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Abstract. The cutting pattern problem of the surplus steel plates (SPCP problem) is
difficult to solve. In this paper, a divide-conquer heuristic search approach (DHSA)
is proposed for SPCP. Firstly, the related knowledge is extracted and used in trans-
forming the SPCP problem into the special restricted rectangle packing problem (S2RP
problem) for each group of surplus(es) and orders. Afterward, feasible candidate cut-
ting schemes can be obtained through an exhaustive search based on the knowledge and
proposed divide-conquer heuristic strategy for the S2RP problem. And the optimal one
having passed through quality-monitoring can be quickly found from the sorted candidate
schemes. Theoretical analysis and numerical experiments show that the proposed DHSA
algorithm is superior to existing approaches, especially the MES-based human-computer
interactive approach in performance for the SPCP problem.
Keywords: Cutting problem, Rectangle packing problem, Heuristic method, Range
size, Divide-conquer strategy

1. Introduction. Rectangle packing and cutting problems are often encountered in
many fields of the production and real life, for example, the Ad layout [1] and rectangle
plate cutting [2]. For the rectangle plate cutting, the right angle cutting is more common,
which includes non-Guillotine cutting [3,4] and Guillotine cutting [5-7]. In this paper, we
discuss a cutting pattern problem of surplus steel plates (surplus plates, SPCP problem)
for steel and iron companies. According to related knowledge in Section 2, it belongs to
the latter (i.e., the Guillotine cutting). Due to the NP-hard nature, many scholars have
had deep discussion on the Guillotine cutting of the rectangle plate. So far, the existing
effective algorithms can be classified into the following four major types.
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(i) Linear programming. For example, according to the combination principle and
theory of linear programming, Yuan [8] presented a cutting algorithm and its procedure
for plate materials.

(ii) The heuristic methods. Haessler and Sweeney [9] proposed a heuristic method of
cutting-stock one by one. Their idea is that after cutting-stock one stock sheet to be cut
every time, numbers of ordered pieces are updated and this process is repeated until fea-
sible cut-schemes of all stock sheets are obtained. Dolatabadia et al. [10] and Christoforos
and Fleszar [11] presented two different heuristic methods for solving their restricted rec-
tangle packing problems (2RP problems) based on the recursive idea, respectively; Wang
[12] gave a Guillotine cutting method that constrained cutting patterns are generated by
successive horizontal and vertical builds of ordered rectangular pieces.

(iii) The MES based human-computer interaction. Manufacture execution system
(MES) was developed by Advanced Manufacturing Research, Inc (AMR, Inc.) in the
early 1990s. In the last years, the MES based human-computer interactive (MHCI) ap-
proach has been used in designing SPCP for many steel and iron companies.

(iv) Intelligent algorithms (simulated annealing, genetic algorithms and ant colony op-
timization). Combining the improved BL heuristic with a pseudo-parallel agent-based
system, Polyakovskya and M’Hallah [13] proposed a more effective hybrid algorithm for
the complex Guillotine 2RP problem.

In addition, many intelligent methods are devised for the irregular polygon packing
problem [14-16].

There exist the following four difficulties for solving the SPCP problem of large and
middle iron and steel enterprizes.

(i) There are up to thousands of surplus plates and ten thousands of orders (an order
includes several ordered pieces with the same size) in batch records. For handling the
batch records, real-time calculation speed is required.

(ii) In batch records, there are up to hundreds of orders, each having the same sign
and thickness as a surplus plate. Because of the uncertain quality-monitor result we have
to exhaust all candidate cutting patterns to find the optimal ones from them for every
surplus plate. Because the number of candidate cutting patterns of the surplus plate is
increasing in an incredibly rapid speed, this probably results in a combinatorial explosion.

(iii) For the optimal cutting pattern of a surplus plate, it is required to satisfy ten rules
(see Appendix 1) and to realize dynamic priorities of several given indexes (see Appendix
2).

(iv) There are some ordered pieces with variable size (including the length and/or
width) in batch records.

Unfortunately, the existing algorithms do not simultaneously involve the above four
difficulties. For example, it is very difficult to satisfy the requirement (i) for types (i),
(iii) and (iv) of approaches and to obtain the best solution for the type (ii) of approaches.
Therefore, an absence of a powerful heuristic search approach is a key obstacle to solving
this problem.

The “No Free Lunch Theorem” indicates that without combining the knowledge of this
problem with its optimization algorithms, performances of these algorithms are equiva-
lent [17]. By obtaining the knowledge from the known information and packing scheme
diagraphs of a weighted circle packing problem (WCP problem), Li et al. [18] proposed
a knowledge-based heuristic particle swarm optimization approach with the adjustment
strategy. Li’s experimental results show that both its computational efficiency and so-
lution quality are obviously improved for the WCP problem. In this paper, obtaining
the knowledge from the SPCP problem itself and designer’s experience, we consider a
divide-conquer heuristic search algorithm (DHSA). Its divide-conquer heuristic strategy
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to solve the 2RP problem will be superior to that of [10] (2012) in performance, and
compared with the MHCI approach, both its rolling yield of the surplus plates and its
design efficiency will be significantly increased. In addition, the optimal cutting scheme
of each surplus plate obtained by this algorithm will also satisfy a dynamic priority of
some given indexes (such as the rolling yield, and delivery).

The rest of this paper is organized as follows. Section 2 is the related knowledge and
definitions; dividing and filtering are in Section 3; calculating candidate cutting patterns
of each surplus plate is in Section 4; Section 5 is to propose the DHSA algorithm to
obtain the optimal cutting pattern of each surplus plate; the experiment and analysis are
in Section 6; the summary of this paper is in Section 7.

2. Related Knowledge and Definitions. After analyzing the SPCP problem and sum-
marizing the prior design experience of designers with respect to this problem, we have
obtained the following knowledge.

(1) For each cutting pattern designed, it is required that the length direction and width
direction of each ordered piece are consistent with those of the surplus plate, respectively.

(2) For each ordered piece of the cutting pattern, its sign and thickness must be the
same as those of the surplus plate, respectively.

(3) A surplus plate can be cut one time along the length direction at most and be cut
eight times along the width direction at most.

(4) When selecting the ordered piece to design the cutting pattern, we take the strategy
of “the large size first with its width and length in turn”.

(5) The rule set C in Appendix 1 consists of the attribute rule set C 1{(1)-(6), (10)}
and mode rule set C 2{(7)-(9)}, where the mode is defined by Definition 2.2.

Definition 2.1. Let Sp and Sod denote the area of a surplus plate and the sum of areas
of all ordered pieces of its cutting pattern, respectively, then the quotient Sod/Sp×100% is
called the rolling yield of the surplus plate with respect to the cutting pattern.

Definition 2.2. Suppose that a surplus plate can only be cut into a row of ordered pieces
which satisfy the knowledge (2). If the widths of the ordered pieces are the same, the
cutting mode is denoted by “A1” (see Figure 1(a)); otherwise, it is denoted by “A2” (see
Figure 1(b)). Suppose that a surplus plate can be cut into two rows of ordered pieces which
satisfy the knowledge (2). If the widths of ordered pieces in each row are the same and the
lengths of two ordered pieces in each column are the same, the cutting mode is denoted by
“S1” (see Figure 1(c)); otherwise, it is denoted by “S2” (see Figure 1(d)).

3. Grouping and Filtering Out. According to the knowledge (2) and (4) in Section
2, thousands of surplus plates and ten thousands of orders are sorted in descending order
with respect to their sign, thickness, width and length in turn, respectively (it can be
implemented by the nested sorting select statement of the used database languish). Using
cursor data blocks of the database system, we can quickly obtain and store them into the
surplus plate list L1 and order list L2, respectively. Then by Algorithm 1 we quickly
group them in the sign and thickness and filter out orders which do not satisfy any rule
in the set C 1 (see Appendix 1) for each group, respectively.

Let N denote the number of groups; PLi and OLi be the surplus plate list and order
list of the i -th group (i = 1, 2, . . .,N); ni and mi be the number of surplus plates and the
number of orders of the i -th group, respectively. Suppose that both two pointers p1 and
q1 point to the head of the list L1, and both two pointers p2 and q2 point to the head of
the list L2. The pseudo-code of Algorithm 1 (grouping and filtering out) is as follows:
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Figure 1. Four cutting modes

Initialize N = 0, ni = 0, mi = 0 (i = 1, 2, . . ., N);
While (p1 ̸= null and p2 ̸= null) {

While (both p1.next and p2.next ̸= null) {
If ((p1.sign>p2.sign) or (p1.sign=p2.sign and p1.thick > p2.thick)) p1 = p1.next;
Else If (p1.sign=p2.sign and p1.thick=p2.thick) break;

Else p2 = p2.next;
q1 = p1; q2 = p2; N++; i++;
do {p1 ⇒ PLi; p1 = p1.next; ni++;
} while (p1 ̸= null and p1.sign = q1.sign and p1.thick = q1.thick);

do {if (p2 satisfies rules in C 1 and p2.length ≤ q1.length and p2.width ≤ q1.width)
p2 ⇒ OLi; p2= p2.next; mi++;

} while (p2 ̸= null and p2.sign = q2.sign and p2.thick = q2.thick);
}

After grouping and filtering out, the SPCP problem can be transformed into a special
restricted rectangle packing problem (an S2RP problem) of each group of the orders and
surplus(es) according to the knowledge (1) and (3) in Section 2.

4. Candidate Cutting Patterns. For obtaining candidate cutting patterns of each
surplus plate, we will build a mathematical model of the S2RP problem and propose a
divide-conquer and heuristic strategy in Sections 4.1 and 4.2, respectively.

4.1. Mathematical model of the S2RP problem. The models of [3,7,9] are to pack
given different-sized ordered pieces on several surplus plates such that the number of
consumed surplus plates is the least. [10] is to pack maximum profit subset of “small”
rectangles into a unique “large” rectangle. It belongs to the two-dimensional knapsack
problem.

The S2RP problem is similar to that of [10] and its surplus plate and ordered piece are
responding to the “large” rectangle and “small” rectangle of [10] respectively. However,
there are the following differences for them. (i) Each packing scheme of the S2RP problem
must satisfy Knowledge (1), (3) and is one of four modes “A1”, “A2”, “S1” and “S2” of
Definition 2.2. (ii) The objective of the S2RP problem is to calculate all the packing
schemes of the surplus plate rather than the optimal one for the “large” rectangle.

Let L and W denote the length and width of the “large” rectangle R, respectively,
and a set OL = {odi(li, wi, bi), i = 1, 2, . . ., m}, where li (li ∈ [li,min, li,max]), wi (wi ∈
[wi,min, wi,max]) and bi denote the length and width and number of i-th kind of “small”
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rectangles, respectively. Set I = {1, 2, . . .,m}. Let [L/li] be the integer part of L/li and
hi = min {bi, [L/li]} (hi ≥ 1, i = 1, 2, . . .,m), then the mathematical model of the S2RP
problem can be described as follows: from the set OL, find the packing scheme set Y =
{X(li, wi, a1i + a2i), i = t1,t2, . . ., tq | q ∈ I and {t1, t2, . . ., tq}⊆I} of the rectangle R and
X satisfies Formulas (1)-(4).

0 ≤ a1i + a2i ≤ hi, i = t1, t2, . . ., tq (1)∑tq

u=t1
a1ulu ≤ L,

∑tq

v=t1
a2vlv ≤ L (2)

max {wu|a1u ̸= 0 and u = t1, t2, . . ., tq}+max {wv|a2v ̸= 0 and v = t1, t2, . . ., tq} ≤ W (3)

lfj ,min ≤ l(j) ≤ lfj ,max for j = 1, 2, . . .,
∑tq

v=t1
a2v (4)

Formula (1) denotes that the number of “small” rectangles with the same length and
width is not larger than both the maximum number allowed for the “large” rectangle and
its maximum number. Formula (2) means that the sum of lengths of “small” rectangles in
each row is not larger than the length of the “large” rectangle. Formula (3) indicates the
sum of maximal widths of ordered pieces in each column is not larger than the width of
the “large” rectangle. Formula (4) shows that there exists the common length ranges for
two “small” rectangles in each column, where l(j) denotes the length of “small” rectangle
in the j -th column of the first row (see Figure 2).

Figure 2. Packing j-th column of the 2nd row and handling of the range
size in j-th column

4.2. Divide-conquer and heuristic strategy. Scholars proposed some different and
efficient methods [6-12] based on models of the respective 2RP problems. However, it is
difficult to fit the S2RP problem for them due to different problems and models. Consid-
ering its speciality, we suggest a divide-conquer and heuristic strategy.

First, we consider its special case: li = li,min and wi = wi,min (i = 1, 2, . . .,m). Suppose
that X ∈ Y. According to Knowledge (3) and Knowledge (4), we decompose X into
X 1 = {(li, wi, a1i), i = t1, t2, . . ., tq | q ∈ I and {t1, t2, . . ., tq} ⊆I} and X 2 = {(li, wi, a2i),
i = t1, t2, . . ., tq | q ∈ I and {t1, t2, . . ., tq} ⊆ I}, respectively.

Let lmin = min {l1, l2, . . ., lm}, d be the maximal number of “small” rectangles in X 1,

then d = [L/lmin], q ≤ d and, when bi = 1 (i = 1, 2, . . . , m) there exist
∑d

k=1 ck
m possible

combinations for X 1. For each non negative integer sequence a1t1 , a1t2 , . . . , a1tq , if it
satisfies Formula (2) and a1tj ≤ htj (j = 1, 2, . . ., q), then X 1{(li, wi, a1i), i = t1, t2, . . ., tq
| q ∈ I and {t1, t2, . . ., tq} ⊆ I} is one packing sub-scheme of R. So, after traversing each
combination in turn by a backtrack strategy, all packing sub-schemes of R can be found.
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After finding the packing scheme X 1 of R, we update set OL, i.e., bi = bi − a1i for
i = t1, t2, . . ., tq. According to the Knowledge (4) we pack a “small” rectangle of the set

OL into the position j (j = 1, 2, . . .,
∑tq

k=t1
a1k) of X 2 in turn (see Figure 2), until all its

positions are packed or no ordered piece is suitable for it. Set X = X 1+X 2 and test
whether it satisfied rules in the set C 2. In this way, we can construct all packing schemes
of R which satisfy rules in the set C 2 and Formulas (1)-(4). These schemes, whose rolling
yields ≥ η (a given threshold value), are taken as better cutting patterns of the surplus
plate.

4.3. How to relax combination explosion. Experimental results show that there exist
a few candidate cutting patterns which fail to pass the quality-monitoring (see Section 5.1)
and/or the test of at least one rule in the set C2. Therefore, in order to find the optimal
and quality-monitoring-qualified cutting pattern for each surplus plate. It is necessary to
do the exhaustive search for all packing schemes of the corresponding “large” rectangle.
However, when m = 50, its maximal number

∏m
i=1 hi of packing sub-schemes, such as X 1,

is lager than 250. Obviously, the combination explosion will occur probably.
By analyzing sizes of surplus plates and ordered pieces of the large steel and iron

company in China for past years, we can know that 0 < d < 5, and when m = 50, d = 4,∑d
k=1 ck

m = 252875 ≪ 250.
Therefore, we can effectively alleviate the combination explosion by estimating the

maximal number of “small” rectangles of the sub-scheme such as X 1.

4.4. Handling the range size. After obtaining all better packing schemes of the surplus
plate based on the mathematical model with the fixed size, we test whether they satisfy
the following both Formulas (5) and (6) for each scheme X.

L −
∑tq

k=t1
a1klk = 0, (5)

W − (W 1 + W 2) = 0. (6)

In Formula (6), W 1 = max {wu|a1u ̸= 0 and u = t1, t2, . . ., tq}, W 2 = max {wv|a2v ̸= 0
and v = t1, t2, . . ., tq}. For the scheme X which satisfies both Formulas (5) and (6), we
directly consider it as X+; otherwise, as shown in Figure 2, suppose that the 1st and
2nd ordered pieces in the j -th (j = 1, 2, . . .,

∑tq
k=t1

a1k) column in X belong to orders τj

and fj, respectively, and the widths of two “small” rectangles in the j-th column after
handling are denoted by w1(j) and w2(j), respectively.

Set r1 = L −
∑tq

k=t1
a1klk, then r1 > 0. If r1 ≥ ∆l(1), where ∆l(1) = min(lτ1,max − lτ1 ,

lf1,max − lτ1), then l(1) = lτ1 + ∆l(1) and r1 = r1 − ∆l(1). Repeat the above process,
∆l(j) = min(lτj ,max − lτj

, lfj ,max − lτj
) and l(j) = lτj

+ ∆l(j) and r1 = r1 − ∆l(j) for

j = 2, 3, . . ., until j =
∑tq

i=t1
a1i or ∃ a positive integer k (k ≤

∑tq
k=t1

a1k), r1 < ∆l(k). For
the latter, l(j) = lτj

+ ∆l(j) for j = 1, 2, . . ., k − 1, but l(j) = l(j) + r1 for j = k.
Set r2 = W − (W 1 + W 2). For k = 1, 2, . . .,

∑m
k=1 a1k, if r2 ≥ wτk,max − wτk,min > 0,

w1(k) = wτk,max; otherwise, w1(k) = wτk
+ r2. Calculating W 1 and r2, respectively, we

repeat the above process for “small” rectangles in the 2nd row if r2 ̸= 0.
So, the scheme X is further improved into X+, which is taken as the candidate cutting

pattern of the surplus plate.
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5. The Optimal Cutting Pattern.

5.1. Dynamic priority and quality-monitor. After obtaining the cutting pattern X+

of a surplus plate by Algorithm 2, we compare its performance indexes with those of
cutting patterns in L3 one by one in turn. If their two values corresponding to the current
performance index are the same, then we compare their next performance index values.
So, its appropriate position sorted in descending order with respect to given indexes is
found in L3 and it is inserted into the position. Candidate cutting patterns in L3 are
quality-monitored in turn, and the first one quality-monitored successfully is taken as the
optimal cutting pattern X opt of the surplus plate.

Indexes, such as the rolling yield, and their corresponding values (the smaller the value
is, the higher the priority is) are stored into a database table (see Appendix 2). As
long as we interchange their values in the table, their priorities will also be changed
correspondingly after renew sorting. In this way, dynamic priorities of several indexes are
achieved.

5.2. Cutting mode. For two packing sub-scheme X k (k = 1, 2) of X opt, we define
W k = max {wi|aki ̸= 0, i = t1, t2, . . ., tq}, wk = min {wi|aki ̸= 0, i = t1, t2, . . ., tq}. While
W 2 = 0, if W 1 = w1, the cutting mode of X opt is A1; otherwise, its cutting mode is A2.
While W 2 > 0, if W 2 = w2, its cutting mode is S1; otherwise, its cutting mode is S2.

5.3. The proposed algorithm. After synthetizing the above discuss, we represent DH
SA for the SPCP problem. Let L3 and L4 denote the candidate cutting pattern and the
optimal cutting pattern lists respectively. Other symbolics have been defined in Sections 2-
4. According to the above discussion, the pseudo-code of the proposed DHSA (Algorithm
3) is as follows:

Algorithm 2 Constructing candidate patterns
void Candidate Pattern (d, m, PL, OL, L3)
{ Define X, X1, X2, j;

For each combination of j orders (j = 1, 2, . . . , d)
{ Construct X 1 = {(li, wi, a1i), i = u1, u2, . . ., uj};

OL = OL−X1;
Generate X 2 = {(lj, wj, a2j), j = v1, v2, . . ., vj};
X = X1 + X2; OL = OL−X2;
If (X satisfies rules in C2 and its rolling yield ≥ η)
{ Calculate X+;

Insert X+ to L3 in descending order of indexes;
}

}
}

Algorithm 3 DHSA
Construct two lists L1 and L2;
Call Algorithm 1 to divide L1 and L2 into PLi and OLi

Calculate mi and ni for i = 1, 2, . . ., N ;
If (N = 0) exit (0)
For (i = 1; i ≤ N ; i++)
{ k = 1;

While (k ≤ ni)
{ Calculate dk of k-th surplus plate of PLi by OLi;

Candidate Pattern (dk, mi, PLi, OLi, L3);
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P = L3;
While (P ̸= null)
{ If (quality-monitor (P ) = 1) break;

Else P = P .next;
}
Calculate its cutting mode and rolling-yield;
Insert P into L4; update OLi; empty L3; k++;

}
}
All surplus plates in L4 are stored into the table;
Free L1 − L4, P , PLi and OLi for i = 1, 2, . . ., N .

6. Experiments and Analysis.

6.1. Experiments. Environment: The data of Experiment 1 derive from [10]. Our algo-
rithm is coded in C++ language and run on a 1.83 GHz Pentium(R) Dual-Core machine
with 1 GB memory. The data of Experiments 2-4 derive from the large steel and iron
company in China, whose run environment is the unix operation system, MES application
software, tuxedo middleware, oracle data-base and Pro C language. The computer is an
8CPU IBM p570 with 32GB memory. Numbers of the surplus plates and ordered pieces
of three experiments are shown in Table 2 respectively. We take threshold η = 0.80 and
regard the rolling yield as the first priority index in the following Experiments 2-4.

Experiment 1. The data of the experiment derive from [10], whose gcuts 1-7 are the
same as the SPCP problem in the size of d. After removing Formula (4), Algorithm 2 is
revised to find the optimal solution for the gcuts 1-7 and their computational results are
shown in Table 2. Other data in Table 2 are taken from [10]. It can be known from Table
1 that, the overall areas of our algorithm are greater than or equal to those of the gcut 1
and gcuts 5-7, are close to those of gcuts 2-4, and the computational efficiency is higher
than that of [10].

Table 1. The performance comparison of algorithms in [10] and the pro-
posed DHSA for Example 1

Problem size
A1 [10] A2 [10] The revised Algorithm 2

z1(Sod) T1 UB2(Sod) T2 Sod T/s
gcut 1 10 48368 2.89 48368 0.1 48368 0.0027
gcut 2 20 59307 5.56 59307 7.58 59249 0.0029
gcut 3 30 60241 6.50 61070 T.L. 59827 0.0609
gcut 4 50 60942 12.95 61379 T.L. 60590 0.1641
gcut 5 10 195582 4.35 195582 0.03 200359 0.0001
gcut 6 20 235305 7.13 235305 0.02 237797 0.0006
gcut 7 30 238974 11.06 238974 113.0 242034 0.0080

Experiment 2. There are 421 surplus plates and 18869 ordered pieces in the surplus
plate table and order table, respectively. We take the MHCI approach and the proposed
DHSA to successfully solve the optimal cutting patterns (denoted by Ny in Figure 3(a))
of 186 and 269 surplus plates, respectively. Their numbers (denoted by No in Figure 3(a))
of ordered pieces packed, computation times (denoted by Tc in Figure 3(a)) and average
rolling yields (denoted by Avg in Figure 3(a)) are shown in Table 1 and Figure 3(a). From
Table 1 and Figure 3(a), we can see that the overall number of ordered pieces to be cut
by the proposed DHSA is 45% more than that of the MHCI approach; the computational
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Figure 3. The performance comparison of DSHA and MCHI for Experi-
ments 2-4

Table 2. The performance comparison of algorithms in [10] and the pro-
posed DHSA for Example 1

Experimental number 2 3 4

Data
Number of surplus plates 421 859 1307
Number of ordered pieces 18869 161778 14062

MHCIA

Number of surplus plates with the
optimal cutting pattern

186 249 320

Cost time/day 2 (day) 2.5 (day) 3 (day)
Number of ordered pieces to be cut 186 249 320
the average rolling yield 0.8758 0.9021 0.9341

DHSA

Number of surplus plates with the
optimal cutting pattern

269 399 475

Cost time/Second 19(s) 24(s) 27(s)
Number of ordered pieces to be cut 271 400 476
The average rolling yield 0.9716 0.9762 0.9794

efficiency of the proposed DHSA is at least three magnitudes faster than that of the MHCI
approach; the average rolling yield of the DHSA is at least 10.1% higher than that of the
proposed MHCI approach.

Experiment 3. There are 859 surplus plates and 16178 ordered pieces in the surplus
plate table and order table, respectively. We take the MHCI approach and the proposed
DHSA to successfully solve the optimal cutting patterns of 249 and 399 surplus plates,
respectively. Their numbers of ordered pieces packed, computation times and average
rolling yields are shown in Table 1 and Figure 3(b). From Table 1 and Figure 3(b), we
can see that the overall number of ordered pieces to be cut by the proposed DHSA is 61%
more than that of the MHCI approach; the computational efficiency of the proposed DHSA
is at least three magnitudes faster than that of the MHCI approach; the average rolling
yield of the proposed DHSA is at least 7.4% higher than that of the MHCI approach.

Experiment 4. There are 1037 surplus plates and 14062 ordered pieces in the surplus
plate table and order table, respectively. We take the MHCI approach and the proposed
DHSA to successfully solve the optimal cutting patterns of 320 and 475 surplus plates,
respectively. Their numbers of ordered pieces packed, computation times and average
rolling yields are shown in Table 1 and Figure 3(c). From Table 1 and Figure 3(c), we can
see that the overall number of ordered pieces to be cut by the proposed DHSA is 49% more
than that of the MHCI approach; the computational efficiency of the proposed DHSA is
at least three magnitudes faster than that of the MHCI approach; the average rolling
yield of the proposed DHSA is at least 4.5% higher than that of the MHCI approach.
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6.2. Time complexity analysis. The proposed DHSA mainly includes three steps: (i)
grouping and filtering out; (ii) calculating all candidates cutting patterns of each group;
(iii) obtaining the optimal cutting patterns of each group.

(i) Time complexities of reading data, grouping and filtering out all are O(n + m).
(ii) Suppose that after grouping and filtering out, the number of orders of the i-th

group is mi (i = 1, 2, . . ., N). For calculating X+ of the surplus plate j (j = 1, 2, . . ., ni)
of i-th group, let dij be the maximal number of “small” rectangles in its sub-scheme,

such as X 1, the number of its sub-schemes searched by Algorithm 2 is O(
∑dij

k=1 ck
mi

).
That is to say, for obtaining candidate packing schemes of the i-th group, it is essential

to construct O(
∑ni

j=1

∑dij

k=1 ck
mi

) schemes. So, it needs to construct O(G) schemes for N

groups, where G =
∑N

i=1

∑ni

j=1

∑dij

k=1 ck
mi

. Suppose that mmax = max(m1, m2, . . . , mN),

dmax = max(dij, i = 1, 2, . . ., N , j = 1, 2, . . ., mi) and mmax ≫ dmax. The number of

schemes is approximately O(nCdmax
mmax

) or O(n(mmax)
dmax), where n =

∑N
i=1 ni. Therefore,

both mmax and dmax is two key elements to impact the time complexity of the 2nd step
of the proposed DHSA.

Although the time complexity of the insertion sort method is O(G2
1), where G1 is an

overall number of the candidate cutting patterns, the time of inserting them into L3 is
very less. This is because that G1 is two or three orders magnitude less than O(G).

When dmax < 5 and mmax = 50, G < 252875n. So, there exists no problem of the
combination explosion for the 2nd step of the proposed DHSA. For the step, best case is
that there is only one surplus steel plate and one order with one ordered piece in each
group, whose time complexity is O(n). In addition, while dmax < 5, it is impossible to
occur the combinatorial explosion for the cause of the larger number of ordered pieces of
the order.

(iii) For quality-monitoring (the function of MES), the best case is that the first can-
didate cutting pattern in L3 passes the quality-monitoring for each surplus plate and its
time complexity is O(n). The time complexity is O(G) for the worst case. Statistical data
show that the consuming time of quality-monitoring is 3/5 of whole consuming time. In
order to reduce the quality-monitoring time, if an ordered piece of a candidate cutting
pattern of a surplus plate fails to pass the quality-monitoring, then all the candidate
cutting patterns which include the kind of ordered pieces are deleted. So, the time of
quality-monitoring can be massively decreased.

The results of the above four experiments and theoretical analysis show that owing to
a fusion of the knowledge obtained and divide-conquer heuristic strategy, the proposed
DHSA can fit four difficulties of this problem, by which the optimal cutting pattern of
each surplus can be found quickly.

7. Conclusions. This paper suggests a divide-conquer heuristic search approach for the
cutting pattern problem of surplus plates of the steel and iron company. For the proposed
DHSA, quickly grouping and filtering can be implemented by calling Algorithm 1. The
knowledge-based divide-conquer and heuristic search of Algorithm 2 is an exhaustive
search for all candidate cutting patterns but generates no combination explosion and
makes the cutting pattern of each surplus plate have the optimal rolling yield. By changing
priority values corresponding to indexes in a table, dynamic priority of the proposed
DHSA (Algorithm 3) is simply implemented. In addition, the proposed DHSA involves
only arithmetic and comparison operation except for quality-monitoring. Therefore, the
proposed DHSA has better performance. The related key technologies are introduced in
detail in the paper. Experiment 1 on seven examples in [10] shows that our approach
achieves better solutions on three ones, the same solution on one and near solutions



DIVIDE-CONQUER HEURISTIC SEARCH ALGORITHM 373

on three ones in shorter time. Experiments 2-4 show that compared with the MHCI
design approach, the proposed DHSA algorithm improves the calculation efficiency and
rolling yield of the surplus plates. The above results fully validate the feasibility and
effectiveness of the proposed DHSA algorithm. Simultaneously we also know that the
study on a feasible and effective approach for the SPCP problem with a larger dmax is our
future work.
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Appendix 1 Rule Set C . The cutting rules of surplus plates are as follows: (in order
to keep the secret of the company, keywords have already been replaced by X-XXXXX,
similarly hereinafter).

(1) The X-th bit of the xx code of the surplus plate is equal to the X-th bit of the XX
code of every packing ordered piece;

(2) When the XXXX of the ordered piece is not equal to 0, XXXXX codes of all the
packing ordered pieces of the cutting pattern of each surplus plate are the same;

(3) The XXXX code of the surplus plate is equal to the XXXXX code of every ordered
piece packed on it plus XXXX and the serial number xx of the surplus plate is equal to
the XXXX code of each ordered piece plus XXXX (XXXX);

(4) The XX code of the surplus plate is equal to the XX code of the ordered piece plus
XXXX and the XX number of the surplus plate is equal to the XX code of the ordered
piece plus the XXXX (XXXX); but except for the case that the XX code of the surplus
plate is not equal to the xx code of the ordered piece and the XX code of the ordered
piece is not equal to X, if the XX code of the surplus plate is equal to X and the XX
code of the ordered piece is not equal to X, then allow packing the order piece(s) on the
surplus plate;

(5) The XXXX code of the surplus plate is equal to the XX mark of the ordered piece;
(6) When the judgment standard XX of the surplus plate is equal to X, the XX stan-

dard(s) of the surplus plate and the ordered piece are the same and the XX rank of the
surplus plate is not larger than the XX rank of the ordered piece, not allow packing the
ordered piece on it;

(7) When the XXXX identification of the ordered piece is not equal to X, only the
surplus plate can be cut with the X mode;

(8) When the ordered piece with XXXX code is not equal to X, only the surplus plate
can be cut with X mode;

(9) When the XXXXX of the order is equal to X, only the surplus plate can be cut
with XX and XX mode;

(10) When the X-th bit of XX code of the surplus plate is equal to X, and the XX way
code of the ordered piece is equal to X, if the XX of the surplus plate is equal to X, then
they cannot pack on the surplus plate.

Appendix 2 The Definition of Priority. Priorities of several performance indicators
such as the rolling yield are given in the following table, their default value are 1, 2, . . . ,
respectively.

Appendix Table 1 Priorities of several indexes

a[0] Rolling yield 1
a[1] XXXX 2
a[2] XXX 3
a[3] XX 4
a[4] XX 5
a[5] XX 6
. . . . . . . . .


