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ABSTRACT. In this paper, the design problem of feedback controller for Takagi-Sugeno
fuzzy models is considered. Some new sufficient conditions will be given to ensure the
exponential stability of the fuzzy control uncertain systems. A simulation of an intercon-
nected tanks will be given to illustrate the applicability of the main result.
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1. Introduction. Over the past thirty years, Takagi-Sugeno (T-S) fuzzy model has at-
tracted great attention, since it is proved to be a very good representation of a certain
class of nonlinear dynamic systems. The common practice is as follows. First, this fuzzy
model is described by a family of fuzzy if-then rules which represents local linear input-
output relations of the systems. The overall fuzzy model of the system is achieved by a
smooth blending of these local linear models through the membership functions. Then,
based on this fuzzy model, the control design is worked out by taking full advantage of the
strength of modern linear control theory. Moreover, it has been proved that a linear T-S
fuzzy model is a universal approximator of any smooth nonlinear system on a compact set
where the stability and controller design issues on T-S fuzzy systems have been discussed
in the extensive literature, and Takagi-Sugeno fuzzy models [2, 3, 7, 9, 10, 11, 12, 13, 14]
are nonlinear systems described by a set of if-then rules which gives local linear repre-
sentations of an underlying system. Such models can represent exactly a wide class of
nonlinear systems. Hence, it is important to study their stability or the synthesis of sta-
bilizing controllers. The stability analysis of nonlinear systems has received considerable
attention [1, 4, 6, 15, 16]. We are interested in studying the global uniform exponen-
tial stability for a class of uncertain Takagi-Sugeno fuzzy systems when the origin is an
equilibrium point.

In this paper, a new approach for the stability analysis is proposed. This approach
allows the computation of the bound which characterizes the exponential rate of con-
vergence of the solutions under some assumptions on the perturbed term. The common
quadratic Lyapunov function and parallel distributed compensation controller are used to
show the exponential stability of solutions of the uncertain T-S fuzzy systems, provided
that the uncertainties are supposed uniformly bounded by a known function.
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In this work, we give some new sufficient conditions to ensure the asymptotic stability
of a class of uncertain fuzzy systems. Furthermore, an illustrative numerical example is
given. The remainder of this paper is organized as follows. Section 2 reviews the conven-
tional T-S fuzzy model and issues about stability. Section 3 presents the global uniform
exponential stability for T-S fuzzy uncertain systems at the origin where some controllers
are constructed to ensure the exponential stability. Also new LMIs are presented in order
to handle the uncertainties. Section 4 presents the example of the interconnected tanks.
Finally, Section 5 draws the conclusions.

2. Takagi-Sugeno Fuzzy Control System. Exact mathematical models of most phys-
ical systems are difficult to obtain because of the existence of complexities and uncertain-
ties. However, the dynamics of these systems may include linear or nonlinear behaviors for
small range motion. Lyapunov’s linearization method is often implemented to deal with
the local dynamics of nonlinear systems and to formulate local linearized approximation.
So, the complex system can be divided into a set of local mathematical models. Takagi
and Sugeno have proposed an effective means of aggregating these models by using the
fuzzy inferences to construct the system.

Design of fuzzy control system. The T-S fuzzy model is given by:
Rule [: If z(t) is Fj; and 29(t) is Fjp ... and z,(t) is Fj,, then
i’:All’—f—Blu—f—fl(t,LE), lzl,...,T (1)
where x(t) € R™ is the state vector, u(t) € R™ is the control input vector, A;(n,n) constant
matrix, B;(n, m) matrix control input, the functions f; represent the uncertainties of each
fuzzy subsystem and are time-varying for [ = 1,...,r. F is the fuzzy set (k = 1,2,...,p),
2(t) = (21(¢),...,2,(t))" is the premise variable vector associated with the system states

and inputs and r is the number of fuzzy rules. The center of gravity defuzzification yields
the output of fuzzy system:

S w()(Aa) + Bul) + flt,z)
o wi(2)
where w;(z) =[]}, Fii(z:) and F};(z;) denoted the grade of the membership function Fj;,

corresponding to z;(t).
Let p(z) be defined as:

s

o w(2)
(e = @)

Then, the fuzzy system has the state-space form:

&= m(z)(Am(t) + Bu(t) + fi(t,x)).

Clearly, Y °,_, u(z) =1 and py(z) > 0for I =1,...,7.

The following assumption is made regarding the T-S fuzzy system (1). The pairs
(A, By), Il = 1,...,r are controllable. That is, the nominal fuzzy system is locally con-
trollable.

Based on this assumption, a state feedback control gain K; can be obtained by pole
placement design or Ackerman’s formula, such that each local dynamics is stably con-
trolled. The representation of the global control input matrix, denoted by B, is in the

form:
B = ZHJIBI-
=1
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This means that the global control input matrix dominates the control performance. The
design of the fuzzy controller can be taken as a linear state feedback control for the system
(1) which can be defined as:

Rule [ : If z(t) is F;; and 25(t) is Fjp ... and z,(t) is Fj,, then
u(t) = Kiz(t), 1=1,2,...,r,
where K is the local state feedback gain. Consequently, the defuzzified result is:

u(t) = wu(z)Kix(t).

As the first step, we need to recall what is meant by uniform global exponential stability
of dynamic systems (see [1, 3, 6]). Consider a system described by

&= F(t,x) (5)
with ¢ € Ry being the time and x € R” being the state.

Definition 2.1. The system (S) is said to be globally uniformly exponentially stable, if
for all x(ty) € R*, we have:

=)l < AMa(to)lle "), for all t > to,
with v >0, v > 0.
The goal of this work is to find some sufficient conditions such that the fuzzy system

(1) is globally uniformly exponentially stable.

3. Control of Fuzzy Systems with Uncertainties. Consider the T-S fuzzy model

(1):
Rule [ : If 2 (t) is Fj; and 25(t) is Fjp ... and z,(t) is Fj,, then

T =Ax+ Bu+ fi(t,x), I=1,...r
The functions f; represent the uncertainties of each fuzzy subsystem and are time-varying

satisfying the following assumption:
(H) Foralll=1,...,r,

1t )| < pu()||=l], V& =0, Vo eR",

where p; are some nonnegative continuous functions, such that p(0) = 0.
The representation of the global nonlinearities is denoted by the following bound posi-
tive continuous function, p : R* — R, such that p(0) = 0 which has the form

o) = [Z ﬁ(x)]

We will use the following fuzzy controller:

u(t) = Zuj(z)Kj:c(t). (2)

2

The closed-loop system is given by

i(t) = Z Zﬂi(z)ﬂj(z)[Ai + BiKjlx(t) + Zﬂifi(ta x)

i=1 j=1

= Z Z 11; Giiw(t) + 2 Z pift Gz (t) + Z pifi(t, )
i—1

i=1 j=1 i<j



284 M. KSANTINI, M. A. HAMMAMI AND F. DELMOTTE

where

Gi = Ai + BiK;
1
Gij = 5(AZ- + B;K; + A; + B;Kj).

The controller synthesis initially considers the stability of the local fuzzy dynamics.
That is, the stable feedback gains are determined for every subsystem. Suppose that there

exists a symmetric and positive definite matrix P, and some matrices K;, i = 1,...,r,
such that the following stability conditions held:
(A; + BiK;))"P 4+ P(A; + BiK;) < —Qy, i=1,...,1, (3)

where (); is a positive define matrix.

Based on this assumption, each subsystem is locally controllable and a stable feedback
gain is obtained. Let us consider V(z) = 27 Pz as a Lyapunov candidate function. The
derivative of V' (z) with respect to time is,

Z;ﬂ "GP + PGy)a + 22#»@ (G5 P + PGyj)v + 2$TPZ/~%fz (t 7).

1<j =1
Regarding each matrix (GLP + PGj;), one has
Amin(GEP + PGy)||z||? < 27 (GEP 4+ PGyi)r < Amax (G5 P + PGy;)
Amin(-) (resp. Amax(.)) denotes the smallest (resp. the largest) eigenvalue of the matrix.

Define
. = max )\maX(GZZ;P + PGy)
i\j

for 1 <1 < j <r. A relaxed condition concerning the coupling effect is expressed as:

Zﬂzﬂj GTP‘*'PGU)$ < kll=|?

1<j

where k = ’"(T—Q_I)a. Indeed, one has

Zuzug (GEP + PGij)x <) piftjhmax(GHP + PGyy) .

1<j 1<j
It follows that,

Z,W] (GLP + PGyj)z < Z,W] max Amax(GEP + PGyj)||z|*.

1<j 1<j
Hence,
r(r

__1)
= a———||=||".

r
Zuzug (GLP+ PGij)z <y pipsyl|z]® 5

i<j 1<j
Then one can state the following theorem:

Theorem 3.1. If the assumption (H) is satisfied regarding the fuzzy system (1) and there
exists a common positive define matrixz P and some feedback gain matrices K;, i =1,...,r
such that the reduced stability conditions (3) are satisfied, then the fuzzy closed-loop system
is guaranteed to be globally uniformly exponentially stable with the control law (2) provided
that p satisfies:

1 1
p(z) < - | oinf Amin(@Q4) Y pi —2k—1 (4)
v CRD Y,
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with I > 0 and

.....

{ > 0 can be chosen such that

inf A (Qi) D 4 > 1.

i=1,...,r T

Note that, condition (4) implies that,

2/|P||p(z) (Z“z) < inf Auin(Q2) Zuz—%—l 1>0

and so,

=

= Anf A (Q; Z,ul+2k+2||P||p (Z”l> < —I, 1>0.

i=1
Proof: Using the Lyapunov function

V(r) = 2" Pax.

The derivative of V' (z) along the trajectories of (1) in closed-loop with (2) with respect
to time is given by,

Z/ﬁ T(GLP + PGz + QZMM (GijP + PGyj)z + 2$TPZ“2fZ (t 7).

1<j =1

Thus,

Zu%m Dl + 2kl + 2P S gl
i=1
Using Cauchy—Schwartz inequality

1
2

Zm] [Z pz-w] ol

Zufkmm (@)l ]1* + 2]|[|* + 2/ P

=1
It follows that,

V() < (= in (@) 342+ 26+ 21Pole) (Zuz) ol

1=1,...,
=1

Since p(z) satisfies (4), then V(x) is negative define function and one can obtain an
estimation as follows: ‘
V(z) < —lljz]]?, 1 >0.
Taking into account the fact that
V(z) = 27 P < Apax(P) |||
we obtain

. [

Vig) < ————
()< =N (P)

then all trajectories satisfy the following estimation for all £ > t;, > 0 and initial condition

l'(tg) € R™

V(z), 1 >0,

el < yllw(to) e,
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~v and v are positive constants.

Hence, the fuzzy system (1) in closed-loop with (2) is globally uniformly exponentially
stable.

Now, let us consider the following uncertain fuzzy model:

Rule [: If z(t) is F;; and 25(t) is Fjp ... and z,(t) is Fj,, then

= A+ Bu+ B fi(t,x), l=1,...,r (5)
The functions
fi: RxR* — R"

represent the uncertainties of each fuzzy subsystem and are time varying satisfying the
following assumption for [ =1,...,7:

(H')
Forall [=1,....r, [|fi(t,2)| < p¢(z) < p(x), YVt >0, Ve e R,
where p; are nonnegative continuous functions, such that p;(z) < p(z) with p being a

positive continuous function, such that p(0) = 0.
We will use the following composite fuzzy controller:

u(t) =Y piKx + i, (6)

j=1

u is related to the uncertainties, which is chosen in the following form:
BT Pxzp(x)

i(x(t) = | B P|| 4 &(x)||[]?

if ©#£0

0 it z=0
for a certain positive function £(z) > 0.

Theorem 3.2. If the assumption (H') is satisfied regarding the fuzzy system (5) and there
exists a common positive define matrixz P and some feedback gain matrices K;, i =1,...,r
such that the reduced stability conditions (3) are satisfied, then the fuzzy closed-loop system
is guaranteed to be globally uniformly exponentially stable with the control law (6) provided
that p satisfies

pz) < 281@ <—Z_ 1nf )\mm Z“l + 2k> (7)

with £(x) > 0 and

1
k< 3 1nf )\mm Z“l

1=

Note that, given p(z), e(x) can be chosen small enough in such a way (7) holds.
Proof: Taking into account the fact that

B = Z By,
=1

the derivative of
V(z) = 2" Px
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is given by:

Z pia" (GLP + PGig)x + 2 Z pipja” (GLP + PGy)x + 22" PBi

1<J

+ 22" P Z i Bi fi(t, x).

i=1
Thus, for x # 0, one gets

2T PBBT Pxp(x)
|BT Px|| + &(x) |||

V(r) < =Y i Amin (@) || + 2k[|2]|* + 2[|2" PB]| o) — 2
i=1
It follows that

; B Px||p(x)e(x)|«]*
V(z) < — f Amm (Q:) § 24 2kl|2|? 2” .

=1
Hence,

Vie) < — inf Auin(@i) Y s lloll® + 2k ]| + 26(2)= () ||

i=1,..., -
=1

and so,

Vir) < | = inf Auin(Qi) > p? A+ 2k + 2p(x)e(x) | |||
i=1
Since p(z) satisfies (7), then for a suitable choice of £(z),

— inf Amin(Q0) > 17 + 2k + 2p(z)e(x) < 0

1=1,...,r py

and then one can obtain an estimation on V(x) as
Viz) < ||| 1> 0.
Taking into account the fact that
V(z) = 2" Pz < Aax(P)||2]|*
we obtain

V(x) < — V(z), 1 >0,

l
Amax (P)
then all trajectories satisfy the following estimation for all £ > t;, > 0 and initial condition
l'(tg) € R™

z(@&)]| < mll(to)fle ),
~v1 and v, are positive constants.
Hence, the fuzzy system (5) in closed-loop with (6) is globally uniformly exponentially
stable.
Note that, given p(z) we can choose £(z) > 0 small enough such that (7) holds and
then

— inf Anin(@;) Zul+2k—|—2p()() =1, 1 >0,

i=1,...,r "

provided that

1
k< 3 1nf )\mm Z,ul
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According to the above analysis, the design procedure for T-S fuzzy systems is summa-
rized as follows:

Step 1: Verify that assumptions (A;, B;) are controllable for { =1,...,7.

Step 2: Verify that assumption (#) (resp. (H')) is satisfied.

Step 3: Solve the Lyapunov Equation (3) to obtain P, K;, Q;, i =1,...,r.

Note that, for simplicity one can choose Q; = I.

Step 4: By using the control toolbox, execute the nonlinear program based on equations

(GEP+ PGy), 1<i<j<nm,

to determine k.
The nonlinear programming is expressed in the following way:
Determine
)\max(GZZ;P_F PGZZ)
and then
@ = Max Aoy (G5 P + PG;)
irj

forl <i<j<r.

Step 5: Construct the fuzzy controller (2) for (1) (respectively (6) for (5)).

Step 6: Verify the condition (4) imposed on p(z) for a suitable choice of [ > 0, (respec-
tively for (7)) for a suitable choice of ¢(x).

4. Numerical Example. We will take the example used in [7]. The plant consists of
three interconnected tanks used in chemical, pharmaceutical and agroalimentary indus-
tries.

The goal is to obtain a mixture of two liquids in the third tank exiting with a previously
fixed concentration of every liquid in the mixture. The first contains a liquid A and the
second a liquid B. These two tanks flow into tank 3 that supplies consumers. The
pumps supply the tanks respectively by variable flows. We suppose that these flows are
proportional to the voltages applied to the Moto-pumps. The dynamic of these actioners
are neglected.

Both pumps convey an amount of liquid ¢;(¢) and ¢e2(t) that are proportional to the
applied controls u;(t) and usy(t) respectively.

Tank 1 Tank 2

‘=\ a1 (t) Gez mﬁ‘
Pump 1 Purmp 2

g Tank 3

FIGURE 1. Interconnected tank system
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Nonlinear model:

The level of each tank depends on the difference of the liquid flowing into the tank and
the liquid flowing off.

Depending on the section of the opening that can be considered by the constant p;, the
amount of liquid flowing off by an outlet valve according to Torricelli’s law is:

Qi(t) =PivV ni(t)a NS {17273}'

The amount of water ¢;(t) flowing into tanks 1 and 2 can be described as:
gii(t) = pu(t)ui(t), i€ {1,2}

pi = pSin/2g, i€ {1,2,3}

g is the gravitational constant, p is the density of liquid and S; is the section of valve.
Based on these physical relations one immediately gets the equations to describe the
nonlinear dynamic behavior of the plant:

1 t —piv (t) —+ pu(t)ul (t)
Na(t) = —par/n2(t) + paa(t)us(t)
n3(t) = piy/ni(t) + p2y/na(t) — p3y/n(t)
T-S fuzzy model:

A T-S model can be designed to represent exactly, in a compact set of the state variables,
a nonlinear system (see [2, 4]). The following property can be used for every bounded

function f(z) € [ff].

p11 and poy are constants,

_f(f”)_i— - (fv)
fla)= " T I 2
The non-linearities are:
fi(t):\/r_i(t) elf.fil, i€{1,2,3}.
Defining
Z fi—f

We obtain eight rules with:
hy = wiwyws,
hy = wiws(1 — ws)
and so on. With
r = (ny,n9,n3)"
the state vector, a continuous T-S fuzzy model is given by:

x—Zuz x(t) + Biu(t)) + Did(t). (8)

Then the fuzzy system has the state-space form:

x—Zul t) + Biu(t) + fi(t, x)).

This means that the global Control input matrix dominates the control performance. The
design of the fuzzy controller can be taken as a linear state feedback control for the system
(1) which can be defined as:

Rule i: If 2(t) is F;; and 2(t) is Fjo ... and 2,(t) is Fj,, then
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u(t) = Kx(t), i=1,2,...,s,
where K is the local state feedback gain. Consequently, the defuzzified result is:

u(t) = Z 1 (2) Kz (t).

We take for an example,

—P1
/Tl max _?)2 0
Al: 0 VN2 max 0
p1 P2 —DP3
V1M1 max /12 max /13 max
and
1 0 Py 0
Vie{l,...,8}, Di=|0 1|, B;=|0 Py
01 0 0

The premises of the 8 models (8) are based on the measurable variables n,, ny and ns.
The bounds are:

N1 min = N2min = N3 min = il = iZ = i3 = 0.0001,

N1 max = N2max — fl = f2 - 557

N3 max = f?) - 107
and o = 2.

We realize that control gains are very similar. That is not surprising, and we find well
the property indicated in [2] when the matrices B; are constants.

12 12
10 10
) )
EE EE
= =l
[ [
4 4
2f ] 2f
U5 10 15 2025 30 35 40 45 50
s 10 15 D428 3 35 40 45 50 22 3
12
10}
al
E§
o
[
af
Al

U5 5 7o 15 20_2'5'3'J|:| 35 40 45 &0
time (=

FIGURE 2. Levels in tanks 1, 2 and 3
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200

180 B

160 1

140+ .

120

100

80

60

40t

20+

0 I 1 1 1 I I I 1 1
0 5 10 15 20 25 30 35 40 45 50

time (s)
FIGURE 3. Control variables

For example we have:

6.2 —-03 —-0.6 0.3 3.3 —-03 23 03
K,=|01 6 19 17|, K¢=1]01 =5 12 1.7
-0.1 15 69 25 -0.1 1.5 =29 25

We choose the first output, g3 = 0.9m?®/s from 0s until 50s and 1.3m?/s after. To
guarantee a fixed relative concentration, the second output must be equal to 0. A two
dimension-disturbance was introduced at ¢ = 20s.

In Figure 2, we show the levels of liquid in the three tanks, and Figure 3 shows the
control variables.

Note that, if we introduce a two dimension disturbance on the state variables these
errors tend to zero.

Now, we compare this method with a classic method of linearization. For example, we
use the Taylor linearization [8].

Taylor linearization:
We recall that with n; = f(n;, u;). Taylor series can be written as:

0 0
F (e s) = flr ) + 2L (nis ) + 21 (5 — 1),
ani (nsi_usi) auz (nsiyusi)
ng and ug are the set points. After linearisation and with:
ni = (n; — ng;),
U = (u; — us;),
we obtain:
ﬁz(t) = —2\/:7@)77% + TZ"LNLZ'(t), 1 = 1,2
k-1
L Di Pk
ng(t) = n; — Ng; ng —Ngk), k=3
«(0) ;2 nsi(t)( )73 nsk(t)( £ M)
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0 b 10 18 20 25 30 35 40 45 50

0 b 10 158 20 25 30 35 40 45 50

0 b 10 158 20 25 30 35 40 45 50

FIGURE 4. Levels in tanks 1, 2 and 3
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o —

ui
u?

-20 .

40} -

50t J

_6[] 1 1 1 1 1 1 1 1 1
0 b 10 18 20 25 30 35 40 45 50

FI1GURE 5. Control variables

From this equation the linear model is:

i (t) = 7+ Ba(t); 7= (n —n,), &= (u—u,)
u(t) = n, F are control gain

Matrices of the system are:

27% 0 0
A=1 0 == 0
D1 b2 —p3
2yns1 252 2y/ns3
and
oY)
B=10 1

b o)

The comparison with Taylor linearization shows that the latter does not give satisfied
result: in Figure 4, ny, ny and ns are not better than in our approach, particulary when
we introduce disturbance.

5. Conclusions. In this paper, we have proposed new sufficient conditions for the sta-
bility of the fuzzy systems with uncertainties. These conditions guarantee the asymptotic
stability of such systems. The application of this result has been done on an intercon-
nected tank plant.
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