaptic transmission is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic causes. Moreover, stochastic
fuzzy cellular neural networks have important applications in processing moving images
and associative memories, specifically for circuit design and construction. Yu et al. [37]
had revealed that a neural network could be stabilized or destabilized by certain stochastic
inputs. Thus, it has important theoretical value and tremendous potential for application
in running mechanism of neural networks. However, Huang [25] did not consider this
aspect. Therefore, we think that it is worthwhile to investigate the dynamical behavior
of the stochastic version of model (2). Motivated by the analysis above, we will consider
the following system

dv; = | —d;z(t) + Z aij fi(z(t)) + Z bij fi(w;(t) — 75(t))

+Z% . /\ o [ tt =t + \ T

+ \/ Bij /t kj(t — ) fi(z;(s))ds + \/ Hm‘#j] dt

i=1
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D0t (1), 5 (t = 75(8))) s (1),

wilt) = eult), T <1<, )

where o(t, z(t), z(t — 7(t))) = (04t, x(t), x(t — 7(t)))nxn is the diffusion coefficient matrix
and w(t) = (wi(t),--- ,wy(t)) is an n-dimensional Brownian motion defined on a complete

probability space (€2, F, P) with the natural filtration {F};},>¢ (i.e., F; = o{w(s) : 0 < s <
t}). o(t) € L ([=7,0], R") is the initial function vector, where ¢(t) € L% ([-7,0], R")
denotes the family of all C-valued random processes £(s) such that £(s) is Fy-measurable
and fET E||&(s)||Pds < oo. Throughout this paper, we assume that f;(.) and oy;(t, ., .) are
locally Lipschitz continuous and satisfy the linear growth condition as well. Therefore,
it is known that system (2) has a unique global solution on ¢ > 0, which is denoted by
o(t) = (21(t), -+ 7a(t))".

We know that there are at least three different types of stochastic stability to describe
limiting behaviors of stochastic differential equations: stability in probability, moment
stability and almost sure stability. Mao [26] pointed out that the mean square exponential
stability is one of the most useful concepts because it is closer to the real situation. For
example, mean square exponential stability implies that the second moment of the solution
will tend to the trivial solution exponentially fast [27]. In recent years, there are some
papers which is concerned with this topic, one can see [28-30].

The main object of this paper is to investigate the mean square exponentially stability
of system (2). By employing a Lyapunov function, stochastic analysis and inequality
technique, the criteria ensuring mean square exponential stability are established. The
proposed results generalize and improve some of the earlier publications.

The remainder of this paper is organized as follows. In Section 2, the basic notations
and assumptions are introduced. The criterion for checking the mean square exponentially
stability for (2) is given in Section 3. An illustrative example is included in Section 4. We
conclude this paper in Section 5.

2. Preliminaries. Let C' = C([—7,0], R") be the Banach space of continuous func-
tions which map [—7,0] into R™ with the topology of uniform convergence. For any
(21(8), 22(t), -+, 2a(1))T € R", we define [z (1)]] = (7, i ()) >

Let C?!([—7,+00) x R", R,) denote the family of all nonnegative functions V' (¢,z) on
[—7,00) x R™ which are continuous twice differentiable in 2 and once differentiable in t.
If Ve C?'([—7,+0) x R", R, ), define an operator

LV(t,x) = Vi(t, x) + Val(t, 2) [ di;(t +Z%fy 75 ))+sz~jfj(fvj(t)—7j(t))

+/\am/ s) fi(x;(s) ds—l—\/ﬁm/

t—7

ki(t = s)f (ij(S))dS]

+%trace [UiTV;;IUi] , (3)

where
oV (t,x)

A (

oV (t, ) oV (t,x)
: )

ox; 7 0w,
Vo= (Grgl) = ttalt)ate = (o)
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We assume that the following conditions hold true:
(H1) There exist positive constants v;,7 = 1,2,--- ,n, such that

|fl(u) - fl('U)| < Vi|u_ U|7 fz(o) =0, for u,v € R.

(H2) 0, : R x R™ x R™ — R™ ™ is locally Lipschitz continuous and satisfies the linear
growth condition. Moreover, o; satisfies

trace[o;(t, z(t), z(t — 7;(t))) < Oulzi ()] + Ogilws(t — 7 (1), 04(t,0,0) =0,
where ©; and ©4; are known constant entries with n dimension.

Remark 2.1. The assumptions (H1) and (H2) are reasonable and acceptable in practice.
In (H1), for example, we can let the signal propagation function of the jth unit be f; =
s(ju+1|—|u—1|), which is often used in the practical implementation of neural networks.
In (H2), o;(t,z(t),z(t — 7j(t))) is the diffusion coefficient matriz which is reasonable.

If the assumptions (H1) and (H2) hold, then (2) has a unique global solution on ¢ > 0
(the proof similar to those in [2,26,31]). It is obvious that (2) admits an equilibrium
solution z*(t) = 0.

Definition 2.1. [26] The trivial solution of (2) is said to be mean square exponentially
stable if there is a pair of positive constants X and G such that

E||x(t; to, z0) || < Gllao|le 1),
ont >ty for all xo € R™, where X\ is also called convergence rate.

Lemma 2.1. [32] Let © = (z1(t), 22(t), - , 2, ()" and y = (y1(t), y2(t), -+ ,yn(t))" be
two states of system (2). Then

/\am f] /\am f] <Z|a23 ||f] ( )|

and

\/BZJ )fi(@ \/Bw ) fily <Z|ﬁm )1 fi() = i)l

3. Exponential Stability of the Global Solution. In this section, we present some
results on exponential stability of the global solution of system (2).

Theorem 3.1. Assume that (H1) and (H2) hold. Further suppose that there exist con-
stants 0, >0 (j =1,2,---,n) such that

—2d; +Z|%|Va+ Z —|aﬂ|1/Z

=tz O

+ Z |bij|vj + Z(|aij| + Bi1)v; + O
—~ —

+ Z |b]l|l/l Z _](|a]2| + |sz|)l/z + @2z < 0

Z .
J=L1j#i Jj= LJ#Z

then the equilibrium solution x* of system (2) is exponentially stable in the mean square.
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Proof: Suppose that z* = (z}, x5, -+ ,z%)7 is the equilibrium point of system (2). Let
zi(t) = z;(t) —xf (i=1,2,---,n). Then

dZ dzz Zam f] Z] )_f](x;)]

+ Z biil£(2i(t) = 73() + 73) — f3(})]

+ /\ azy/ $)fi(zi(s) + xj)ds — /”\ v /; ki(t — s)fi(x})ds

+ \/Bzy/ kj(t —s)f(z(s) + )ds— \/5” /t— kj(t_s)fj(x;)dsl dt
+ Z 03 (t, 2 () + @3, 2(t — 7;(t)) + @) dw; (1), (4)

where z;(t) = W, (t), ¥;(t) = pi(t) — zF, t € [-7,0].
Since

[ 2d; —|—Z|a”|1/]—|— Z —|ajz|yZ

=11

+ Z |bij|v; + Z(|%‘| + 1Bi)vj + O
p p

O'.
+ Z |bJZ|Vz Z ﬁ(|aji| +1Bjil)vi + O2; < 0,

=t 7 j=1,j#i "

we can choose a small positive constant £ > 0 such that

— 2d, —|—Z|a”|uj + Z az|vi

=tz 7t

+ Z |bij|v; + Z(|%‘| + 1Bil)vi + O
j—l =1

o
+ Z |bJZ|Vz Z ;J.(|aji| + Bl )vi + O < 0.

Jj=1 J#z J=L1j#i
Now we consider the Lyapunov function

n

V(t,2) =Y olz(t) e, (5)

=1

Calculating the differential operator LV (¢, x) of V' along the solution x(t) of (2), we have

Zaz{egt [5|Zz (D7 + 2]i(1)] ( dizi(t +Z% iz (t) + z3) —fj(x;f))>
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+ Z bij (f3(2i(t) — 75(t) + 27) — fi(27))

$)fi(zi(s) + )ds

e [k
/ ds+\/623/t Byt — )3 (5(s) + 27)ds
/ |

+ Z oetracelo (t, 7 (t), #(t — 7:())oi(t, (1), z(t — (1))
Etzal{ di) |zt |2+Z|azy|2’/1|32( )z ()]

+ Z 1033120123 ()25 (t = 75()] + Y (s | + [Big ) 2v5 200125 (2)]

w;)ds)

| /\

+@1Z’|Zi(t)|2 + ®2i|zi(t — Ti(t))|2}.

Estimating the right of inequality above by basic inequality 2ab < a? 4 b?, we have

LV(t,x) < e Zai{(e = 2d;)|z()* + ) lagslvs () + 12 (0))

i=1 j=1

+ 3 bl (12 (0 + |2 (t — 75(1) )

J=1

+ 3 (ol + Bz + 12(1))

j=1
+@1Z|Zl(t)|2+@22|Zl(t—7'l(t))|2}
< 68t20'i{ (e — 2d;) +Z|am|uj+ Z |aZ]|1/Z
i=1

=ty O
n
+ 3 [bijly; + Z(|%‘| + |Bi)vi + O

|2i(1)]”
7=1 7=1

n n

g;j g;j

—|bjilvi — % il )Vi + Oz
> b+ Y “llesil + (Bl + O

i=lj#i ! i=lji !

x|zi(t — Ti(t))|2}

+
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n

< Oge" sup Z |2i(t + s)|* <0,

—7<5<0 i1
where
©p = 0; |e —2d; + Z |aij|v; + Z —|aﬂ|1/Z
jetgti O
+ Z |bij|v; + Z(|C¥z‘j| + |Bi)vj + O
= =
+ Z |byz|’/z Z ﬁ(|aji| + |Bjil )i + ©9; < 0.
j=ta#i 7! j=lj#i
Then
E[V(t,2)] < E[V(0,9)], t>0. (6)
On the other hand,
EV(0,9)] = E | Y oi|Wi(0)*| < max {0;} E PLACINE (7)
i=1 =1
E > E ()2
[V(t,2)] > € min {o;} Zl EAGIN 0 (8)
It follows from (6)-(8) that
E[]|2(t, 0)[P] < GoE[[|¥(0)]*)e”, (9)
where
Gy = mE-lX1<i<n{o'i} > 1.
min; <;<, {03}
Thus, the equilibrium point of system (2) z* = (2%, 2%,--+ ,2%)" is exponentially stable

in the mean square. The proof of Theorem 3.1 is complete.

4. Illustrative Examples.

Example 4.1. Consider the following stochastic fuzzy cellular neural network with dis-
tributed delays and time—varying delays

—dzi(t +Zawfj 74 ))+Zbijfj(ffj(t)—7j(t))

2
+ch]/'L] + 1, + /\%/ $)fi(x(s))ds + )\ Ty

i=1

d.fL‘i =

+ \/ Bij /t ki(t = 5)fi(x(s))ds + \/ Hij#j] dt

Dot (1), 5t = 75(8))) e (1), (10)

where

apn =1, ap =1, ay =1, as =2,
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bii =1, bia =1, by = 1.2, by =1.2,

cin =1, ci2=1, ea1 =1, =1,
ap; = 0.5, a3 =0.5, ag; =0.5, ag = 0.5,
Bi1 = 0.5, B2 =0.5, Bor =0.5, Bor =0.5,
on =1, =1, 091 =1, 099 =1,
Ty=1, Tup=1 Ty =1, Ty =1,
Hy =1, Hi=1, Hy =1, Hyp=1,

di =10, dy =9, I =2, [, =2.

Here I) = 2 and I, = 2 denote the input of the 1th neuron and 2th neuron being 2,
respectively; the number of units in the neural networks (10) is 2. f; denotes the signal
propagation function of the jth unit; the rate with which 1th neuron will reset its potential
to the resting state in isolation when disconnected from the network and external inputs
is d; = 10, the rate with which 2th neuron will reset its potential to the resting state
in isolation when disconnected from the network and external inputs is dy = 9; a;; = 1,
a2 = 1, as; = 1 and asy = 2 are all the elements of feedback template; by; = 1, bis = 1,
by1 = 1.2 and byy = 1.2 are all the elements of feed-forward template; a1 = 0.5, a9 = 0.5,
as; = 0.5, asy = 0.5 are all the elements of fuzzy feedback MIN template; 3;; = 0.5,
Bi2 = 0.5, Bo1 = 0.5, Bae = 0.5 are all the elements of fuzzy feedback MAX template;
Tin =1, Tis =1, Tyy =1 and Ty = 1 are all the elements of fuzzy feed-forward MIN
template; Hy; = 1, Hio = 1, Hy; = 1 and Hyy, = 1 are all the elements of fuzzy feed-
forward MAX template; 7(¢) represents transmission delay at time ¢. Obviously, all the
parameters in model (10) have concrete physical meaning.

Let
@11 - 12, @12 - 15, @21 - 2, @22 - 2,
£@) = e+ 1= lo—1), 5 = 1+cos2t (j=1,2)
Obviously, v; =1 (j = 1,2) and the conditions (H1)-(H3) hold. By simple computation,
we have
2

2 2 2
o
o1 [—2d1 + ) oyl + Y U—i|@j1|l/i + 3 bl + > (ol + 1By + On
j=1

i=Lj#1 i=1 i=1

2 2
i, Tjo _ o
+Z O_1|b]1|1/1+ Z 0_1(|C¥31|—|—|B]1|)l/1—|—@21 7.8 <0
J=1,j#1 j=1,j#1
and
2

2 2 2
O- .
02[—%b4—§:hhﬂw'F > ;imﬂhﬁ*‘§:ﬂ®ﬂ%"¥§:ﬂa%|+|ﬁﬂﬁﬁ4‘9m
=1

i=1§#2 =1 =1

2 2
o o
+ E —]|bj2|l/2+ E —](|Oé]2|+|B]2|)V2+@22:—19<0
02 L, 02
J=1,57#2 J=1,57#2
It follows from Theorem 3.1 that the equilibrium solution z* of system (2) is exponentially
stable in the mean square.

5. Conclusions. In this paper, we have investigated the exponential stability exponential
stability in the mean square for a stochastic fuzzy cellular neural network with distributed
delays and time-varying delays. By means of the stochastic analysis approach and Ito



ON THE MEAN SQUARE EXPONENTIAL STABILITY 255

differential formula, we obtain the sufficient condition ensuring the exponential stability
in the mean square for the stochastic fuzzy cellular neural networks with distributed delays
and time-varying delays. The methods used in this paper are novel and can be extended
to numerous other types of neural networks. These problems will be discussed in near
future. In addition, one example illustrates the effectiveness of our main results.
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