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ABSTRACT. In this paper, the problem of stochastic stabilization for a class of continuous-
time Markovian jump linear systems with linear fractional uncertainties is considered. By
multiple Lyapunov functional technique, the state feedback controller and dynamic out-
put feedback controller are derived in terms of linear matriz inequalities (LMIs), which
guarantees the consider system is stochastic stabilization. Two numerical examples are
presented to illustrate the effectiveness and the potential of the obtain results.
Keywords: Markovian jump linear systems, Stochastic stabilization, Linear fractional
uncertainties, LMIs

1. Introduction. During the past decades, the robust control problem for linear time-
invariant systems has been extensively investigated, and many problems have been suc-
cessfully solved such as the stability problem, the stabilization problem, the filtering
problem and their robustness. However, some industrial systems cannot be represented
by such a class of linear time-invariant model since the mode varieties of systems with
abrupt changes in their structure. These changes may be a consequence of random compo-
nent failures or repairs, abrupt environmental disturbances, and can be found in commu-
nications systems, aircraft control systems, robotic manipulator systems, manufacturing
systems, large flexible structures for space stations, etc. Such classes of dynamical sys-
tems can be described by the Markovian jump linear systems (MJLS) [1]. Therefore, it is
very important and significance to investigate the control and design for the Markovian
jump linear systems.

Many important results on Markovian jump systems have been researched, the stability
analysis and control design were addressed in [1-6]. On H,, filter design, [7] investigated
the H, filtering problem for singular Markovian jump systems, [8] dealt with the problem
of H,, filtering design for nonlinear Markovian jump systems. When time delays appear,
the delay H., filtering problem was discussed in [9], and [10] investigated the delay-
dependent filtering problem for Markovian jump linear systems. Significant progress on
neural network has been made in [11,12].

On the other hand, uncertainties have been introduced in many literatures to over-
come the negative effects of external disturbance, such as the norm bounded uncer-
tainties [13], polytopic uncertainties [14], exponential uncertainties [15] and linear frac-
tional uncertainties [16]. Linear fractional uncertainties, which represents the terms like
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Fariy() — GaryFar@(t)]™" that depend on an unknown, possibly time-varying and pa-
rameter r(t), to describe the neglected dynamics, prevent performance degradations and
any other phenomena such as aging. These problems are important and challenging in
both theory and practice, and there has very little literature on stochastic stabilization
for continuous-time Markovian jump linear systems with linear fractional uncertainties,
which has motivated us for this study.

This paper focuses on the robust control design for continuous-time Markovian jump
linear systems with linear fractional uncertainties. Two criteria are proposed to ensure
the stochastic stabilization of the considered closed-loop systems. By multiple Lyapunov
functional technique, the state feedback controller and dynamic output feedback controller
are also given. All the given results are formulated by LMIs, which can be easily checked
by using the MATLAB LMI toolbox. Finally, two numerical examples are provided to
show the effectiveness of the proposed techniques.

Notations: The symmetric term in a symmetric matrix are denoted by *, matrix PT
stands for the transpose of the matrix P; (2, F,P) is a probability space, where ) is the
sample space, I is the o-algebra of subsets of the sample space, and P is the probability
measure on [F; I and 0 represent the identity matrix and a zero matrix, respectively.

2. Problem Statement and Preliminaries. Let {r(¢),¢ > 0} be a continuous-time
Markovian process on the probability space (€2, F,P) with a right continuous trajectory
taking values in a finite set N = {1,2,---, N} with transition probability matrix A = [)\;]
being given by

Aijh 4+ o(h), P F J

[r(t+h)=j|r(t) =1 {1+)\iih+0(h), otherwise,

where h > 0; ]lliII(l) @ = 0 and );; > 0 is the transition probability rate from the mode i
_>

N
to the mode j at time ¢ when ¢ # j and Ay = — ) A
j=Li#i
Fix a probability space (Q2,F,P) and consider the following continuous-time Markovian
jump linear systems (1) and (2) with linear fractional uncertainties.

{x(t) _ x;(t) (t)2(t) + By (t)u(t) (1)

(2)

where z(t) € R" is the state vector; u(t) € R™ is the control input; y(t) € RP is the
measured output; we note r(¢) = i implies the i-th subsystem being activated. A;(t),
B,(t), C;i(t) are time-varying matrices with linear fractional uncertainties being given by

Ai(t) = Ai + Ma;Hpi(t)Nai, Bi(t) = B; + Mp;Hp,(t)Ngi, 5
with
Hai(t) = Fai()[I — GaiFai(t)]Y, Hpi(t) = Fpi()[I — GgiFpi(t)] !,

[ PN (4)
Cl(t) - FCZ(t) [[ - GCzFCl(t)]
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where A;, B;, C;, M a;, Mp;, Mc;, Nai, Ngi, Nc; and G 4;, Gg;, G¢; are constant matrices
with appropriate dimensions, Fl4;(t), Fp;(t), Fi(t) are time-varying matrices with norm-
bounded uncertainties satisfying:

Fai()Fai(t) < T, Fgi(t)Fpi(t) <1, Fey(t)Foi(t) <1

I-GYGa>0, I —GhGpi >0, [—GLGei >0
Consider the continuous-time MJLS (5), we give the following concepts and lemmas.
dx(t) = A;(t)x(t)dt
Lot o
Lemma 2.1. [13] : The MJLS (5) is stochastically stable if there exists a set of symmetric

and positive definite matrices P; > 0 such that the following holds for all admissible linear
fractional uncertainties and for every i € N:

N
AT ()P + PA;(t) + > A\jP; < 0
j=1

Lemma 2.2. [17]: Let I — GI'G; > 0, setting:
¢ ={H(t) = F()[I — G:Fi()]~, FI (1) Fi(t) < T}
Then, & can be rewritten as:
§={H,(t) = (I - GIG))"'G] + (I - G G;)""/*x(t)}
Lemma 2.3. [18]| : Let H, E be given matrices with appropriate dimensions and F
satisfying FTF < I, for any € > 0, we have
HFE + ETFTHT" <eHH" +~'ETE
Definition 2.1. [13] : The MJLS (5) is said to be stochastic stabilization if there ezists

a finite positive constant T (xq,ry) such that the following holds for any initial condition
(x9,70) and for all admissible linear fractional uncertainties.

E [ lz(@)]1*dt|xo, mo] < T(wo,70)

3. Robust Control via State Feedback. In this section, we will give a solution to
the stochastic stabilization problem for MJLS (1) with linear fractional uncertainties via
switched state feedback, the state feedback controller takes the following form:

u(t) = Kx(t) (6)
where K is a state feedback controller gain to be determined for every mode i € N.

Theorem 3.1. If there exist symmetric and positive-definite matrices X; > 0, matrices
Y;, positive scalars € 4; > 0 and eg; > 0 such that the following LMIs holds for any i € N
and for all linear fractional uncertainties:

Jui * * * * *
enlNaX; =1 0 0 0 0
-1
€Bi ]\[BZYTZ 0 -1 0 0 0
Rf, 0 0 —I+G%Gu 0 0 <0 (™)
ST(X) 0 0 0 0 -X;(X) |

where
Riai = caiMyi + 621-1XiN£iGAz‘, Ripi = epiMp; + 551YiTN£iGBi

)
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Then the MJLS (1) is stochastic stabilization. Moreover, the state feedback controller
gain matriz in (6) can be given by K; = Y; X'

Proof: Combining the controller u(t) = K;z(t) with the MJLS (1), we can get
#(t) = [Ai(t) + Bi(t) Kl (t), 2(0) = 29 (8)

Based on Lemma 2.1, system (1) is stochastically stable if there exist symmetric and
positive-definite matrices P; such that the following (9) is satisfied for each i € N:

[Ai(t) + B;(t)K;]" P + P[A;(t) + Bi(t) K;] + Z Aij Py <0 (9)

Set X; = P, ', i € N, pre- and post-multiplying (9) by X;, we obtain

)

X[A;(t) + Bi(t) KT + [Ai(t) + Bi(t) K] X + X,

N
> )\injll X; <0 (10)
7j=1

Using the linear fractional uncertainties of the matrices A and B, the inequality (10)
becomes

X, AT + A X + XiK] B + BiK;X; + My H i (t)Nag X + Xy N3 H (8 M
N

11
ZAinjl] X; <0 ( )

j=1

+ Mp;Hp;(t)Np; K; X; + XiKzTNgngi(t)Mgi + X;

According to Lemma 2.2, Lemma 2.3 and the linear fractional uncertainties (3) and
(4), the following two matrix inequalities are obvious:

MaiH ai(t) Nag X + XN 3 H 3, (8) M7,
< Mai(I = GG ) T Gl Na X + XiN 3G ai(I — GyGai) ™' MY,
+ 2 M (I — GL.G a) "M, + e 2 XN N4 X, (12)
+ e XyN1,Gai(I — GG 4) "GN X
= Riui(T — GG a)) 'R, + 32X, NAlNAZXZ
MpiHpi(t)Npi K X; + X; K] N, HE, (t) M,
< Mpi(I — G5,Gpi) "G Npi K X + Xi K] NL.Gpi(I — G,Gpi)~ "M},
+e5:Mpi(I — Gr,Gpi) ' Mp, +e5: X; K N} Npi K; X, (13)
+ gt Xy K] NE.Gpi(I — Gh;Gpi) ‘G Npi K X
=Ripi(l — G3,Gri) ' Rip; + e Xi K] N} Np K X;
where Rya; = ca;Ma; + SZilXiNZ;Z'GAi, Rip; = epiMp; + SBZX KTNngBz

Let
= Vo X Vi X Vi Xy VA X (14)

Xi(X) = diag[X1, -+, Xi1, Xir, -+, Xn] (15)

Then we can get

X; [Z Ainj_l] Xi = XX + Si( X)X (X)S; (X) (16)
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Setting Y; = K; X, the system (1) will be stochastic stabilization if the following holds:
X AT + A, X; + Y Bl + B)Y; + M Xi + Riai(I — GG a) 'R,
+ e 2 XiNGNA X, + Ripi(I — GL,Gpi) ' Rip, (17)
+en Y NE N Y+ Si( X)X (X)ST(X) <0
with Ria; = caiMa; + 6,4, XiNY.G aiy Ripi = epiMpi +e5 VP NE.Gpi.

After using the Schur complement lemma for (17), we get LMIs (7) of Theorem 3.1.
This completes the proof.

4. Robust Control via Dynamic Output Feedback. In this section, we will give a
solution to the stochastic stabilization problem for MJLS (2) with linear fractional uncer-
tainties via switched dynamic output feedback, the dynamic output feedback controller
is described by the following structure:

u(t) = Kgiwe(t)

where z.(t) € R™ is the controller state; K4, KBZ-_and K¢; are the dynamic output
feedback gains to be determined for every mode 7 € N.

(18)

Theorem 4.1. If there exist symmetric and positive-definite matrices X; > 0, Y; > 0,
ki, kei and positive scalars €4, > 0, eg; > 0, £¢; > 0 such that, for any 1 € N and for
all linear fractional uncertainties, the following LMIs (19), (20) and (21) are satisfied

[ . x % % * * * x ]
NG, -1 0 0 0 0 0 0
epiNpikei 0 —I 0 0 0 0 0
'
eci NeiYi 0 0 -7 0 0 0 0
v <0 19
R;Ai 0 0 0 —Qa O 0 0 (19)
Rly, 0 0 0 0 —Qm 0 0
GCZNCZ 0O 0 0 0 0 —Qci 0
ST( )0 0 0 0 0 0 —Y(V)|
J * * *
eaMLX; + &‘AIGT Nai —Qa 0 0
epiME X, 0 —Qpi 0 <0 (20)
eciMEkpi +e5,GENei 0 0 —Qci
Y, I
[ I X, ] >0 (21)

with

Si(Y) =V Y, -, \/)‘ii—IYia Vi Y VAinYil
Y(Y) _dlag[}/la Y; 17Y;+17' YN]
Ja, = AYi + VAT + B, kcZ + kCZBT + \iVi

RZAZ — 6AZZ\JAz + 5,41 YTNAZGAZ; RZBZ — 8BZMBZ + 531 kCZNngBz
Qai=1—-GY,Gr, Qp=1—-G5Gri, Qci=1-GEGe
sz‘ = [Yfl — Xi|Kpi, kei =KoY
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Then the MJLS (2) is stochastic stabilization. Furthermore, the dynamic output feed-
back controller gain matriz in (18) can be given by:

( N
Kai =[Xi = Y7 TAT + XGAY; + kpiC)Y; + XiBikei + Z )\z'ij_IY;'
j=1
N3G aiQu M + XiM Q7 GiNaiYs + XiMpiQp; G Naike
+ kBZ-MCZ-QCi NeiYs + e, XiMaiQ i M3, + e N3G 4iQ 4 Gy N i
+ et NaNaYi + 5, Xi MpiQ g M,
+eciNGGeiQoi GENeiYi + eci NG Nes Vil Y
Kpi =[Y; ' = Xi] kg
(| Koi =kaiY; ™!
Proof: Basing on the system (2) and the controller dynamics (18) we get the following
systems:

(22)

(1) = [A+ ALW®] () (23)
where
w0 = 20 ] A= ke Bl
AA;(t) = AA(t) + ABpi(t) + ACe;(t),
A = [ MHWONG ST apy = [ Mot (Nnke ]

_ 0 0
ACei(t) = [ KeiMeiHei(t)Nei 0 ] .

Applying Lemma 2.1, the system (23) is stochastically stable if there exists a set of
symmetric and positive-definite matrices P; such that the following LMIs hold for each

i € N:
- ~ 4T
A+ AL()] P+ R+ AL ]+Z)\”P <0 (24)
j=1
Using the expression for AA;(t), we get
ATP, + PA; + PAA (1) + AAL ()P + PABg;(t)
- - - N (25)
+ ABL(t) P+ PACG(t) + ACL(P + Y APy < 0
j=1
Setting
Qui=1-GLGa, Qpi=1-GpGpi, Qci=1-G{,Ge;

and using (3) and (4), we can get

T . My 0O (I—GgiGAi)fl 0 ng 0 Ny 0
AAAz(t)_{ 0 OH 0 o[ 0 o] 0 o

+[A€A 8] {(I—GZ;E-)GAZ-)—W 8] {mo(t) 8] {J\GA 8] (26)

= My, OGNy, + MAi@;;/Z%A(t)NAi
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= [0 Mg]Jo0 0 0 0 1[0 o
ABgi(t) = {o 0 ] {o (I—GgiGBi)‘l] {o Ggi] {o NBZ-KCZ-]

" [ 8 A/([)Bi ] [ 8 ([—GE?GBi)_I/Q ] [ 8 TrBO(t) ] [ 8 NBZ-OKCZ- ] (27)

~ 0 0 0 0 0 0 0 O

o R e [ [

= MC;@(_;}@&NC; + M(Jz@aﬂ%c(t)ﬁcz'
Based on Lemma 2.2, Lemma 2.3 and (26), (27), (28) we have
PAAL(t) + AAY (1) P,
= PiMAiQVZZ'IéziNAi + NLéAiQVZ}MLP
+ PM QT a(t) N + NLFL(H)Q 4 MEP,
< PMyuQ o GL Ny + NG uQ LMY P,
+ &2, PM Ao Q I ME P+ e NS 7L ()74 (H) N g
< P~MAiQ;}GAiNAZ~ + NAZ.GAiQ;}MAZ.P
= R2AiQAz’ R2Az + SAz NAzNAZ
P,ABg;(t) + ABL.(t)P;
=P, MBZQBngzNBZ + NG piQp ML, P,
+ P'MBZ 21/2~ (t )NBz + Ngz 5(t) Eﬂﬁgipi
< PMBzQBlGT NBz + NBzGBzQBlMT P;
+ €2, P, Mp;Qpl M5 P + e NLF L ()75 (t) N
< Pz'MBz'Q]};GgiNBi + Ngi@m@;}ﬁ;ﬂ
+ 63, P MpiQpt ML P, + e 52N L, GpiQpt G Npi + 52N N
= §2Bz‘@1_3z1 §2TBz' + 5§?N§i]v3i
PACqi(t) + ACE, (1) P,
= RMCz@EvzléaNCz + N&@CQEMEP
+ PMciQe e (t) Nei + NG76 (1) Qe > ME P
< P'MCi@/E’zlégiNCi Ngzémé&lﬁgzp
+5cZP MClQClegzP +562NT ( V7o (t)Nei
+ 5CZP MCzQCleCZP + 862N£G01Q6§55ﬁ0z + 8CQNCZNCZ
= RZCiQCi RgC’z +E¢; NgzNCZ

(29)

(30)

(31)
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where
—1 7T
RZAZ — SAzP MAZ + €A NAZGA27

D r T
Ropi = epiPiMp; +c5; NBzGB“

Roci = eciPMes + Eci 'NLGen.
The previous stability condition will be satisfied if the following holds:
o~ ~ N —~ ~ ~ ~ ~ ~ ~ 7
ATP, + PA; + Z Nij P+ PiM 4iQ 4t GoiN i + N3G aiQ ot M3 Py

7=1
+ % PiM4iQ i M4 P + e P NG 4iQ i GhiN i + € 47 N i N

] T I (32)
+ P MpiQpi G5 Npi + NG piQpi ME; Py + €3, P,Mp,Q 5l M}, P,
+ 6Bz NBZGBZQBz G’Bz]\/vBZ + ‘C:Bz NBzNBl + PMCZQCz GC’ZNCZ + 601 NCzNCZ
NEGeiQo ME P, + €2, PMesQut MEP; + e 2NEGeiQutGhNei < 0
Setting
. Pli P2i o o p-1pTi-1 - LZ I - I 0
-Pz_|:P2]Z’ P3i:|, Lz_[Plz P21,P31j P2z' ) UZ_ Lz 0 ) ‘/;,_ 0 _P?;/lpg;

where P;; > 0, P3; > 0 are symmetric and positive-define matrices, we get

_ L; I ror | LT —LTPyPy!
WUi_{—P?,;lPQTZ.Li 0}’ Uil _[ I 0

The set of coupled matrix inequalities (32) that guarantees robust stochastically stable
is nonlinear in P; and the controller gains K 4;, Kp; and K;, To cast it into an LMI form,
let us pre-and-post-multiply the inequality (32) by UI'V.I and V;U;, respectively, using all

N

these transformation and since Z )\i]‘LZT[PQiP?;I.ng - PQj]P?:l[PQiP?;;ngj - PQj]TLi Z 0,

J
=1
the previous stochastically stable condition (32) becomes:

|: ]:Ilz H2z

0 33

with

N
Hy =A;Li+ LTAT — BiK¢;P;'PEL; — LT P, Py KL BT + Z N Li L 'L

j=1

+ M Qo t G N Ly + LENL.G 4iQ i My, — MpiQ i G5 Np K¢y Py P L
— L] Py Py KL NL.GpiQ i M + €% MaiQ i My, + e 2 LT N LG aiQ 4 GTNag L

+ e P LINLN AL + 65, MpiQpi M,
+ e LT Py Py ' KL NG 3iQ pt G i N K o3 Py, ' Py L
+ e Ll Py Py ' KL N Npi Koi Py, ' Py L
+ et LI NE.GiQot GE,Nei Ly 4+ e LT NE Neyi L
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Hy = A + LTATP,; + LTCTKL. PE — 1T Py P KL, BT Py — LT Py Py KT, PE

N
+ Y NGLT [Py = PuPy ' Po]+ MaiQ ) G Nag + LT NG,G Qo M, Py
7j=1
— L Py Py KN GpiQpi M Pri + LT NG oiQol M K, Py

)

+ &% Mai Qo My Py + e LT N3G aiQ 0 GiNag + e LT NN

+e5iMpiQp Mg, Pri + e L NG GeiQei GEiNei + e L N&Ne
N
Hy; =Py A; + AT Py + Py KpiCi + CT KL P + Z Xij Prj + PiiM Q4 GiNag
j=1
+ N3G aiQ i M4 Pri + Py K piMeiQoy GGiNoi + N5GeiQ ot ME K B P,
+ 5, PuiMaiQo M, Pri + 3 N 3G aiQ4; Gy N
+€0f NaiNai + €5, PiMpiQp My, Py
+ 6 Poil i MeiQg Mei K i Py + €0; NewGeiQa; GoilNei + €6 NeaNe
Setting
Pi=X;, Py=Y'-X;, Py=X,-Y'
Then we get
Li=[P;— PyP;'PLI ' =Y;, P,'Pl=-1I
Define
kpi = PoiKpi = [V = Xi]Kpi, kei = —KeiPy Py Li = K4Y;

Basing on all the previous algebraic manipulations, we can get:
Hy; Hy; ]
N N <0, 34
ER (31)
with
) N
Hy; = A;Y; + V" AT + Bkei + k6B + )\ Y'Y
j=1
+ M Q4 GRiNaYi + YT NLG 0iQo My, + MpiQpi G Npikei
+ kG NgiGpiQ o My + €%, MaiQ 4 M + £ 37V NGG Qi Gy N
+ea YT NG Na Yo + €5, MpiQi My, + e 5756, N G piQipi Gy Niike
+ ik N Nikei + 26V N6iGeiQoi GEiNeYi + e Vi NEiNes Y

Hy; = A + Y AT X + VT CTKG, + kGBI X + VKLY, = X))

N
+ Y NGV MyQ G N + Y NLG Q) MAX;
7=1
+ kG NG 3iQ g My X + YT NG G oiQei Mk
+ 5 MaiQo M X + €37V NG Q7 Gl Nai + £ 37Y; N Na
+ 5 MpiQp My Xi + £V, NG oiQoi GoyNoi + e Vi NG No

2
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N
Hyi = X;A; + AT X + kpiCi + CT kG + ) Ny Xy + XiMaiQ 4} G N
=1
+ N3G aiQ o M Xi + kpiMeiQo; GeiNei + NiyG oiQ o Mk
+ 4 XiMaiQo M4 X + e 37 N3G 4iQ3, Gy Nai
+ 4P NANai + 65, X Mpi Qg M, X
+ 6k MaiQg; MKy + e6i NeyG oiQai GoiNei + eg; Ny Nei
Using the expression of the controller gains given by (22), we set Hy = 0, and this
implies that the stability condition (34) is equivalent to the following conditions:
Hy; <0; Hy <0 (35)
Let

Si(Y) = [V Vs, -+, \/)\iqui, \/)\iiﬂYi, VY
Y; (V) = diag[Y1,- -+, Vi1, Yig1, -+, Y]
Then we have
N
> AT = A+ Si(Y) Y (Y)ST(Y)
7=1
According to the Schur complement lemma, the previous stability conditions (35) be-
comes (19) and (20) of Theorem 4.1.
Finally, notice that U/ V" P,V;U; = { g ; } we get (21).
This completes the proof.

5. Illustrative Example. In this section, we shall present two examples to show the
applicability of the proposed approaches.
Example 5.1. Consider the MJLS (1) with N = 2, r(t) : [0,00) — {1,2} with the
following parameters:

Subsystem 1:

1.2 —04 0.2 1.2 0.0 0.3
A = [0.3 2.0 ] Mar = {0.7}’ B = [o.o 1.2]’ M = [0.8}’

NAlz[O.l 0.5], GAlz[O.Q}, NBlz[O.Q 0.6], GBlz[O.Q}.
Subsystem 2:

—-0.3 0.6 0.12 1.2 0.0 0.14
Az = { 0.1 —0.23]’ Maz = [0.15]’ By = {0.0 1.2}’ Mp2 = [0.17]’

Nap=[01 02], Ga=[02], Np=[015 018], Gp=[02].

The transition rate matrices are chosen as:

=3.0 3.0
r= [T 2]

Setting a1 = €42 = 0.5 and e = o = 0.5, and solving the LMI (7) in Theorem 3.1
by using the Matlab LMI Toolbox, we get

0.1602 —0.0246 Y, — 0.1393  —0.0095
—0.0246 0.0956 |’ 27| —-0.0095 0.1176 |’

v —0.4820 0.0155 v —0.2348 —0.0477
P71 0.0155 —0.5083 | "% | —0.0477 —0.2761 |-

X1:
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The corresponding state feedback controller gains matrixz can be given as

Ko —3.1074 0.6385 Ko — —1.7230 —0.5454
V7 —0.7506  —5.5094 | 27| —0.5060 —2.3885 |-

Consequently, the state feedback controller (6) is feasible and can guarantee the stochas-
tic stabilization of the continuous-time MJLS (1) with linear fractional uncertainties.

Example 5.2. Consider the MJLS (2) with N = 2, r(t) : [0,00) — {1,2} with the
following parameters:
Subsystem 1:

0.3 —0.5 1.3 0.0 1.0 0.0
Al_[m 1.4}’ Bl_{o.o 1.3]’ Cl_[o.o 1.0}’
0.14 0.12 0.13
M/“_{ogs]’ MBl_{o.%]’ MCl_{o.%]’
Niy=[027 013], Ga=[03], N =[025 012],

Gp=1[03], Ner=[026 014 ], Ger=[03].
Subsystem 2:

—0.5 0.20 1.4 0.0 1.0 0.0
AQ_[O.B —0.12]’ B2_{0.0 1.4}’ 02_{0.0 1.0]’
0.16 0.18 0.12
MA2_[0.22]’ MB2_[0.15]’ MCQ_{O.N}’
Nap=1[014 028 ], Ga=[03], Np=1[015 0.26],

Gpr=[03], Nex=[014 025], Ge=[03].

The transition rate matrices are chosen as:

=3.0 3.0
=[5 ]

Setting e41 = €492 = 0.5, eg1 = ep2 = 0.4 and ec1 = ec2 = 0.3, and solving the LMI
(19), (20) and (21) in Theorem 4.1 by using the Matlab LMI Toolbox, we get

X — [ 0.9611  —0.0317 | v, — | 0.9196 —0.0533
"7 —0.0317 09340 |* 7 | —0.0533 0.9066 |’
v — [ 0.2918  —0.0267 | v, — | 0.2691  —0.0206
P71 -0.0267 03040 | "* T | —0.0206 0.2661 |’
o | 12604 032331 [ —0.2868 —0.5934
P71 —0.3233 —1.9411 |* P27 [ —0.5934 —0.9698 |’

L _ | —0:3422 —0.0024 L. _ [ —0.0943 —0.0603
G171 —0.0024 —0.6054 |> “¢? 7 | —0.0603 —0.1574 | "

The corresponding dynamic output feedback controller gains matriz can be given as

Ko [ 00570 —04709 ] [ 14855 —0.3156
AT 04790 —1.1466 | TP' T | —0.2534  1.4466 |’

Fo | —11829 —0.1116 | Fo.o — | 13827 —0.2908
@~ ] -01916 —2.0079 |* T4 | —0.2364 1.2817 |’

[—0.0778 —0.1720 | —0.3700 —0.2552}
K32 - .

01972 —03169 |1 Ke2= { ~0.2709 —0.2168
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Consequently, the dynamic output feedback controller (18) is feasible and can guar-
antee the stochastic stabilization of the continuous-time MJLS (2) with linear fractional
uncertainties.

6. Conclusions. The stochastic stabilization problem for continuous-time Markovian
jump linear systems with linear fractional uncertainties via switched state feedback and
switched dynamic output feedback have been investigated in this paper. Two sufficient
conditions have been established that guarantee the stochastic stabilization of the sys-
tems. The method presented in this paper could also be extended to the robust H.,
control problem and filtering problem for continuous-time MJLS with linear fractional
uncertainties.
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