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ABSTRACT. This paper proposes an algorithm for checking incorrectness of a rule in
equivalent transformation programs. Incorrect rules in programs can be detected without
having to execute the program by applying the proposed algorithm to each rule one by
one. Incorrectness of a rule can be shown by this algorithm without having to consider
interrelations with other rules. Programmers can know if a rule needs to be corrected
prior to trying to solve large-scale problems. This leads to a remarkable cost reduction
in the construction of correct programs.

Keywords: Incorrectness, Equivalent transformation rule, Program correctness, Algo-
rithmic debugging

1. Introduction. In many cases, whether a part of a program is correct or not is checked
by programmers themselves. If the correctness of a program is defined, then this will be
checked automatically. However, the correctness of a program is not defined in most
conventional computational frameworks and, therefore, checking it automatically is a
difficult task in most programs.

In this paper, our interest is with the automatic check of incorrectness in equivalent
transformation (ET) programs, the programs found in the ET model [1, 9]. An ET
program is a set of prioritized rewriting rules for meaning-preserving transformation of
problems, and the problem solving process consists of successive rule applications (see
Figure 1). Therefore, programming in the ET model is creation of a set of ET rules.

Detecting bug rules in ET programs are discussed in [12, 13, 14]. Similar to the de-
bugging algorithms [12, 13, 14], those [2, 3, 4, 5, 7, 10, 16, 17, 18, 19, 20, 21| in the logic
programming (LP) model [8, 19] are applied when an incorrect answer is obtained as the
result of program execution.

This paper gives consideration to automatically check whether a given rule is incorrect
or not. In the ET model, the correctness of a program is defined as follows. If each rule
in a program transforms each computational state, then each transformation preserves
meaning of each computational state. From this, the correctness of each rule can be
checked, which is one of the superior features of the ET model. From the correctness,
we can conclude that a rule applied to a transformation which does not preserve the
meaning is incorrect. Based on this principle, checking incorrectness of a given rule is
made possible.
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Ficure 1. Computation in the ET model, where 0 < n < oo

The purpose of this paper is to propose an algorithm for checking incorrectness of a
rule by utilizing a set of correct rules. Its incorrectness can be shown by the proposed
algorithm without taking into consideration interrelations with other rules. Hence, an
incorrect rule in a program can be detected without having to execute the program by
applying the proposed algorithm to each rule one by one. Therefore, programmers can
know if a rule needs to be corrected prior to trying to solve large-scale problems. This
leads to a remarkable cost reduction in the construction of correct programs.

The main feature of the proposed algorithm is checking the incorrectness of each rule
by creating many instances such that

1. the rule can be applied to, and
2. only finite computations are required.

An essential difference between the proposed algorithm and the algorithms in [12, 13, 14]
are as follows. In the algorithms in [12, 13, 14], incorrect rules are detected by exploiting
program execution processes when an incorrect answer is obtained as the result of program
execution. That is, even though a program may contain incorrect rules, these algorithms
cannot be applied until the program is complete. In the proposed algorithm, on the other
hand, the incorrectness of a rule can be checked without execution of programs. That is,
this algorithm can be applied even when a program is not complete. Therefore, in cases
where the cost of creating and executing a program is significant, the proposed algorithm,
which does not require programs to be complete, is superior because its cost is much lower
than the algorithms in [12, 13, 14] for checking the incorrectness of a rule.

2. ET Model. This section introduces the ET model and describes the approach under
consideration in this study.

2.1. Problem setting. An alphabet A = (C, Fs,V, P) is assumed, where C' is a set
of constants, Fis a set of function symbols, V' a set of variables, P a set of predicate
symbols. Let A and G denote the set of all atoms on P and that of all ground atoms on
P, respectively. Let S denote the set of all substitutions on A.

The definite clause ¢ is an expression of the form a < by, ..., b,,, where a,by,...,b,, € A
and m > 0. The atom a is called the head of ¢, denoted by head(c). The set {by,...,bn}
is called the body of ¢, denoted by body(c). When m = 0, ¢ is called a unit clause.

Let ¢ and C denote an empty set and the set of all definite clauses, respectively. For
K C C, a mapping Tk on the power set of G is defined by

Tk (G) = {head(ch)|(c € K) & (0 € S)
& (body(ch) C G) & (head(ch) € G)}

for each G C G. We define the meaning of K.
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Definition 2.1. For K C C, the meaning of K, denoted by M(K), is defined by

M(E) = | 17 (9)

where

TII( = TK(¢)
TR(9) = Tr(Tg'(9)) (m>2).

Let D C C represent a problem of interest. Let Q be a set of atoms which represents
the set of all queries for D. Then a problem is given in the form of the pair (D, ¢) where
q€ Q.

For any a € A let rep(«) denote the set of all ground instances of . Then the solution
of a problem (D, ¢) is defined as the set M(D) Nrep(q).

2.2. Creating rules. Let U denote the set of all unit clauses, respectively. For an arbi-
trarily set X, pow(X) means the power set of X.

A rule r is defined as a relation on pow(C), i.e., r C pow(C) x pow(C). Moreover, for
S, S"CC, arulerisan ET rule on D, if

(S, SYer=M(DUS)=M(DUS"). (1)

A program in the ET model is defined as a set of rules for computing the solution set
M(D) Nrep(q). A program on D means a set of rules on D. Therefore, programming in
the ET model (ET programming) is defined as the creation of a set of rules.

2.3. Program execution. Let R be a program on D. Given D and R, consider compu-
tation of the solution set M(D) Nrep(q) for a query ¢ € Q. In the ET model, the set is
computed as follows.

Procedure 1 ([1]). Let D C C represent a problem of interest and R be a program on
D. This procedure computes the answer set A for D, R and q € Q.

Step 1: Let Qy = {ans(q) < q}.

Step 2: Initialize 1 as i = 1.

Step 3: Obtain Q; where (Q; 1,Q;) € r and r € R.

Step 4: If Q; C U, go to Step 5. Otherwise, renew i as i =14+ 1 and go back to Step

3.
Step 5: Let A = yns(a)e)co; teP(a). Terminate.

Figure 2 illustrates the behavior of Procedure 1.

The notation D : ¢ A means that under domain knowledge D, the answer set
A is obtained for a query ¢ using transformation rules in the ET program R. We cite
Theorem 2.1 to show that Procedure 1 is correct if R consists of ET rules.
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FIGURE 2. The behavior of Procedure 1
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Theorem 2.1 ([1]). Let D C C represent a problem of interest and q € Q. If there ezists
a set of ET rules R on D such that D : q — A, then M(D) Nrep(q) = A.

We can define a correct rule from the above.

Definition 2.2. A correct rule is an ET rule, i.e., a rule r satisfying (1) for any S,
S CC.

2.4. Situation considered. From Definition 2.2, an incorrect rule can be defined.

Definition 2.3. An incorrect rule is a non-ET rule. Namely a rule r is incorrect if there
exist at least one pair of S and S’ such that

(S, SYer and M(DUS)#M(DUS"). (2)
We show an example of an incorrect rule. Consider the case that r is as follows.

r:(avr xx *y)
= (= w (d (x *xx *2) 2)), (= = (+ *x 2)).

:=, d, X and + denote arithmetic-substitution, division, multiplication and addition,
respectively. The semantic of (avr *x %) is ®y = (xx + (xx + 2))/2, which corresponds to
D. Let S be as follows.

S {(ans (avr 2 xy)) + (avr 2 *y).}
S’ is obtained by transforming S applying r.
S": {(ans (avr 2 *y))
— (= xy (d(x 2 %2)2),:= %= (+22).}
Since
M(DUS) = M(D)U{(ans (avr 2 3))}
M(DUS")y = M(D)U {(ans (avr 2 4))},

then M(DUS) # M(DUS’). Since M(D)U (ans (avr 2 3)) # M(D)U (ans (avr 2 4)),
r is an incorrect rule. In fact, (ans (avr 2 4)) contradicts to the semantic, although
(ans (avr 2 3)) does not contradict to it.

Consider the situation that programmers immediately check a created (or revised) rule
for incorrectness in the middle of program creation. In this situation, programs cannot
be executed since program creation is not completed. If incorrectness of a rule r can be
checked without execution of the program, then programmers can know if there is a need
to correct r before trying to solve the problems. By repeating this check and correction,
ET rules are piled up so that correct programs are developed. This process leads to a
remarkable cost reduction in the construction of correct programs.

3. Proposed Algorithm. This section proposes an algorithm for checking incorrectness
of r discussed in Section 2.4. Let D C C represent a problem of interest and R, be a set
of ET rules.

3.1. Checking incorrectness using instances. In this paper, we consider checking
incorrectness of r by creating instances, transforming the instances using r, and checking
whether meaning is preserved or not following this transformation. If the meaning is not
preserved, then r is a non-ET rule. Therefore, instances are required to show that the
meaning is not preserved within the transformation. We consider creating many instances,
applying r to these instances, and checking whether the meaning is preserved or not. The
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reason for creating many instances is that we do not know which instance will detect
transformations in which the meaning is not preserved.
The instance is given in the form of ) C C. If r transforms @) into " and M(DUQ) #

M(DUQ'), then r is incorrect. Thus we compute A and A’ such that DU Q Lo A and
DuUQ LN A, respectively, and check whether A # A’ holds or not.

() must satisfy the condition to which r can be applied. If DUQ Ly A and DuUQ’ ECNyY
require infinite computation, we cannot find A and A’. Thus it is necessary that A and
A’ can only be obtained by finite computations. We define the property of @ such that
A and A’ must be obtained by finite computations.

Definition 3.1. Q C C s finite if
1. Q is not a pair and not variable, or
2. Q 1s a pair whose rest is finite.

For example, if () includes lists, then for ) to be finite it is necessary that the length
of these lists is finite. Even though @ is finite, it is not necessarily so that D U @) RENy)

and DU Q' RNy require finite computation. However, this finiteness can be expected
in many programs. We construct an algorithm for automatically generating many finite
() such that r is applicable from head and conditional part of r.

3.2. Overall process. From Section 3.1, we create an instance ¢ such that

e 1 is applicable to (), and

e () is finite.
In the proposed algorithm, we use many instances for increasing the possibility that
A # A’ holds. Based on the above discussions, we demonstrate the complete process of
the proposed algorithm in Algorithm 1.

Algorithm 1. This algorithm checks incorrectness of a rule r when R. is given.
Step 1: Generate QU C C, j = 1,...,m such that r can be applied to QY) and Q)
is finite. Initialize Q@ as Q = {QU),...,Q™},
Step 2: If Q = ¢, then it cannot be checked whether r is correct or incorrect. Ter-

minate. Otherwise choose an element from Q. We name the chosen element ().
Eliminate @ from Q.

Step 3: Compute an answer set A such that D U Q) RNy
Step 4: Transform Q by applying r. We name the obtained set )'.

Step 5: Compute an answer set A" such that D U Q' RNy
Step 6: If A #£ A’, then r is incorrect. Terminate. Otherwise go back to Step 2.

Figure 3 illustrates the first cycle of Algorithm 1.
We present Theorem 3.1 with respect to the correctness of Algorithm 1.

Theorem 3.1. If Algorithm 1 asserts that r is incorrect, then r is a non-ET rule.

Proof: Let D, R., @, @', A and A’ be defined as in Algorithm 1. Since all rules in
R, are ET rules, we have M(DUQ) = A and M(DUQ') = A’. This and A # A’ yield
MDUQ)#M(DUQ). O

3.3. Creation of instances — examples. In the practical execution of Algorithm 1, we
need to consider how to execute Step 1, i.e., how to generate Q, ..., Q™. QW ... Q™
which must satisfy the condition to which r can be applied. Moreover, to make the
computations of A and A’ finite, it is necessary that Q") ..., Q™ are finite. We illustrate
two examples for creating finite Q") ..., Q™ such that r can be applied to.
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3.3.1. Example 1. Consider the case that r is given as follows.
(app (wa| xX) *Y x2)
= {(= «Z (+£1))}, (app *X =Y xZ1).

app predicate means that the combined elements of the first and second arguments will
now form the third argument’s elements. The left-hand side of = is called a “head”.
It stands for the proposition before replacement. The right-hand side of = is called
a “body”. It stands for the proposition obtained by replacing the proposition in the
head. The description surrounded by the most external pair of brackets is one atom.
In the list (*a| *A), *a and *A mean the first element and the set of elements after the
second, respectively. An atom in {} in body denotes execution of procedure and = means
unification. In this case, clauses included in QW ..., Q" must have at least one body
atom which matches with the atom (app (wa| X)) *Y *Z). Moreover, computations of A
and A" are made easier if the length of the list (#a| «X) is finite. Thus we introduce the
following rule.

(rst «) = (= # ());
= (= 4 (7);
= (= 4 (7 7). (3)

This rule represents the splitting of one head into three bodies. We create the following
rule to apply (3).
(chk ((app (x| xX) *Y xZ))) = (rst *X). (4)

Then the length of the list (#a|+X) becomes one, two or three. By increasing the variety of
the list length, i.e., by increasing the number of bodies in (3), m increases so that we can
obtain many elements in ). This increases the possibility that Algorithm 1 terminates
with A # A’. On the other hand, the computational cost also increases since A and A’
must be computed for many elements in Q. By giving a query

(chk ((app (] +X) Y xZ))) (5)
to the set of (3) and (4), we obtain the following answers.
(ans (chk ((app (x¥A *B *C) xD %FE)))) + .
(ans (chk ((app (xF *G) *H *I)))) + .
(ans (chk ((app (x]) *K *L)))) < . (6)
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From these answers, we can obtain initial Q as

Q = {{(app (xA *B xC) xD xE)
— (app (¥A *B *C) *D xF).}
{(app (+F' *G) *xH *I)
— (app (+xF *G) «H «I).}
{(app (#]) =K +L)
< (app (+J) =K *L).}} (7)

3.3.2. Example 2. Consider the case that r is given as follows:

(app «H (| «T) (+a| x2)),{(not (test= # *a))}

= {(= ()}, (app +h (] +T) x2).
An atom in {} in the head denotes a condition for application of a rule. not is negation.
(test= b #a) means that s can be unified with #. In this case, clauses included in
QW, ..., Q™ must satisfy the condition (not (test= # xa)) adding that they must
have at least one body atom which matches with the atom (app *H (3| xT) (sa| % Z)).

We introduce the following rule to make clauses included in QW ..., Q™ satisfy this
condition:

(not (test= # *a)) = {(= #%b),(= wa)}. (8)

Moreover, we use (3) for making the length of (| «T) and (#u| *Z) finite. We create the
following rule to apply (3) and (8).

(chk ((app +H (] +T) (+a| %2))))
= (not (test= # xa)), (rst «T), (rst xZ). 9)
By giving a query
(chk ((app +H (] +T) (sa| x2)))) (10)
to the set of (3), (8) and (9), we obtain the following answers.
(ans (chk ((app *A (b) (a *B x(C))))) « .

(ans (chk ((app *D (b) (a *E))))) + .
(ans (chk ((app *F (b) (a))))) « .

(ans (chk ((app Y (b *A xB) (a))))) + . (11)
From these answers, we can obtain initial Q as
Q = {{(app *A (b) (a *B *C))
+ (app xA (b) (a xB x(C)).}
{(app +D (b) (a =E))
< (app D (b) (a =E)).}
{(app +F (b) (a)) <= (app *F (b) (a)).}

{(app Y (b xAl xB1) (a))
+ (app *Y (b xAl xB1) (a)).}}. (12)
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3.4. Creation of instances — general algorithm. The core of the techniques intro-
duced in Section 3.3 are

e Creating definite clauses to which r can be applied by utilizing the patterns of atoms
in the head of r,

e Creating finite sets of definite clauses by restricting list length,

e Creating definite clauses satisfying the condition in r by preparing concrete instances.

We obtain Algorithm 2 by systematizing these core elements.
Algorithm 2. Let R, be a set of ET rules. This algorithm computes QU ..., Q™ in
Algorithm 1.

Step 1: If some variables in r are lists, then create a set Ry of rules for making the
list length finite. For example, (3) is a rule in R;. Otherwise Ry = ¢.

Step 2: Ifr includes conditional parts, then create a set Ry of rules for making clauses
in QW, ..., Q™ satisfy the conditions. For ezample, (8) is a rule in R,. See (17)
for more examples. Otherwise Rs = ¢.

Step 3: Create a rule rq for obtaining head and body atoms of clauses in QW ....QM™
utilizing rules in Ry and Ry. For example, (4) and (9) are rg.

Step 4: Create a query qg from the head of rq. For example, (5) and (10) are qq.

Step 5: Compute an answer set Ag by giving qq to the set Rg = {rqo} U Ry U R, of
rules. For example, (6) and (11) are Ag.

Step 6: Create QW ..., Q™ from Ag. See (7) and (12) for example.

Note that some rules in Ry and R, can be reused once created. (17) in Appendix are
the examples of rules in R, for built-in atoms frequently used in conditional parts. For
further information on built-in atoms, please refer to [22] in REFERENCES.

4. Examples and Verification. In this section, we verify the effectiveness of Algo-
rithm 1 through some examples. In all examples, the test rules are incorrect rules. We
adopted Algorithm 2 for executing Step 1 in Algorithm 1 in all examples. In Step 1 of
Algorithm 2, we created R; including (3) only for all examples except Sections 4.6 and
4.7.

4.1. Example 1. Consider the case that R, in Algorithm 1 is given and we check incor-
rectness of the rule ry, where R, is the following set of rules:

app =H +I" () = {(= +H (), (= «T ()}
app I () +Z) = {(= 1 =Z)}.
app () Y «7) = {(= & =2)}.
app (xa| xX) «Y xZ2)
= {(= «Z (xa| xZ1))}, (app *X ¥ xZ1).
(app *H (xb| «T) (xa| 7))
= {(= «H (xa|*h))}, (app *h (xb| £T") *Z);
= {(= «H (), (= (xb] «T) (xa| x2))}.
(zeros () = {(false)}.
(zeros (xa)) = {(= % 0)}.
(zeros (xa #b| %X))
= {(= *a 0)}, (zeros (xb| xX)).
(zeros *X), {(pvar *xX)}
= {(= =X (0| xz))}, (zeros xX)

(
(
(
(



AN ALGORITHM FOR CHECKING INCORRECTNESS OF A RULE 335

and r; is given as follows:

r1 : (zeros (xa| xK)), (app =K (1| *M) (1| xR))

= {(= (), (= ([ «M) (1] R))}.
zeros predicate will succeed if there are elements in the first argument which consist of
a list containing more than one 0. It fails (false) when the list is empty. In Step 2 of

Algorithm 2, R, = ¢ since r; does not include a conditional part. In Step 3 of Algorithm 2,
ro is as follows.

(chk ((zeros (xa| *K)) (app =K (1] *M) (1] xR))))
= (rst xK), (rst «M), (rst *R).
In Step 4 of Algorithm 2, ¢q is as follows.
(chk ((zeros (xa| *K)) (app =K (1] *M) (1] *R)))).
In Step 5 of Algorithm 2, Ay is computed as the set of following answers.

(ans (chk ((zeros (xA))

(app () (1) (1 #B =C))))) <

(ans (chk ((zeros («D)) (app () (1) (1 *E))))) =
(

(ans (chk ((zeros (+F)) (app () (1) (1)) -

(ans (chk ((zeros (xD *xE xF))
(app (xE +F) (1 *G xH) (1))))) + .

In Step 6 of Algorithm 2, @ is created as the set of following sets.

{(zeros (+A)), (app () (1) (1 *B +C))

« (zeros (+4)), (app () (1) (1 B +C)).}
{(zeros (+D)), (app () (1) (1 *E))

< (zeros (\D)), (app () (1) (1 =E)).}
{(zeros («7)), (app () (1) (1))

(267"08 (+F)), (app () (1) (1))}

{(zeros (*D xE xF)),
(app (xE «F) (1 xG =H) (1))
+ (zeros (xD xE xF)),
(app (xE xF) (1 *xG =H) (1)).}
We proceed to Step 2 in Algorithm 1. In Step 2 of Algorithm 1, we choose @) as the third
set in Q, i.e.,
Q = {(zeros (+F)), (app () (1) (1))
< (zeros (+F)), (app () (1) (1)).}
In Step 3 of Algorithm 1, A is computed as
A = {(ans ((zeros (0)) (app () (1) (1)))) < .}

In Step 4 of Algorithm 1, )’ is obtained as

Q' = {(ans ((zeros (+4)) (app () (1) (1)))) < -}
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In Step 5 of Algorithm 1, A’ is obtained as

A" = {(ans ((zeros (+4)) (app () (1) (1)) < -}

In this case, no transformation is needed for computing A’, since @' C U. Algorithm 1
terminates with A # A’ in Step 6. Thus incorrectness of r; is successfully checked by
Algorithms 1 and 2. On the other hand, if we choose () as the first, second and last set
in Q, then A # A’ does not hold.

4.2. Example 2. Consider the case that R, is given and we check incorrectness of the
rule o, where R, is the following set of rules:

(app +H +T" () = {(= «H (), (= «T ()}
(app «H () «=Z) = {(= «H =«Z)}.
(app () ®Y 7)) = {(= & *2)}.
(app (xa] xX) Y 7))
= {(= 7 (xa| *21))}, (app xX *Y xZ1).
(app *H (xb| «T) (xa| 7))
= {(= «H (xa|*h))}, (app *h (xb| £T") *Z);
= {(= «H (), (= (xb[ «T) (xa| x2))}
and ry is given as follows:
ry: (app *H (xa *b| +T) (s *d|xZ2)),
{(not (test= (xa *b) (+c *d)))}
= {(= =«H (x| xh))}, (app =h (xa xb) (x| xZ)).
In Step 2 of Algorithm 2, we create R, as a set of the following rules.

(not (test= (sa *b) (x¢ xd)))
= (not (test= % xc));
= (not (test= % *d)).
(not (test= # *a))={(= #b),(= # a)}. (13)

In Step 3 of Algorithm 2, r¢ is as follows.
(chk ((app *H (sa *b| *T) (x¢ *d|*Z))))
= (not (test= (w xb) (x¢ *d))),
(rst «T), (rst *Z).
In Step 4 of Algorithm 2, ¢q is as follows.
(chk ((app *H (sa *b| xT) (x¢ *d| xZ)))).
In Step 5 of Algorithm 2, Ay is computed as the set of following answers.
(ans (chk ((app *A (b *B) (a *C))))) + .
(ans (chk ((app *D (b *E) (a *F x@Q))))) < .
(ans (chk ((app +V (b «W *X)
(a xY A xB))))) « .

(ans (chk ((app *[ (xJ b *K «L)
(M a *N %0))))) < .
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In Step 6 of Algorithm 2, @ is created as the set of following sets.

{(app +A (b «B) (a +C)))
+ (app *A (b *B) (a *())).}
{(app *D (b *E) (a *F *Q))
+ (app *D (b *E) (a «F *G)).}
{(app #V (b sW +X) (a +Y *A *B))
— (app *V (b sW X) (a Y xA xB)).}

{(app *[ (xJ b *K *L) (xM a *N *0))
— (app « (%] b *K «L) (xM a *N =0)).}.

We proceed to Step 2 in Algorithm 1. In Step 2 of Algorithm 1, we choose @ as the third
set in Q, i.e.,
Q = {(app *V (b sW xX) (a Y *A xB))
«— (app #V (b sW xX) (a Y *A *B)).}.

In Step 3 of Algorithm 1, A is computed as

A = {(ans ((app (a) (b *A *B)
(ab xA xB)))) « .}.

In Step 4 of Algorithm 1, @)’ is obtained as

Q" = {(app (a | *¥A) (b B +C) (a *D *E *F))
+ (app *A (b *B) (xD «E xF)).}.

In Step 5 of Algorithm 1, A" is obtained as

A" ={(ans ((app (a xA) (b *B xC)
(@ xAb xB)))) < .}.

Algorithm 1 terminates with A # A’ in Step 6. Thus incorrectness of ry is successfully
checked by Algorithms 1 and 2. On the other hand, if we choose ) as the first, second
and last set in @, then A # A’ does not hold.

For Section 4.3 to Section 4.10, because incorrectness of a rule is checked in the same
manner as Section 4.1 and Section 4.2, detailed explanation of their processes is omitted.

4.3. Example 3. Consider the case that we check incorrectness of the following rule.

r3: (app xH (| +T) (+a| *Z)),
{(not (test= # xa))}
= {(= «H (xa))}, (app *h (H|«T) xZ).

Note that this rule was presented in Section 3.3.2. In Sections 4.3, 4.4 and 4.5, R, is
similar to that of Section 4.2. We set R, similarly to Section 4.2. Then incorrectness of
rs is successfully checked by Algorithms 1 and 2.
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4.4. Example 4. Consider the case that we check incorrectness of the following rule.
ry: (app «H (s xb xc| *xT) (xd xe *f|*7)),
{(not (test= (sa xb *c) («d xe xf)))}
= {(= «H («d] xh))},
(app *h (xa *xb *xc|*T) (se| x2)).
We set R as the union of (13) and the following rule.
(not (test= (sa *b *c) (xd xe xf)))
= (not (test= s xd));
= (not (test= # xe));
= (not (test= % xf)).

Then incorrectness of ry is successfully checked by Algorithms 1 and 2.

4.5. Example 5. Consider the case that we check incorrectness of the following rule.
rs: (app *H (sa xb xc xd|«T) (v *f xg *xh|x7)),
{(not (test= (sa xb *xc *d) (v *xf *xg xh)))}
= {(= A (x| xh))},
(app *h (sa *b *xc|*T) (xf *g *h|xZ)).
We set Ry as the union of (13) and the following rule.
(not (test= (sa xb *xc xd) (v *f *xg *h)))

= (not (test= sa xe));
= (not (test= b xf));
= (not (test= # xg));

= (not (test= xd xh)).
Then incorrectness of rj is successfully checked by Algorithms 1 and 2.

4.6. Example 6. Consider the case that R, is given and we check incorrectness of the
rule rg, where R, is the following set of rules.

(sum xA xB),{(number xA)}

= {(== A1), (= Bk

= {(> *A 1)}, (mnsl xA xC),(pls *A *D xB),

(sum *C *D).

(mnsl xA *B),{(number xA)}

= {(:= B (— xA 1))}

(pls *A B xC),{(number xA),(number xB)}

= {(:= « (+ *A *B))} (14)
and rg is given as follows.

re : (sum xAxB),{(number xA)}
= {((=+B (d (+*A1) 2))}.

sum predicate indicates that when the first argument is a number, the sum of the first

argument’s number and all integers that exist between the first argument’s number and
the number 1 will form the second argument’s value. For example, if the first argument’s
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element is 3, its sum of 3 + 2 4+ 1, which is 6, will form the second argument’s value.
When the first argument is a number, mns1 predicate indicates that the value obtained
by subtracting 1 from the first argument’s number will form the second argument’s value.
When the first and second arguments are a number, pls predicate indicates that the sum of
these arguments’ numbers will form the third argument’s value. In this example, Ry = ¢
since all of variables in the head of rg are not in the list. We created R, as a set of the
following rule.

(number xA) = {(= %A 1)};
= {(= A2}
= {(= %4 3)}. (15)

Then incorrectness of rg is successfully checked by Algorithms 1 and 2.

4.7. Example 7. Consider the case that R, is given and we check incorrectness of the
rule 77, where R, is the union of (14) and the following rules.

(sqsum xAB xC),{(number xA),(number xB)}

= {(== A *B),(:=+C (x xA xA))};

= {(< #4 *B)},(mnsl *B xD),

(sqpls *B xE xC),(sqgsum xA xD xE).
(sqpls xAxB xC),{(number xA), (number xB)}
= {(:= «C (+ (x *A %A) xB))}

and ry7 is given as follows.

r7: (sqgsum xA xB x(C),
{(number xA), (number *B),(<= %A *B)}
= {(:= D (+ *A1)),(:= «F (+ (x x4 2) 1)),
(= *F (d (x (x *xD %E) %A) 6)),
(:= G (+ *B1)),(:= «H (+ (x *B2) 1)),
(:= « (d (x (x *G xH) xB) 6)),
(= «C (= *I xF))}.
sqsum predicate is the sum of the squares. sqpls predicate indicates that when the first
and second arguments are a number, the sum of the second argument’s number and the
square of the first argument’s number will form the third argument’s value.
Similarly to Section 4.6, Ry = ¢ since all of variables in the head of ; are not in the
list. We create Ry as the union of (15) and the following rule.
(<= #A xB),{(number xA), (number xB)}
= {(<= A *B)}.

Then incorrectness of r7 is successfully checked by Algorithms 1 and 2.

4.8. Example 8. Consider the case that R, is given and we check incorrectness of the
rule rg, where R, is the following set of rules.

(mbr xX () = {(false)}.
(mbr xX (xA|xL)) = {(= =X xA)};
= (mbr *X xL)
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and rg is given as follows. mbr predicate means that elements in the first argument are
contained in the element list of the second argument.

rg : (mbr xX xL),

{(rde xX *L xR xF),(== «[' on)}

= (mbr xX xR).

(rde *X (%A| *L) xR «F),{(= #X xA)}
— (= #R (#4| %9)), (rde *X *L %S *F).
(rde xX (*A|*L) *R xF)

— (= «F on),(rde *xX *xL xR xF).

(rde xX () xR xF) — (= *R ()). (16)
rdc predicate indicates that unification of elements taken from the first and second argu-
ments will form the third argument’s elements. When there are elements in the first and
second arguments that cannot be unified, the fourth argument’s flag switches to “on”.
Note that the rule including — is added to execute the procedure in {}. We create R, as

a set of the rules falling under (18) in Appendix.
Then, the incorrectness of rg is successfully checked by Algorithms 1 and 2.

4.9. Example 9. Consider the case that R, is given and we check incorrectness of the
rule rg, where R, is the following set of rules. count predicate serves to find how many
elements that belong to the first argument are also found within the second argument
list. That number, when found, will form the third argument’s value. [gth predicate
indicates that a count of the number of elements in the first argument will form the
second argument’s value.

(count *n () xz) = {(= * 0)}.

(count *n (sa| xA) *x)

= {(= % *a)}, (plsl xy xx), (count *n xA xy);

= (not (= % *a)), (count *n *xA *zx).

(plsl xA xB),{(number xA)}

= {(:= «B (+ *xA 1))}

(not (= #a *b)), {(ground xa), (ground xb)}
= {(not (= s xb))}.
ground xa),{(var xa)} — (false).
ground *a) — .
lgth () *N) = {(= *N 0)}.
lgth («L|*M) %N)
= (plsl *P «N),(lgth xM xP).

(
(
(
(

(var xa) means that #a is a variable, and rg is given as follows. g¢rnds predicate will
succeed when all elements in a list are constants or symbols; it will fail when variables,
even if only one, are found in a list.

rg : (count *A xL xC),

{(grnds *L),(rdc *A *L xN xF), (== «F on)}
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= (length *N ().
(grnds () — .
(grnds (+L| «M)), {(var *L)} — (false).
(grnds (xL| «M)) — (grnd s «M).
(rde xA L *N xF) is similar to (16). We created R, as the union of (18) in Appendix
and the following rules:
(grnds ()) = .
(grnds (wa| %b)) = {(= % a)}, (grnds xb);
= {(= #a b)}, (grnds xb);
= {(= % )}, (grnds xb).

Then A # A" does not hold for all generated instances. Thus incorrectness of ry is not
checked by Algorithms 1 and 2.

4.10. Example 10. Consider the case that R, is given and we check incorrectness of the
rule 19, where R, is the following set of rules. min predicate indicates that the smallest
value in the first argument list will form the second argument’s value.

(min () *B) = {(false)}.
(min (%4) *B) = {(=%4 xB)}.
(min (x4 *B| *X) *m)
= (min (xB| *X) *n),(min2 *xA *xn xm).
(min2 *A *B xC)
= {(= A xX),(= B «Y), (= £ *xX)}, (< =X *Y);
= {(= A xX),(= B xY), (= £ *xY)}, (>= =X xY).
(< X *Y), {(number xX), (number xY)}
= {(< xX *Y)}.
(>= «X *Y),{(number *xX), (number xY)}
= {(>= =X YY)}
and ryg is given as follows.
r10 : (min L *m),
{(number xm),(del xm *xL xN xF), (== «F on)}
= (min N xm)

where

(del *m () *N *F)— (= «N ()).

(del sm («L|+M) *N xF),

{(number xL),(<= #xn *L)}

— (= «F on), (del xm «M xN xF).

(del sm («L|«M) xN xF)

— (= «N («L| % P)), (del «xm «M %P xF).

del predicate indicates that elements which are smaller than the first argument’s number
are taken from the second argument and used to form the third argument’s elements.
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When the second argument contains elements that are not smaller than the first argu-
ment’s number, the fourth argument’s flag switches to “on”. We created R4 as the union
of (15), (18) in Appendix and the following rules.

(del xm () *L *F) = {(false)}.
(del xm (xA) =L =F),{(number xm)}
={(= A (+ sm 1)), (= «L (), (= = on)}.
(del xm (xA *B|+C) xL xF),{(number xm)}
= {(:= A (+ *m 1)),(:= «B (+ *m 1)), (= «F on)},
(mins xm xC), (= «L xC);
= {(:= A (+ *m 1)),(= «B *xm), (= =F on)},
(mins xm xC), (= «L (xB| *C));
= {(= 4 *m),(:= «B (+xm 1)),(= *F on)},
(mins xm xC), (= «L (xA] xC));
= {(= A xm), (= *B xm)},
(= «L (+A *B|xM)), (del *xm xC xM xF).
(mins x=m (xA| xB)), {(number *m)}
= {(= *A xm)}, (mins *m xB).
Then, the incorrectness of rq is successfully checked by Algorithms 1 and 2. min predicate

indicates that all elements in the second argument list are unified with the first argument’s

number.
We can confirm by the results of Sections 4.1 — 4.10 that the incorrectness of nine out

of the ten test rules can be checked by Algorithms 1 and 2.

5. Comparison to Other Debugging Algorithms. This section compares Algorithm
1 with other debugging algorithms.

5.1. Checking correctness or incorrectness of a rule. Under the ET model, it is
possible to check a rule r for correctness or incorrectness using the following methods.

Method 1: If the pattern of atoms in r is identical to that in one of the clauses in D,
then r is an ET-rule. Therefore, check whether the pattern of atoms in r is identical
to that in one of the clauses in D or not.

Method 2: For Qy,...,Q, € C and ¢ € Q, assume that the transformation

Qo— = Qn, 0<n<oo,
Qo = {(ans(q)) < ¢}, Q. CU

is executed within D : ¢ Ly A Forie {1,...,n}, if r transforms @Q; into @;,; and
M(DUQ;) # M(DUQ;.1), then r is incorrect. On the other hand, computations
of M(DUQ),), p € {i,i+ 1} require infinite procedures in general. Thus we compute
A, = M(DUQ,)Nrep(ans(qq)) for g4 € Q and check whether A; # A;;,, which is a
sufficient condition of M(D U @Q;) # M (DU Q;11), holds or not. If A; # A;,q, then
r is incorrect. A, can be computed by specializing D U@, using g, and transforming
the specialized set by applying rules in R..
Method 3: Manually prove, based on (1), that r is an ET rule.
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Method 4: Create instances, use r to transform the instances, and check whether
meaning is preserved or not following this transformation. If the meaning is not
preserved, then r is a non-ET rule.

Methods 1 and 3 are suitable for showing that r is an ET rule. Methods 2 and 4 are
suitable for showing that r is a non-ET rule. Method 1 can be executed with low cost
because it only needs to check the patterns of the atoms. However, we cannot say that
r is incorrect even if the pattern of atoms in r is not identical to those in all clauses in
D. The reason is that there are ET rules which have patterns of atoms that are not
identical to those in all clauses in D. In the execution of Method 2, we must execute
the whole program and compute A; for each 7. A large cost is required for execution
and computations when the given program is large. Method 3 requires the largest cost
of all methods since programmers are required to manually prove (1) while the other
methods can be executed automatically. Method 4 can be executed at lower cost if the
instances are given as, with regards to Method 2, it requires far fewer transformations
and, with regards to Method 4, it needs only finite instances while infinite instances must
be considered under Method 3. Moreover, incorrectness can be checked even for the rules
whose patterns of atoms are not identical to those in all clauses in D. Thus we proposed
Algorithm 1 based on Method 4.

5.2. Comparison to debugging algorithms in the LP model. Similarly to the al-
gorithms in [12, 13, 14], the debugging algorithms [2, 3, 4, 5, 7, 10, 16, 17, 18, 19, 20, 21]
in the LP model [8, 19] are applied when an incorrect answer is obtained as the result of
program execution. Then does an algorithm similar to Algorithm 1 also exist in the LP
model? Namely does an algorithm for checking incorrectness of a program component
also exist in the LP model? The answer seems to be NO. The reason is as follows. In the
LP model, program is a set of clauses. Although correctness of a set of clauses is defined,
correctness of an individual clause is not defined. Therefore, the criterion for checking
incorrectness of an individual clause does not exist. In the ET model, on the other hand,
correctness of an individual rule is defined which makes it possible to check incorrectness
of a rule.

5.3. Comparison to the debugging algorithms in the ET model. In this section,
we will demonstrate the essential advantage of the proposed method by providing a com-
parison with the debugging algorithms in [12, 13, 14]. To begin, their characteristics and
problem areas are illustrated.

The characteristics and problem areas of the [12] method are as follows.
[Characteristics]
- Some of the rule sets it uses have high probability of being correct and some have low
probability; incorrect rules are detected from the rule sets with low probability of being
correct.
- An incorrect rule itself can be detected, not a set containing incorrect rules.
[Problem areas]
- Distinguishing between the rule sets with high probability of being correct and those
with low probability is difficult.
- Since it does not say if a rule set is absolutely correct, it cannot be asserted that a
detected rule is “absolutely incorrect”.

The characteristics and problem areas of the [13] method are as follows.
[Characteristics]
- Incorrect rules are detected from the rule sets by inserting debugging rules created by
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Oracle (correct rule generating system).
- In the program, it is not necessary to distinguish between the rule sets with high prob-
ability of being correct and those with low probability.
- An incorrect rule itself can be detected, not a set containing incorrect rules.
- As long as the rules created by Oracle are correct, it can be asserted that detected rule(s)
are “absolutely incorrect.”

[Problem areas]
- Oracle, which can create correct rules, is required.
- Rule creation through Oracle is more difficult than the “Yes-No answers” of LP algo-
rithmic debugging.

The characteristics and problem areas of the [14] method are as follows.

[Characteristics]
- Partial rule sets (including incorrect rules) within the initial program can be computed.
- In the program, it is not necessary to distinguish between the rule sets with high prob-
ability of being correct and those with low probability.
- Existence of incorrect rules within the computed rule sets can be theoretically and
definitely guaranteed.

[Problem areas]
- It is impossible to determine which rules within the computed rule sets are incorrect.
- The computed rule sets may correspond to the initial program. That is, results which
have no meaning (which is with the initial program with incorrect rules) may be computed.

The studies which were conducted to solve the [12] method’s problem areas are [13]
and [14]. With the [13] method, however, it requires Oracle and therefore has associated
large costs. At the same time, however, it has the highest accuracy of debugging among
these three methods. With the [14] method, although existence of incorrect rules can
be theoretically and definitely guaranteed, it is not capable of identifying which rules are
incorrect. Therefore, each one of these three methods has both advantages and drawbacks.

The proposed method (algorithm) is an approach that is fundamentally different from
these three methods. An essential difference between the proposed algorithm and the
algorithms in [12, 13, 14] are as follows. In the methods in [12, 13, 14], incorrect rules are
detected by exploiting program execution processes when an incorrect answer is obtained
as the result of program execution. That is, even though a program may contain incorrect
rules, these algorithms cannot be applied until the program is complete. In the proposed
algorithm, on the other hand, the incorrectness of a rule can be checked without execution
of programs. That is, this algorithm can be applied even when a program is not complete.
Therefore, in cases where the cost of creating and executing a program is significant, the
proposed algorithm, which does not require programs to be complete, is superior because
its cost is much lower than the algorithms in [12, 13, 14] for checking the incorrectness of
a rule.

6. Application of the Proposed Method. As demonstrated from Section 4.1 to Sec-
tion 4.10, one of fundamental applications of the proposed method is to check the incor-
rectness of rules in a program. This can be applied to a variety of programs ranging from
small programs to large programs.

Although there are many other applications for the proposed method, the ones consid-
ered most important will be discussed.

It is possible to apply the proposed method to program generation. In program genera-
tion under the LE-based method [11], the correctness of well-formed formulas, referred to
as logical equivalence (LE), is verified through the use of ET rule-based programs. Some
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of the ET rules required in the verification process must be manually created by program-
mers. To correctly verify LE, making sure that incorrect ET rules are not included in the
manually created ET rules is crucial. However, having all ET rules checked by program-
mers exacts a high cost. Because the proposed method is able to eliminate incorrect ET
rules at a low cost, it may make the implementation of LE verification programs more
efficient.

Furthermore, the proposed method can be applied to programming learning via e-
learning systems. Currently, in the most commonly used e-learning systems, such as
Moodle, system developers provide e-learning system functions and learners and teachers
use the functions [6, 15]. However, incorporating a function, through which the incorrect-
ness of the program’s rules is checked, to these systems is theoretically and structurally
impossible. So, an e-learning system based on the theory of the equivalent transforma-
tion (ET) model is currently under development. Because this system can incorporate a
function to check the incorrectness of the program’s rules, it can provide a new, efficient
approach to programming learning that is different from conventional e-learning systems.

7. Conclusions. This paper proposed Algorithms 1 and 2 for checking incorrectness
of a rule in ET programs and for creating a set of instances, respectively, presented
Theorem 3.1 for justifying Algorithm 1, and verified the effectiveness of Algorithm 1
through some examples. The main feature of Algorithms 1 and 2 is checking incorrectness
of 7 by creating finite QM, ..., Q™ such that r can be applied to.
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Appendix.

(:= =X (+ *A *B)), {(number *A), (number *B)}
= {(:= *X (+ =4 *B))}.
(:= %X (— *A *B)), {(number xA), (number *B)}
= {(:= =X (— %A «B))}.
(:= «X (x %A *B)),{(number *A),(number *B)}
= {(:= =X (x *A «B))}.
(:= =X (d %A «B)), {(number xA), (number xB)}
= {(:= =X (d *A *B))}.
(> *A xB), {(number *A), (number *B)}
= {(> *A xB)}.
(< *A xB), {(number *A), (number *B)}
= {(< #A xB)}.
(testMatch *A xB)
= {(testMatch xA xB)}.
(== *A «B), {(number *A), (number +B)}
= {(== A *B)}.
(/== A *B),{(number *A), (number *B)}
= {(/== *A *B)}.
(list xA) = {(= #4 (x))}; = {(= A (xa #))}; = {(= A (xa = *))}.
(number xA) = {(= A 1)}; = {(= #4 2)}; = {(= A 3)}.
(int *xA)={(= A —1)}; = {(= x4 0)}; = {(= =4 1)}.
(real *A) = {(= %4 0.5)}; = {(= A 1.5)}; = {(= =A 2.5)}.
(char xA)={(= x4 a)}; = {(= x4 b)}; = {(= 4 ¢)}.
(string «A) = {(= %A abe)}; = {(= *xA def)}; = {(= =A ghi)}. (17)
“—” means subtraction. “>” and “<” are signs of inequalities. (testMatch *A *B) mean

that *B can be matched with *A. “==" and “/==" denote equality and non-equality,
respectively. (list xA), (number xA), (int xA), (real *A), (char xA) and (string xA)
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mean that %4 is a list, a number, an integer, a real number, a character and a string,

respectively.

(rde *xX () xL xF) = {(false)}.
(rde *xX (xA) L *F),{(= *X a)}

= {(= %4 D), (= L (), (= «F on)}.
(rde *X (s xd|«C) *L *F),{(= %X a)}

= {(= xb),(= «db),(= « on)},

(noRdc *X *xC xL xF);

= {(= = b),(= «da),(= «F on)},

(= «L (| xM)), (noRdc *X xC xM xF);
= {(= = a),(= «db),(= *F on)},

(= #L (x| xM)), (noRdc *X +C xM xF);
= {(= rwa), (= «da)},

(= «L (x¢ *d|*M)), (rdc *X *C *M xF);
= {(= #«b),(= *F on)},

(= «L (| xM)), (noRdc *X xC xM xF);
= {(= «db), (= *F on)},

(= +L (x| *M)), (noRde *X xC xM xF);
= {(= xa)}, (= L (x xd|xM)),

(rde *X xC x«M xF);

= {(= «da)}, (= L (x xd| «M)),

(rde *X *xC x«M xF);

= (= «L (1 xd|«M)), (rde xX *xC xM xF).
(noRde *X xL «M xF)= {(= *sM xL)}.
(= «L M) = {(= «L «M)}.
(== A *xB) = {(== %A xB)}.

(18)



