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ABSTRACT. Botnet activity continues to grow at an alarming rate and poses a major
threat to the security of networked systems around the world. Botnet malfeasance is
quite devastating, such as credit card stealing or DDoS. So it is important to understand
the botnet behavior, topology and structure. If botnet communication can be tracked,
the CE6C server can be identified and infection routes detected, allowing for takedown
of botnets. Hence, we propose a new ontology and a set of inference rules to facilitate
the automatic identification of the botnet topology by means of a machine learning al-
gorithm. The validity of the proposed approach is demonstrated utilizing blacklisted IP
flow data collected over three plus months. The inference time and system convergence
performance obtained when using the proposed ontology and inference rules are system-
atically examined. Owverall, the results presented in this paper indicate that the proposed
methodology provides a viable means of determining botnet topology with low inference
time and high degree of accuracy compared to previous research works, thereby enabling
appropriate security measures to be put in place.

Keywords: Botnet, Topology, Inference rules, IP flow data

1. Introduction. In a botnet, hundreds or even thousands of compromised computers
are controlled by a malicious user (referred to as a botnet herder) for nefarious purposes
such as stealing personal information, propagating spam, network attacks. Botnet activity
has risen alarmingly in recent years [1] and is not confined to simple geographic boundaries,
but is endemic around the world [2]. As a result, botnets are now recognized as major
threats to the security of modern day networked systems. The data logs from Dshield.org
[36] can be used to understand the patterns in detail. Figure 1 shows insights from the
Dshield,org dataset [36]. We analyzed over 3 months of Dshield.org data and found that
a peak appears at the end of each month, as depicted in Figure 1(a). Figure 1(b) offers
visualization for port analysis. The most often attacked port collected by Dshield.org
is port 445. Figure 1(c) presents temporal behavior of botnets collected by Dshield.org.
Attack interval time is defined as the average time between attacks on the target TP
address. The dataset exhibits an average attack interval between 2 and 6 minutes, as
shown in Figure 1(c).

To safeguard the security of computer networks, it is necessary to react rapidly and
efficiently to any perceived attack. Accordingly, many methods based on inspection and
analysis of IP flow data have been proposed for intrusion detection [5,7-9,14] and various
methods have been presented for analyzing communication behavior between bots [10-
12,14,15]. Understanding botnet topology and structure is important. If we can track their
communication, find the C&C server and know the infection vectors, we can shut them
down. Hence, we propose a new ontology and a set of inference rules to facilitate automatic
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identification of botnet topology using machine learning on IP flow data (containing packet
header information) collected over three plus months. The main contributions of this work
are listed as follows:

e This paper proposes a methodology to facilitate the identification of the botnet
topology by analyses of the IP flow data using a machine learning (ML) algorithm.
The methodology combines knowledge-based and behavior-based models (signature-
based and anomaly detection methods).

e The inference time and system convergence performance obtained when using the
proposed ontology and inference rules are systematically examined in this work.

We design a set of inference rules and a bot behavior modelling mechanism based on
[P flow data using three different reasoners (Jena, Pellet and Protégé) and compare the
rule evaluation of the reasoners to show the superiority of the proposed scheme.

Traditional rule-based correlation engines [44] did not identify inherent semantic rela-
tionships and did not try to explain findings by examining correlations. Compared to
existing work, our method explores the correlations of different botnet attackers, shown
in Section 3, for each TP address to perform reasoning among the rules.

The remainder of this paper is organized as follows. Section 2 reviews background and
botnet topology detection mechanisms in the literature. Section 3 describes the inference
rules developed in the present study. Section 4 examines the inference time and system
convergence properties when using the proposed ontology and rule evaluation. Finally,
Section 5 provides some brief conclusions and indicates the intended direction of future
research.

2. Background and Related Work. Today, many possible cyber-attacks threaten the
Internet, such as DDoS (Distributed denial of Service) attacks [16] or personal information
thefts by Zeus and Spyeye Tracker [42]. The hacker may join a FFSN (Fast-flux Service
Network) to evade tracking. Hence, knowing the routes of infection is very important.
Digital fingerprints, such as firewall logs and IDS (Intrusion Detection System) reports
[17,18] may generate hundreds or thousands of security alerts, events or IP flow data. It
is hard to read and understand the attack techniques or communication relationship in
the detailed investigation.

In [10], the author presents a rule-based reasoning approach for analyzing security
alerts using semantic web technology. In [21], the authors used a machine learning (ML)
technique to analyze network anomaly detections via inspection of IP flow data. In [11,19-
23,39,40,43], various ML-based methods were proposed for intrusion detection. Although
the results showed high accuracy rate and low detection time, botnet topology deter-
mination often fails due to lack of rule-based reasoning. In [41], the authors proposed
a method to choose and execute the optimum response using SWRL [24-27]. However,
their approach is unsuitable for detecting botnet topology with long inference times in
big datasets. The related works discussed above have limitations in rule-based reasoning.

Accordingly, we propose a new ontology method with a set of inference rules to facilitate
the automatic identification of the botnet topology by machine learning on a repository
of IP flow data. We also provide performance evaluation about inference time and system
convergence. We analyze the IP datasets from Dshield.org [36], Zeus Tracker [42], and
our own datasets [45], which contains data traces for over 3 months. The goal of this
paper is to identify botnet topology with low inference time and high degree of accuracy
compared to previous works.

3. Botnet Ontology and Inference Rules. In the present study, both the botnet
ontology and the inference rules are constructed using Semantic Web technology [28]
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FIGURE 2. Proposed botnet ontology
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in order to facilitate the use of an ML technique in interrogating the IP flow data and
deriving inferences regarding botnet topology. The proposed ontology is illustrated in
Figure 2. Basically, the ontology comprises a set of attributes, multiple instances of each
attribute, and a set of statements describing the possible relationships between a source
and a destination node in the network (Figure 3). As shown, the input IP flow data is
mapped to the seven attributes of DNS_Name, Protocol, Destination Port, Source IP,
Destination IP, Source Port and Connection Numbers. The IP flow data is then analyzed
using the query language SPARQL (SPARQL Protocol and RDF! Query Language [33])
in order to determine the type of botnet (e.g., Fast Flux), the bot master, C&C Servers
and bots.

'RDF [33] stands for Resource Description Framework which is a standard database format.
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TABLE 1. Bot behaviors

Statement | Domain (Subject) | Property (Predicate) Range (Object)
S1 BotMasters BotMaster_Bots Bots
S2 BotMasters BotMaster_CCserver CCServers
S3 CCServers CCserver_Bots Bots
SourcelP DestinationIP
54 SourcePort hasHTTP DestinationPort
SourcelP DestinationIP
S5 SourcePort hasICMP DestinationPort
SourcelP DestinationIP
S6 SourcePort hasP2P DestinationPort
SourcelP DestinationIP
ST SourcePort hasTCP DestinationPort
SourcelP DestinationIP
S8 SourcePort hasUDP DestinationPort
DestinationIP
SourcelP
S9 IP_Flow_Based IP_FlowBased_Information | Protocol
DestinationPort
SourcePort
S10 Thing CCserver String
S11 ConnectionNumbers | ConnectionNumber int
S12 TTL_time TTL time

In implementing the ontology, the botnet is modelled by a set of characteristic botnet
behavior patterns. As shown in Table 1, each behavior pattern (relationship) is a state-
ment and has the form of an RDF-triple [33] (subject, predicate, object). For example,
statement S1 shows a behavior pattern where the bot master controls a bot. Similarly,
statement S2 shows a behavior pattern where the bot master controls a C&C Server.
Statement S4 shows a behavior pattern where the source node establishes an HTTP con-
nection with the destination node. There are over 50 behavior pattern statements in this
model, only the first 12 are shown.

Having mapped the input IP flow data into the seven ontology relationships, the state-
ments are applied sequentially to the database in order to identify the botnet topology.
Figure 4 below shows the outcome of the integration process following the application of
statements S1 and S2.

In this particular case, the results indicate that the bot master controls five bots by
means of four C&C Servers. Since the input IP flow data is reliable (i.e., collected from
real-world network activities), it is highly likely that the identified nodes are true bots.
Having applied each of the fifty plus statements to the database, inference rules are then
used to test for the existence of additional bots. The output of the completed integration
and inference processes is shown below in Figure 5. The inference results suggest that the
bot master may actually control eight bots rather than initially known five. Note that
having run the inference process, the new (inferred) information is added to the database
in order to increase the domain knowledge of the search algorithm.
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3.1. Inference process rules. The developed system assumes the bot master, C&C
Servers, IP addresses, and domain name are already known, and the objective is to iden-
tify the botnet topology. The inference process used to identify the botnet topology
utilizes a set of inference rules written in Semantic Web Rule Language (e.g., Protégé
[29], Pellet [30], or Jena [32]). In total, around 50 rules were constructed; with each rule
independent of the others. As shown in Table 2, each of the rules has the format C(x),
P(x,y), differentFrom(x,y), sameAs(x,y) and builtin(r,x), where C is an OWL (OWL Web
Ontology Language) class, P is an OWL property, r is a built-in relation and x, y are vari-
ables. The definition of Rules-Botnet means that the combination of the BotMaster and
Bots properties implies the BotMaster_Bots property, allowing the atomic formula to be
written as:

BotMaster (7x, 7y) A Bots (?y, ?z) — BotMaster_Bots (7x, 7z).

In accordance with this rule, if TP address 10.1.1.2 has 10.1.1.1 as a bot master and
10.1.1.1 has 10.1.1.5 as a C&C Server, then IP address 10.1.1.2 is controlled by 10.1.1.5.
Similarly, Rule-HTTP in Table 2 means that HTTP communication is established between
the source IP address and the destination IP address.

In general, two forms of inference methods exist, namely forward chaining and backward
chaining [3]. The present study utilizes a forward chaining approach since the inference
process is data driven rather than goal driven. The inference steps are shown in the
following.

The inference results indicate the communication topology of the botnet. (Note that
four basic types of botnet topology exist [15]). By understanding the botnet topology,
appropriate countermeasures can be put in place to protect the network until the botnet
can be taken down. Once the inference results have been obtained, further SPARQL
queries can be performed based on parameters provided by Protégé. For example, to
determine the number of victims in a particular domain affected by the botnet within a
certain period of time, the following query can be performed:

SELECT 7 dns_name
WHERE { ?subject rdfs:comment ? dns_name filter (?dns_name) }

3.2. Modeling bot behavior. In the present study, bot behavior is modelled in terms
of the source and destination IP addresses, the source and destination port numbers, the
IP protocol, the number of bytes, and the number of sessions, i.e.,

<BotMasters rdf:ID="BotMasters_3">
<BotMaster_Bots rdf:resource="#Bots_1"/>
<BotMaster_Bots rdf:resource="#Bots_2"/>
<BotMaster_Bots rdf:resource="#Bots_6"/>
<BotMaster_Bots rdf:resource="#Bots_8"/>
<BotMaster_Bots rdf:resource="#Bots_9"/>
<BotMaster_CCserver rdf:resource="#CCServers_1"/>
<BotMaster_CCserver rdf:resource="#CCServers_3"/>
<BotMaster_CCserver rdf:resource="#CCServers_4"/>
<BotMaster_CCserver rdf:resource="#CCServers_5"/>
<rdfs:comment
rdf:datatype="&xsd;string">88.117.175.114< /rdfs:comment >
< /BotMasters>

FIGURE 4. Statement integration of S1 and S2
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<BotMasters rdf:ID= "BotMasters_3">
<BotMaster_Bots rdf:resource="#Bots_1"/>
<BotMaster_Bots rdf:resource="#Bots_2"/>
<BotMaster_Bots rdf:resource="#Bots_4"/>
<BotMaster_Bots rdf:resource="#Bots_5"/>
<BotMaster_Bots rdf:resource="#Bots_6"/>
<BotMaster_Bots rdf:resource="#Bots_7"/>
<BotMaster_Bots rdf:resource="#Bots_8" />
<BotMaster_Bots rdf:resource="#Bots_9"/>
<BotMaster_CCserver rdf:resource="#CCServers_1"/>
<BotMaster_CCserver rdf:resource="#CCServers_3"/>
<BotMaster_CCserver rdf:resource="#CCServers 4" />
<BotMaster_CCserver rdf:resource="#CCServers_5"/>
<rdfs:comment
rdf:datatype="&xsd;string">88.117.175.114< /rdfs:comment >
< /BotMasters>
<owl:Class rdf:ID="Bots">
<rdfs:subClassOf rdf:resource="#Botnets" />
< [owl:Class>
<Bots rdf:ID="Bots_1">
<rdfs:comment
rdf:datatype="&xsd;string">10.16.11.24< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_10">
<rdfs:comment
rdf:datatype="&xsd;string">10.16.9.12< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_2">
<rdfs:comment
rdf:datatype="&xsd;string">10.11.22.14< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_3">
<rdfs:comment
rdf:datatype="&xsd;string">10.16.9.15< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_4">
<rdfs:comment
rdf:datatype="&xsd;string">10.11.31.17< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_5">
<rdfs:comment
rdf:datatype="&xsd;string">10.22.12.24< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_6">
<rdfs:comment
rdf:datatype="&xsd;string">10.24.10.13< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_7">
<rdfs:comment
rdf:datatype="&xsd;string">10.24.10.31< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_8">
<rdfs:comment
rdf:datatype="&xsd;string">10.16.11.31< /rdfs:comment >
< /Bots>
<Bots rdf:ID="Bots_9">
<rdfs:comment
rdf:datatype="&xsd;string">10.24.10.18< /rdfs:comment >
< /Bots>

FiGuRrE 5. Model results after integration and the inference processes
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Rulel: Bots(X) — CCServers(X)

Rule2: CCServers(X) — BotMasters(X)

Facts: 10.1.2.1 is a bot.

Inference steps:

1. Bot (10.1.2.1) is true

2. X =10.1.2.1 (unification)

3. Bots(X) — CCServers(X) — CCServers(10.1.2.1) is true
X'=X=10.1.2.1

4. CCServers(X’) — BotMasters(X’)

5. BotMaster(10.1.2.1) is true

*Note that the process of finding substitutions for variables (X)

such that the arguments match is referred to as unification

FIGURE 6. Inference example

(sip, spt, dip, dpt, ptcl, bytes, sessions)
M = {By, By, Bs, ..., B}

B = {sip, spt, dip, dpt, ptcl, bytes, sessions}
where M is a set of behaviors and B comprises the properties given above. The bot
behavior is modelled through a set of rules having form

I: (M1 — bj, ﬁlj)

where 1 is the degree of reliability of the rule. The following example illustrates the
inference rule used to distinguish malware from a fast-flux botnet:

if (tt1 < 500) && {[(sip, dip) '== (sip, dip)] > 5}
then bot(X) = fastflux_bot
In applying the inference rules, the properties of the causal operator are as follows:

a. Conditional: If a causes b, then a — b.
b. Transitivity: If a — IS-b and b — IS-c, then a — IS-c.
c. Reflexivity: ¢ — [S-c.

TABLE 2. SWRL inference rules

Rule Expression
SourcelP(7x) A SourcePort(?y) A DestinationIP(?7z) A
Rule-HTTP DestinationPort(?a) — hasHTTP(?x, ?y)
SourcelP(7x) A SourcePort(?y) A DestinationIP(?7z) A
Rule-TCMP DestinationPort(?a) — hasICMP(7x, ?y)
Rule.PIP SourcelP(7x) A SourcePort(?y) A DestinationIP(?7z) A
e DestinationPort(7a) — hasP2P(7x, ?y)
Rule.TCP SourcelP(7x) A SourcePort(?y) A DestinationIP(?7z) A
e DestinationPort(?a) — hasTCP(?x, ?y)
? ? inati ?
Rule.UDP SourcelP(7x) A SourcePort(?y) A DestinationIP(?z) A

DestinationPort(?a) — hasUDP(?x, ?7y)
BotMasters(7x) A CCServers(?y) A

Bots(?z) — Botnets(?x)

DNS_Name(?x) A ConnectionNumbers(?y) A
swrlb:lessThan(TTL, 500) — FastFlux(7x)

Rule-Botnets

Rule-FastFluxBot




ONTOLOGY-BASED BOTNET TOPOLOGY DISCOVERY APPROACH 317

The steps in the inference process are as follows:
if (a causes f3) then « explains 3 because_possible {«a}.

For example:
Consider the causal operator

C = {CCserver(bot) causes Bots(bot)}

Here, the atom CCserver(bot) explains Bots(bot) because_possible {CCserver(bot)} is
inferred. That is, CCserver(bot) is an explanation for Bots(bot).

4. Performance.

4.1. Performance evaluation. In the present study, the efficiency of the proposed on-
tology is evaluated by measuring the inference time obtained by different reasoners for
the given databases containing a different number of alerts. The performance evaluation
experiments were performed on a PC equipped with an Intel Core 2 Duo E2140 processor
(1.6 GHz) and 2 G RAM. The performance results are presented in Figure 7.

As shown in Figure 7, the inference time increases approximately linearly with an in-
creasing number of alerts for all three reasoners. In addition, the Protégé-SWRL reasoner
is slower than the Jena and Pellet reasoners since Protégé is converted to Jess [31] (i.e.,
the rule engine for the Java platform) before inferencing can be performed.

Figure 8 illustrates the system convergence properties of the three reasoners given
repeated inference processes. Note total time comprises load time, transfer time and
inference time:

Load time (It) + transfer time (tt) + inference time (it) = total time.

The results show the Jena reasoner provides the best overall inference efficiency of the
three schemes. The total numbers of axioms inserted by the Protégé, Jena and Pellet
reasoners are presented in Tables 3, 4 and 5, respectively, together with a breakdown of
the corresponding total inference time.

Note that in the tables above, the second column indicates the number of new axioms
inserted into the database following the inference process, while the third column indicates
the number of alerts related to botnet behavior.

18000
— 15000
vy
E
o 12000
E
:; 3000 ¢ Jena
(=]
c M Pellet
2 6000 ! * .
..E ’ Protégé-SWRL
~ 3000 .—l
0

0 200 400 600 200 1000 1200 1400
Alerts

FI1GURE 7. Inference times of Jena, Pellet and Protégé reasoners
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FIGURE 8. System convergence properties of Jena, Pellet and Protégé reasoners

4.2. Performance comparison of three reasoners. Figure 9 compares the total infer-
ence times obtained by the proposed ontology with the Jena, Pellet and Protégé reasoners
with the results presented in [10] for the Jena and Protégé reasoners and in [41] for the
SWRL reasoner. Note for the present study, [10] and [41], the Jena reasoner provides in
the lowest inference time. Moreover, it is seen that the ontology proposed in the present
study yields a more efficient inference process than that in [10] or [41] given a database
containing more than approximately 440 alerts.

The performance differences between our work versus [10] and [41] are in the rule
amounts and the computational complexity. The computational complexities of the three
reasoners are as follows:

Protégé-SWRL :

f(n) = O(g(n)) = 3898n — 1051

Jena: f(n) = O(g(n)) = 1382n + 798
Pellet: f(n) = O(g(n)) = 1814n + 645

In other words, all reasoners have a complexity of O(T), where T is the number of
inference steps.

The performance evaluation results suggest that Protégé-SWRL should be chosen as
the reasoner for the inference process since it has the best integration. Moreover, neither
Jena nor Pellet has a common communication method to invoke a remote knowledge base.

Pellet supports punning (vocabulary sharing) with a minor caveat [30]. No additional
atoms are needed in the rules used to perform inferencing. The SWRL rules can be
loaded directly into Pellet and parsing and processing operations then performed. The
difference between the Protégé reasoner and the Pellet reasoner lies in that Pellet only
supports SWRL built-ins for data, time and duration, but does not support built-ins
such as swrlb:first, swrlb:empty. The present evaluation results show that Protégé results

TABLE 3. Axioms inserted and convergence time details — Protégé-SWRL

Alerts Number of Proportion of Load Transfer | Inference Total
axioms inserted | botnet axioms | time (ms) | time (ms) | time (ms) | time (ms)

170 32 0.8416 469 53 4117 4589

300 47 0.8646 o87 117 4993 2697

450 62 0.8789 794 215 6504 7513

1150 39 0.9672 1518 488 14971 16977
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TABLE 4. Axioms inserted and convergence time details — Jena

Alerts Number of Proportion of Load Transfer | Inference Total
axioms inserted | botnet axioms | time (ms) | time (ms) | time (ms) | time (ms)

170 32 0.8416 0 48 2595 2643

300 47 0.8646 0 106 3182 3288

450 62 0.8789 0 207 3897 4104

1150 39 0.9672 0 483 6495 6978

TABLE 5. Axioms inserted and convergence time details — Pellet

Number of Proportion of Load Transfer | Inference Total

Alerts | . ioms inserted | botnet axioms | time (ms) | time (ms) | time (ms) | time (ms)
170 32 0.8416 0 51 3006 3057
300 47 0.8646 0 112 3911 4023
450 62 0.8789 0 211 4593 4804
1150 39 0.9672 0 487 8359 8846

in a longer inference time than Pellet. The difference between the Pellet reasoner and
the Jena reasoner lies in the SPARQL query engine. The Pellet query engine provides
better optimization performance than Jena, and yields more rapid query response. In
addition, the Pellet reasoner produces results using inferred individuals, whereas the Jena
reasoner does not. In the system proposed in this study, RDF statements are combined
with customized rules and used in a forward inferencing process. The syntax of the Jena
rules is shown in Table 6.

Note Jena and Protégé rules are the same in SWRL. However, the inference engines of
the two reasoners are very different. Table 7 shows comparisons among different systems.

As depicted in Table 8, many proposed methods are based on inspection and analysis
of IP flow data and the communication behaviors between bots. The existing studies are
abundant but identifying the topology of a botnet is rarely discussed in previous litera-
ture. Some existing papers developed ontology construction and explained build concepts.
However, our contributions lie in botnet ontology identification by a set of interference
rules from examining TP flow data. How accurate the topology can be estimated by the

18000
prai
o //-/‘3 #lJena
T 12000 —= m Pellet
E‘ a000 / %ﬂ A Protégé-SWRL
E B0L0 =t fﬂfgﬁ gy ¢ [10] - Protégé-SWRL
E /‘{ p—“"_—’- #[10]-Jena
£ 3000 ——%
St ®[41] - SWRL
0
0 200 400 600 800 1000 1200 1400
Alerts

FIGURE 9. Comparison of present results with those presented in [10,41]
for inference times of Jena, Pellet and Protégé reasoners
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limited input information for the three reasoners is shown in Figure 10. Jena has bet-
ter performance (92.13%) than the other reasoners due to hybrid mode to balance the
reasoning. To get more accuracy, we run in hybrid mode. See the following example:

[rdf: (?x 7y 7a), SourcelP(?x ?7y) 7 ConnectionNumbers(?a > 100) — [DDoS(?x ?y) <
notEqual(?x,?y) ]]

The above example shows that if we want to know the DDoS attack map of the botnets,
we can use hybrid mode at alerts up to 20,000. Both ?x and ?y are different alerts (in-
stances) as well as the connections 7a are more than 100 times. However, the computation
complexity is over 20,000 (ms).

After considering the malware behaviors, payload information and sophisticated bot
communication, topology accuracy could be improved by the hybrid mode. To find the
conjunction, we run in hybrid mode, the forward engine maintains a set of inferred state-
ments, then queries are answered by the backward engine. As shown in Figure 11, when
number of alerts is more than 20,000, the CPU usage is exhausted due to the large amount
of IP flow data. Our datasets were loaded on disk instead of memory to maximize space
for computation.

4.3. Rule evaluation.

4.3.1. Relationship richness. In [13,40], metrics such as population, cohesion or relation-
ship richness are defined. We choose the metric relationship richness (RR), which is

defined as RR = %. In our domain knowledge, |P| is the number of properties
(including object and data properties), and |SC/| is the total number of subclasses (which
is the same as the number of IS-A relationships). According to the definition, this metric
reflects the diversity of relations in ontology [35]. Considering the special case, which only

contains classes which used disjoint unions or equivalent classes, |SC/| is 0 and no prop-

erties have been introduced, |P| is 0 as well, leading to RR = ‘Oﬂm,
[1]

When we add a property to the ontology, RR will become O = 1, denoting very good

which is undefined.

TABLE 6. Syntax of Jena rules

Rule Expression
rdisl: (7x 7y 7z), (dourcelP(7x) 7 SourcePort(7y) 7 DestinationlP(7z) 7
Rdfsl dfsl: (7x 7y ? S IP(7x) 7 S Port(?y) 7 DestinationIP(7z) ?
5% | DestinationPort(?a) — hasHTTP(?x, 7y))]
RAfs2 [rdfs2: (7x 7y ?z 7a), (SourceIP(7x) ? SourcePort(?y) ? DestinationIP(?z)
52| 7 DestinationPort(?a) — hasICMP(?x, ?y))]
RAfs3 [rdfs3: (7x 7y ?z 7a), (SourceIP(7x) ? SourcePort(?y) ? DestinationIP(?z)
7| ? DestinationPort(?a) — hasP2P(?x, ?y))]
Rafsd [rdfd: (?x 7y ?z 7a), (SourcelP(?x) ? SourcePort(?y) ? DestinationIP(?z) 7
** | DestinationPort(?a) — hasTCP(?x, ?y))]
RAfss [rdf5: (?x 7y ?z 7a), (SourcelP(?x) ? SourcePort(?y) ? DestinationIP(?z) ?
% | DestinationPort(?a) — hasUDP(?x, ?y))]
RAfs6 [rdf6: (7x 7y 7z), (BotMasters(?x) 7 CCServers(?y) 7 Bots(7z) —
Botnets(7x))]
RfsT [rdf7: (7x 7y), (DNS_Name(?x) 7 ConnectionNumbers(?y) 7
1 swrlb:lessThan(TTL, 500) — FastFlux(7x))]
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TABLE 7. System comparison

Detection Rule | Performance Data

System Method Metric | Comparison | Collection

Wang et al. [34] anomaly no no distributed
Cuppens-Boulahia et al. [14] | anomaly no no centralized
Geyik and Szymanski [37] misuse yes yes centralized
Undercoffer et al. [28] misuse no no distributed
Guerrero et al. [29] not specified | no no not specified
Holgado et al. [10] misuse no yes distributed
Martimiano and Moreira [4] misuse no no not specified
Vergara et al. [24] compound no no centralized
Szymczyk [38] compound no no centralized

Chen et al. [12] not specified | no no distributed
Qi et al. [39] not specified | yes yes not specified

Li et al. [25] compound yes yes distributed

TABLE 8. Detail of computing process

Training data: 20 whitelists and 100 blacklists, £ = 8

Rule rl: covers 10 whitelists and 15 blacklists | f,, = 10, f, = 15, 8, = 5, 6, = 20.8
Rule r2: covers 10 whitelists and 13 blacklists | f,, = 10, f, = 13, 6, = 3.83, 6, = 19.17
Rule r3: covers 8 whitelists and 10 blacklists | f,, =8, f, =10, 6, =3, 6, =15

Rule r4: covers 8 whitelists and 30 blacklists | f,, =8, f, = 30, 6, = 6.33, 6, = 31.67
Rule r5: covers 7 whitelists and 42 blacklists | f, =7, f, =42, 0, = 8.17, 6, = 40.83
Rule r6: covers 14 whitelists and 73 blacklists | f,, = 14, f, = 73, 0, = 14.5, 6, = 72.5
Rule r7: covers 16 whitelists and 84 blacklists | f,, = 16, f, = 84, 8, = 16.67, 6, = 83.33
Rule r8: covers 2 whitelists and 0 blacklists

fo=2,f=0,0,=0.33,0, =167
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relationship richness. Therefore, relationship richness [35], is not a useful measure, since
the number of subclasses converges to be |[H(N(O))| [35].
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The relationship richness metric from [35] is:

o)
|Cn(O)] + [pn(O))]
where |C,(O)] is the number of classes. Since we understand the number of subclasses

converges to be |[H(N(O))| [35], we use the number of classes rather than the number of
subclasses. We define the treelikeness of the class hierarchy as follows:

[Cn(0)/R(O)]
T(0) =
|H(N(0))|
where |R(O)| is the set of leaf classes that have no subclass and is given by:
R(O) ={C|C € C,(O) AVD € C,(0O) : SubClassOf(CD) ¢ H(N(O))}

The closer the value is to 1, the more treelike the class hierarchy is. For the example
ontology in Figure 2, the T(O) = 0.42, the RR(O) = 0.5, and the original RR(O) =
0.56. We confirm that the number of classes is a better choice, since the treelikeness is
independent of the relationship richness.

RR(0)

4.3.2. Rule evaluation metrics. To understand what rules we predefined are available,
we use an evaluation metric to determine which causal operator should be added (or

TABLE 9. Computing the R value

Training data: 20 whitelists and 100 blacklists, £ = 8
R(rl) 2(10 - log, 10/5 4+ 15 - log, 15/20.8) = 15.74
R(r2) 2(10 - log, 10/3.83 4+ 13 - log, 13/19.17) = 3.95
R(r3) 2(8 -log, 8/3 + 10 - log, 10/15) = 3.30
R(r4) 2(8 - log, 8/6.33 4+ 30 - log, 30/31.67) = 0.21
R(rb) 2(7-log, 7/8.17 + 42 - log, 42/40.83) = 0.09
R(r6) 2(14 - log, 14/14.5 4+ 73 - log, 73/72.5) = 0.02
R(r7) 2(16 - log, 16/16.67 + 84 - log, 84/83.33) = 0.004
R(r8) 2(2-log,2/0.33 +0 - log, 0/1.67) = 3.13
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removed) during the inference process. For example, consider training data that contains
20 whitelists and 100 blacklists. Then, we use the following likelihood ratio statistic to
prune rules (Tables 8 and 9) that have poor coverage:

R= Zfi log, (—) ,

where, k is the number of rules, and f; is the number of instances with class value i
covered. According to the R value, we suggest that R(rl) is a better rule than the others.

5. Conclusion and Future Work. This paper aims to identify botnet topology with
low inference time and high accuracy using a set of inference rules to facilitate automatic
identification of the botnet topology via a machine learning algorithm. The effectiveness
of the proposed approach has been demonstrated using three different reasoners (Jena,
Pellet and Protégé) and compared to [10] and [41] (see Figure 9). Our approach has the
lowest inference time and highest degree of accuracy (see Figure 10). Future study will

extend the proposed ontology and inference rules to the case of an Advanced Persistent
Threat (APT).
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