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ABSTRACT. Field-oriented induction motor control presents high static, dynamic perfor-
mance. Precise rotor speed information is critical for induction motor control to achieve
speed loop feedback control. In the past encoders were widely used to obtain the speed
information for the induction motor. However, a speed sensor would increase the cost
of the entire system and reduce system reliability. In addition, for some special appli-
cations (such as very high speed motor drives) difficulties were encountered in mounting
these speed sensors. Sensorless speed control would overcome these problems. This paper
proposes a fuzzy neural network speed estimation method for induction motor speed sen-
sorless control. The speed estimation is based on rotor flux deduction and estimated rotor
flux, calculated using a fuzzy neural network. The fuzzy neural network is a four-layer
network. The steepest descent algorithm is used to adjust the fuzzy neural network pa-
rameters to minimize the error between the rotor flux and estimated rotor flux, enabling
precise rotor speed estimation.

Keywords: Induction motor, Encoder, Speed sensorless control, Fuzzy neural network
speed estimation, Steepest descent algorithm

1. Introduction. Servo systems have become indispensable to many industry factory
automation applications. The DC motor and induction motor were previously applied in
many industries. The DC motor has been used extensively for variable speed control, e.g.,
industrial robots and numerically controlled machinery, because of their simple modeling
and ease of control [1,2]. However, DC motors have big volume, complicated structure
and certain commutator and brush disadvantages. The induction motor does not need
brushes and commutators and does not have the drawbacks mentioned above with the
advantages of a simple, rugged structure, reliability and easy maintenance [3]. Therefore,
the induction motor has replaced DC motors in many industrial applications [4,5]. Because
of the advances in power electronics and microprocessors, induction motor applications
in speed control have become more attractive.

A control scheme is important for precise induction motor control. The V/f control
method was used in induction motor speed control [6,7]. However, due to stator resistance
and necessary rotor slip influence to produce torque, its application at low speeds is still
challenging. To overcome the difficulty mentioned above a closed-loop control scheme for
the induction motor was presented. To solve the foregoing problems, induction motors
have been controlled like DC motors using a field-oriented control (FOC) approach, which
has high static, dynamic performance [8-10]. FOC is based on decoupling torque and rotor
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flux through nonlinear coordinate transformation. Therefore, the rotor speed is linearly
related to the torque current after the rotor flux attains steady-state values. The FOC
applied to induction motor drives allows us to perform fast and fully decoupled torque and
flux control. FOC algorithms need to know the rotor flux angular position to correctly
align the stator current vector to obtain decoupled control. As a consequence, it is possible
to control the torque and rotor flux as in DC motor control by acting on two separate
stator current components [11].

In modern induction motor drive control techniques the closed-loop speed control sys-
tem uses a shaft encoder to measure the motor’s speed. However, a speed sensor has
several disadvantages from the drive cost, noise immunity and reliability viewpoints. In
addition, for some special applications such as very high speed motor drives, some dif-
ficulties are encountered in mounting these speed sensors. Sensorless speed control is
preferable from the low cost drive point of view [12,13]. Numerous researches have re-
cently been published on sensorless induction motor speed control [14-16]. These methods
are further classified into the following methodologies: extended Kalman filter techniques
[17], model reference adaptive systems [18] and sliding mode method [19]. In the extended
Kalman filter technique the composite states consist of the rotor fluxes and rotor speed.
The extended Kalman filter is employed to identify induction motor speed based on mea-
sured quantities such as the stator currents. However, the Kalman filtering algorithm
does not contain a feedback signal to train the parameter that would increase the sys-
tem uncertainty. The reference model and adjustable model are interchangeable for the
model reference systems, which can be used to identify the rotor speed of an induction
machine. However, the model reference adaptive system sensorless speed methods are
affected mainly by the motor’s parameters which affect the speed estimation accuracy,
which could spoil the system stability. In the sliding mode method a direct torque and
flux control strategy based on a sliding-mode observer using a dual reference frame motor
model is introduced. However, in the sliding mode method the motor’s parameters will
affect the speed estimation accuracy.

Fuzzy neural network control has recently become an active research area. Because of
the adaptive abilities in a network learning process, applying neural networks to control
systems have become a promising alternative to process control. The fuzzy neural network
control can be applied to the AC servo systems since they approximate any desired degree
of accuracy with a wide range of nonlinear models. The fuzzy neural networks can be
classified as feed-forward fuzzy neural network and recurrent fuzzy neural network. A
feed-forward fuzzy neural network can approximate any continuous functions closely. The
feed-forward fuzzy neural network is a static mapping. Moreover, the internal information
in a feed-forward fuzzy neural network can be utilized for weight updates and the function
approximation is sensitive to the training data. Feed-forward fuzzy neural network control
methods were developed for induction motor speed control to provide good speed response
when the motor is operated under diverse operating conditions and parameter variations.
Up to now the fuzzy neural network has been applied mainly in control systems, such as
motor drive systems, time delay systems, robot manipulators and chaotic systems [20-26].
Its application in speed estimation is practically new [27].

This paper proposes a speed estimation algorithm based on the fuzzy neural network.
The conventional fuzzy neural networks were the feed forward multilayer type where no
information is fed back during application. However, the feedback signal is necessary
during the training process. Unlike the conventional fuzzy neural network the proposed
fuzzy neural network has a feedback signal composed of a four-layer network including an
input layer, membership layer, rule layer and output layer. The rotor flux is derived from
the motor’s dynamic model. The estimated rotor flux is the fuzzy neural network output.
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The error between the rotor flux and the estimated rotor flux is used as the feedback signal
to adjust the fuzzy neural network parameters through a back-propagated method [28].
This method minimizes the difference between the rotor flux and the estimated rotor flux.
The back-propagation mechanism is easily derived so that precise rotor speed estimation
can quickly track the actual motor speed.

Microprocessor techniques have become more mature in recent years. The FOC and
feedback signal processes are undoubtedly complex, requiring a powerful microproces-
sor or digital-signal-processor (DSP). The proposed control scheme is implemented in
TMS320F2808 DSP. Experimental results are shown to confirm that the proposed fuzzy
neural network speed estimation can provide good performance over a wide speed range
for induction motor speed control. The proposed algorithm uses the estimated speed to
quickly track the actual speed. The proposed sensorless speed control scheme with and
without load presents good performance.

2. The Dynamic Model of Induction Motor. The induction motor dynamic model
in the synchronous rotating d-q frame can be expressed as follows [29]:

[ Rs RT(I_U) L Ry rLm
15, B (O'_LS + oLy ) We oLsL2 ;)LSLT
d e R, , Re(l—0) rLm LRy
p ;‘gj = —We - (E oL, ) _;ULSLT oL,L2
gr —erfb 5 OR —%: (We _RCUT)
R 0 e —(we—wr) - (1)
- 1
Z_fls olg (1)
Z;S _|_ 0 oLs ,Ugs
Dayr 0 0 Vgs
o, 0 0
The torque equation is given as follows:
3PL . . 2 _dw
T. = Tm(quﬂzs — Pgrias) = 77 dtr + Bu, + Ty, (2)
,

where L, L,, L,,: stator inductance, rotor inductance and mutual inductance, R,, R,:
stator resistance and rotor resistance, o = 1—(L? /L,L,), Ugss Vgst g-axis and d-axis stator
voltage in the synchronous rotating frame, ig,, i§,: g-axis and d-axis stator current in the
synchronous rotating frame, ¢f,., ¢g.: g¢-axis and d-axis rotor flux in the synchronous
rotating frame, P: pole number of the induction motor, T,, T}: electromagnetic torque
and load torque, J, B: inertial and viscous moment coefficient of the induction motor,
w,: rotor angular velocity, w,: electrical angular velocity.
Manipulating the first and third row of (1) yields:
L L,.L
L. i) + T (3

%ids L, qs
Performing algebraic operations on the second and forth rows of Equation (1) yields:

d, L (. . d ., oLsLywe .,
E qr = Z ’qu — Rszqs — O'Lsalqs — Tlds

Equations (3) and (4) can be rewritten as the following matrix form of the rotor flux
equation:

d e e -e
%d)dr = (Uds - Rslds - ULS

- w€¢3r (4)

e = L (V — RJI¢ — aLsiISfi) +

oL, Lsw,
T L dt

I+ w9 (5)
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3. Fuzzy Neural Network Speed Estimation. A fuzzy neural network is employed
for induction motor speed estimation. Figure 1 illustrates a block diagram of the proposed
fuzzy neural network sensorless speed estimation method. Two independent fluxes are
used in the proposed method. The first is the dynamic model rotor flux (¢f). The
second is the estimated rotor flux () obtained from the fuzzy neural network. The
error (€) between the two independent fluxes is used to adjust the fuzzy neural network
parameters (7, :Ef , 6{ ) using the steepest descent algorithm such that the estimated rotor
flux coincides with the rotor flux. The estimated speed (w,) can precisely track the actual
motor speed (w;).
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FIGURE 1. A fuzzy neural network for induction motor speed estimation

3.1. The speed estimation principle. The estimated rotor flux equation is derived
form the third and the forth row of Equation (1). Taking some algebraic operations
from the third and fourth rows of Equation (1), the estimated rotor flux equation can be
expressed in the following matrix form:

d e -1 ~ e Ly,

—p, = |—1I r— We)d —II 6

e = |G- ele ©)

~e ~e T
where @, = [gzﬁdr, ¢qr] , » = L, /R, is the rotor time constant, and w, is the estimated

rotor speed.
By applying the backward difference method, Equation (6) can be discretized and
described as follows:

L= o) = [‘—11 G(e) - we(zw} (o) + L e ™)

T Ty .

where T is the sampling time.
Taking the inverse z-transform of (7), the discrete-time form of Equation (6) can be
expressed as:

710 = (1= 1) 1800 = 1) — b~ DTG - )
' (8)
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Tr
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Since the estimated rotor speed w, is unknown and may vary with time, the estimation

~€
process becomes time varying due to the unknown term (w, (k)TJ¢,(k)) in Equation (8).
Forming the proposed fuzzy neural network estimator as a four-layer structure resolves
the problem.
The third term of Equation (8) is expressed as:

y (k) = &, (k)T T, (k) 9)

8T
where y,(k) = [ Ysalk) Yk ]T. By multiplying ¢, on both sides of Equation (9),
the solution can be expressed as:

T

e’ ~ ~eT . ~e

Any mismatch between the rotor flux ¢¢(k) and the estimated flux @, (k) estimated
by the fuzzy neural network system would automatically produce an error. This error is
further used to adjust the fuzzy neural network parameters. If ¢ (k) is equal to @ (k),
the estimated rotor speed w, can be obtained as:

@, (K)gs(k— 1) )
T(%im+$iwﬁ

wr (k) =

In this way, the motor speed can be predicted accurately by the fuzzy neural network
sensorless speed estimation.

3.2. Fuzzy neural network structure. A four-layer fuzzy neural network, as shown
in Figure 2, including an input layer, a membership layer, a rule layer and an output
layer, is used to implement the fuzzy neural network. The fuzzy neural network input is
w1(k) = v, (k), v2(k) = v, (k), v3(k) = ig,(k), v4(k) = i5,(k). The output of every node
in the input layer is equal to the input. Each node in the membership layer performs a
membership function. The Gaussian function is selected as the membership function, it

()

Input Membership Rule Output
Layer Layer Layer Layer

FI1GURE 2. The four-layer fuzzy neural network structure
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can be described as:

) (i (k) = exp [— <M> 1 (12)

[

where j = 1,..., M, and M are the number of membership functions in each input node.
The value of M is set to 4, TJ(k) and &} (k) are, respectively, the mean and standard
deviation of the Gaussian function.

Each node in the rule layer is denoted by II, which multiplies all input signals. The
rule layer output for the 7 node is expressed as follows:

(k) = Z-11exp - (%) (13)

The signal node in the output layer is labeled as >, which computes the summation
of all input signals and the output layer output is expressed as follows:

yra(k) = Zy—g(k)zj(k) (14)

yre(k) = Z 7y (k)2 (k) (15)

—~€

where yra(k) = by, (k) and yrg(K) = 6, (k).

3.3. Training algorithm for fuzzy neural network. This section describes the fuzzy
neural network online training algorithm using the back-propagation training algorithm.
The error function is defined as

Er(k) = & (i (k) — 9(8)" (wr(k) — y(k)) (16)

2
—~€ —~e T
where yr(k) = [yra(k), yr (k)" = 5 (k) = [¢d,(k), %(k)] is the fuzzy neural network
T
output and y = [ya(k), y4(k)]" = @5 (k) = [65,(k), 5, (k)] .

The objective is to train the fuzzy neural network such that E;(k) is minimized. Hence,
the identification problem now becomes to train the parameters i (k), yJ(k), z (k) and
) (k) of the fuzzy neural network.

The training method is based on the steepest descent algorithm. The training algorithm
derivation is described as follows.

(a) Training algorithm for g} (k):

In order to train 7(k), the steepest descent algorithm is expressed as follows:

Tak +1) = gy(k) — s —— (17)
0y, )
where «y is the fuzzy identifier learning rate.
Using the chain rule, Equation (17) can be expressed as:
OE; _ OE; 0yrq (18)
Yy |, 0y1a 9y ) |,




FUZZY NEURAL NETWORK SPEED ESTIMATION METHOD 439

Substituting Equations (14) and (16) into (18), then combining Equation (17) and
readjusting it, the training algorithm for 7 can be expressed as:
Ty(k +1) = g4(k) — ar lyra(k) — ya(k)] 2 (k) (19)
(b) Training algorithm for g/ (k):
In order to train gjg(k), the steepest descent algorithm is expressed as follows:

va(k +1) = g(k) —ar — (20)
Yq |y,
Using the chain rule, Equation (20) can be expressed as:
OE:| _ <_8E’ _ay”> (21)
Oy Iy \OW1q 0yq / |,

Substituting (15) and (16) into (21), then combining Equation (20) and readjusting it,
the training algorithm for 77(k) can be expressed as:

Ja(k + 1) = g3(k) — ar [yre(k) — yq(k)] 2’ (k) (22)

(c) Training algorithm for & (k):
For training Z](k), the steepest descent algorithm can be expressed as follows:

#(k+1) =7 (k) — aj—= (23)
oz} |,
Using the chain rule, Equation (23) can be expressed as:
E E J
OFr| _ Ka rOra | O ’ay’?> 8_2} (24)
ozl |, Oyra 027~ Oyrg 027 ) 07] ]|,

Substituting (13), (14), (15) and (16) into (24), then combining Equation (23) and
readjusting it, the training algorithm for z7 can be expressed as:

i

k1) — () — a2 L00a08) = 0a1)) T+ o) = 1) 0] =/ 8) ) = )]

(o (k)"
. (25)
(d) Training algorithm for &7 (k):
For training &} (k), the steepest descent algorithm can be expressed as follows:
gl(k+1) =5l (k) — ar—r (26)
a7 |,
Using the chain rule, Equation (26) can be expressed as:
OE; OE; 8yld OF; aqu 027
oo . Oyrqg 027 0yry 027 oo .

Substituting (13), (14), (15) and (16) into (27), then combining Equation (26) and
readjusting it, the training algorithm for &} (k) can be expressed as:

o 2 L1a(k) = yalh) 7+ (k) — v (R) 78] () (k) — 7] k)]’
(&7 (k)"
(28)

The training algorithms given in (19), (22), (25) and (28) perform a steepest descent
algorithm for the fuzzy neural network.

ol (k+1) = o] (k)—
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4. Experiments. Experiments were necessary to demonstrate the feasibility of the pro-
posed control scheme. The block diagram of the indirect FOC method and fuzzy neural
network speed estimation method for induction motor speed sensorless control is shown in
Figure 3. The experimental software control program includes the field-oriented control,
coordinate translator, adaptive current control PWM, fuzzy neural network speed estima-
tion method. The induction motor parameters are: R, = 1.19), R, = 1.32, L, = 0.1452H,
L, = 0.1456H, L,, = 0.1363H, J = 6.8 x 10 *kg-m?, B = 5.15x 10 *N-m-s/rad, P = 2.

A block diagram of the experiment configuration is shown in Figure 4. The experimental
equipment includes the induction motor driver: converter and inverter, isolated circuit,
Hall current sensor circuit and TMS320F2808 DSP. An indirect field-oriented control
method is used for induction motor speed control. The proposed fuzzy neural network
speed estimation method for induction motor speed sensorless control scheme and indirect
field-oriented control method are implemented in TMS320F2808 DSP.

a. Speed tracking control at 200 rpm without loading

For a lower speed command of 200 rpm with no load, the actual speed and estimated
speed responses are shown in Figures 5(a) and 5(b). The speed error between the actual
speed and estimated speed is shown in Figure 5(c). According to Figures 5(a)-5(c), the
actual motor speed has good transient response and the estimated motor speed can quickly
track the actual motor speed. The speed error between the actual speed and estimated
speed decays very soon in transient state and is very slight in steady state.

The actual d-axis rotor flux and estimated d-axis rotor flux responses are shown in
Figures 5(d) and 5(e). The d-axis rotor flux error between the actual d-axis rotor flux
and estimated d-axis rotor flux are shown in Figure 5(f). The actual g-axis rotor flux and
estimated g-axis rotor flux responses are shown in Figures 5(g) and 5(h). The g-axis rotor

3-phase AC
220V 60Hz

Coordmate
translator

Coordinate

rmciEieE A%
translator bs A
e e - e
A% i
gs® " ds YYVYY gs > “ds

Dynamic model of induction motor , Eq. (5)
Fuzzy neural network , Eqs. (12)-(15)
Speed estimation , Eq. (11)

Training algorithm ,Eqs. (19),(22),(25),(28)

Fuzzy neural network speed estimation method

FicUure 3. The block diagram of the indirect FOC method and fuzzy neural
network speed estimation method for induction motor speed sensorless con-
trol
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o T S; Isolated Circuit
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ADC | : as Hall
1 Shuft and Scale &
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DSP QEP

AR

DAC

I: Software Configuration

F1cURE 4. Block diagram of the experiment configuration

flux error between the actual ¢g-axis rotor flux and estimated g-axis rotor flux is shown in
Figure 5(i). Figure 5(j) reveals the rotor flux locus in d-¢ frame. According to Figures
5(d) to 5(j), the estimated d-axis and g-axis rotor fluxes can quickly track the actual
d-axis and g¢-axis rotor fluxes, respectively. The d-axis rotor flux error and g-axis rotor
flux error are very slight in steady state. The rotor flux locus in d-¢q frame indicate that
the rotor rotates smoothly. The experimental results reveal that the training algorithms
given in (19), (22), (25) and (28) perform a steepest descent algorithm for the fuzzy neural
network such that E;(k) is minimized.

Figure 5(k) shows the phase-a and phase-b stator currents. According to Figure 5(k),
the current waves are very similar to the sinusoidal signal. In other words, the current
signals do not contain much harmonic frequency. Figure 5(1) shows the torque response.
The experimental results show that the proposed algorithm has fairly good performance.

b. Speed tracking control at 1000 rpm without loading

For a higher speed command of 1000 rpm and with no load, the actual speed response,
estimated speed response and speed error between the actual speed and estimated speed
are shown in Figures 6(a)-6(c). As one can see in Figures 6(a) to 6(c), the actual motor
speed has a fairly transient response and the estimated motor speed can quickly track the
actual motor speed. The speed error decays very soon and is very slight in the steady
state. Both the actual and estimated speeds have great steady state response.

The actual d-axis rotor flux and estimated d-axis rotor flux are shown in Figures 6(d)
and 6(e). The d-axis rotor flux error between the actual d-axis rotor flux and estimated
d-axis rotor flux is shown in Figure 6(f). The actual g-axis rotor flux and estimated g-axis
rotor flux are shown in Figures 6(g) and 6(h). The g-axis rotor flux error between the
actual g-axis rotor flux and estimated g-axis rotor flux is shown in Figure 6(i). Figure 6(j)
reveals the rotor flux locus in d-g frame. These figures show that the estimated d-axis
and g-axis rotor fluxes can quickly track the actual d-axis and g-axis rotor fluxes, which
indicates that the training algorithms given in (19), (22), (25) and (28) perform a steepest
descent algorithm for the fuzzy neural network such that E;(k) is minimized.

Figure 6(k) shows the phase-a and phase-b stator currents. Figure 6(1) shows the torque
response. The current waves are very similar to the sinusoidal signal, which do not contain
much harmonic frequency. This experiment shows that the proposed algorithm has fairly
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FIGURE 5. Speed tracking control results for a speed command of 200 rpm
with no load

good high speed command response performance. The experimental results show that the
proposed algorithm has fairly good performance at both lower and higher speeds without
loading.
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FIGURE 6. Speed tracking control results for a speed command of 1000
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c. Speed regulation control at 200 rpm with loading of 1 N-m

For a speed command of 200 rpm, a load of 1 N-m is added the 1% second and is
removed at the 5 second. The actual speed response, estimated speed response and

speed error between the actual and estimated speeds are shown in Figures 7(a)-

7(c). One
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can see in Figures 7(a) to 7(c), that both the actual and estimated speeds can recover
to the speed command quickly when the load is added and the estimated speed can
also identify the actual speed. At the instant the load is added and removed, the speed
response has variations of 5~10 rpm.

Figure 7(d) presents the phase-a and phase-b stator currents. Figure 7(e) shows the
torque response. One can see in Figures 7(d) and 7(e) that during the load period the
current and torque magnitudes become larger than the free load time.

d. Speed regulation control at 1000 rpm with loading of 1 N-m

For a speed command of 200 rpm, a load of 1 N-m is added the 1% second and is
removed at the 5 second. The actual speed response, estimated speed response and
speed error between the actual speed and estimated speed are shown in Figures 8(a)-8(c).
One can see in Figures 8(a)-8(c), both the actual and estimated speeds can recover to
the speed command quickly when the loading is added and the estimated speed can also
identify the actual speed.

Figure 8(d) presents the phase-a and phase-b stator currents. Figure 8(e) shows the
torque response. One can see in Figures 8(d) and 8(e) during the load period the current
and torque magnitudes become larger than the free load time. The experimental results
show that the proposed algorithm has fairly good performance in lower speed and higher
speed with loading.

5. Conclusions. This research developed fuzzy neural network speed estimation for in-
duction motor speed control. The steepest descent algorithm was used to adjust the
parameters of a four-layer fuzzy neural network that enables precise rotor speed esti-
mation. The proposed fuzzy neural network speed estimation method was implemented
in TMS320F2808 DSP. The experimental results proved that the proposed fuzzy neural
network speed estimation method is practical and the performance is great.
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