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ABSTRACT. This paper presents a mathematical model for beams subjected to a concen-
trated force localized anywhere of member taking into account the shear deformations to
obtain the fized-end moments. The consistent deformation method is used to solve such
problems; a method based on the superposition of its effects and by the Bernoulli-Euler
theory are obtained the deformations anywhere of the beam. Traditional methods used
for beams subjected to a concentrated force are mot considered the shear deformations.
Besides the effectiveness and accuracy of the developed method, a significant advantage
is that the displacements, fized-end moments are calculated for any cross section of the
beam using the respective integral representations as mathematical formulas.
Keywords: Shear deformations, Poisson’s ratio, Elasticity modulus, Shear modulus and
shear area

1. Introduction. Structural analysis is the study of structures such as discrete systems.
The theory of the structures is essentially based on the fundamentals of mechanics with
which are formulated the different structural members. The laws or rules that define the
balance and continuity of a structure can be expressed in different ways, including partial
differential equations of continuous medium three-dimensional, ordinary differential equa-
tions that define a member or the theories several of beams, or simply, algebraic equations
for a discrete structure [1].

Structural analysis can be addressed using three main approaches [2]: a) tensorial
formulation (Newtonian mechanics and vectorial), b) formulation based on the principles
of virtual work, ¢) formulation based on classical mechanics [3,4].

As regards the conventional techniques of structural analysis of beams and rigid frames
to obtain the fixed-end moments, the common practice considers only the bending defor-
mations [5,6].

Recently, a method of structural analysis for statically indeterminate beams and rigid
frames was developed, the method takes into account the bending deformations and shear
to generate a system of equations in function of rotations and displacements [7-9]. Also a
moments-distribution method considering the bending deformations and shear was pre-
sented [10]. These methods do not consider shear deformations in the fixed-end moments.

After, a mathematical model is presented to obtain the fixed-end moments of a beam
subjected to a uniformly distributed load and also to a triangularly distributed load taking
into account the bending deformations and shear [11,12].
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This paper presents a mathematical model for beams subjected to a concentrated force
localized anywhere of member considering the bending deformations and shear to ob-
tain fixed-end moments. Also, a comparison is realized between traditional model and
proposed model to observe differences.

2. Mathematical Development of the Proposed Model. The scheme of deforma-
tions of a structural member is illustrated in Figure 1, which shows the difference between
the Timoshenko theory and Euler-Bernoulli theory: the first “6,” and “dy/d2” do not co-
incide necessarily, while in the second are equal [7-16].

FIGURE 1. Deformation of a structure member

The fundamental difference between Euler-Bernoulli theory and Timoshenko theory is
that in the first the relative rotation of the section is approximated by the derivative of
vertical displacement; this is an approximation valid only for long members in relation
to the dimensions of cross section, and then it happens due to the fact that shear de-
formations are negligible in comparison with the deformations caused by moment. On
the Timoshenko theory, which considers the deformation due to shear, i.e., and is valid
therefore for short members and long, the equation of the elastic curve is given by the

complex system of equations:
dy Vy
~Z_p,)=-L 1
“ (dm ) 1, @

(2

where G is shear modulus, dy/dx is the total rotation around axis “Z”, 6, is rotation
around axis “Z” due to the bending, V, is shear force in direction “Y”, A, is shear area,
df,/dx is d*y/dx?, E is elasticity modulus, M, is moment around axis “Z”, and I, is
moment of inertia around axis “Z”.

Deriving Equation (1) and substituting into Equation (2), it is arrived at the equation
of the elastic curve including the effect of shear stress:

d2y_ 1 dv, M,

LA i} 3

d? ~ GA, dv | BL ®)
Equation (3) is integrated to obtain the rotation anywhere:

dy 'V, M,

eyl oy (4)
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FIGURE 2. Derivation of equations for moments

Figure 2(a) shows the beam “AB” subjected to a concentrated force “P” and fixed-ends.
The fixed-end moments are found by the sum of the effects. The moments are considered
positive in counterclockwise and the moments are considered negative in clockwise. Figure
2(b) presents the same beam simply supported at their ends with the force applied to find
the rotations “f4;” and “6p;”. Now, the rotations “A,,” and “fOpy” are caused by the
moment “M,p” applied in the support “A”, according to Figure 2(c), and in terms of
“f43” and “Op3” are caused by the moment “Mp,” applied in the support “B”, see Figure

2(d) [7-16].
The conditions of geometry are [7-12]:
Oar + 042+ 043 =0 (5)
0p1+ 0p2 + 03 = 0 (6)

The beam of Figure 2(b) is analyzed to find “64,” and “6,” by Euler-Bernoulli theory
to obtain the deflections [7-16].
Shear force and moment anywhere of the beam on axis “z” is:

ToO0 <z <a: ( )
P(L—a
v,= =Y (7)
P(L —a)x
M,= ————"—
. )
Toa <z <L:
Pa
Pa(L —
M, = — a(l — ) (10)
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where: V, =V}, and M, = M,
We analyze for 0 < x < a.
Equations (7) and (8) are substituted into Equation (4):

d P(L —a) P(L-a)
ﬁ ~TGAL  ELL /(“T)dx (11)

The integral of Equation (11) is developed:

dy ~ P(L—a) P(L—-a)(2?
ir = GAL  BLL \2 79 (12)
Substituting x = a, into Equation (12) to find the rotation dy/dx =6, where the
concentrated force is localized:
P(L-a) P(L—-a) (a®
Oor = — . @ 1
' GA,L L \2 TO (13)

Equation (13) is integrated to obtain the displacements, because there are unknown
conditions for rotations, this is as follows:

_ P(L—a P(L —a) (23

Then, shear deformations and bending must be separated to obtain the integration
constants, this is as follows.
Shear deformation is:

P(L — a)
GA,L
The boundary conditions are considered into Equation (15), when z = 0; y = 0 to find

03 - 0
Now, value of “C3” is substituted into Equation (15):

_ _P(L-a)
YT TTGAL
Substituting © = a into Equation (16) to find the displacement y = y4s1, where the
concentrated force is localized:

Ys = — z+Cs (15)

x (16)

Pa(L — a)

asl — — 1
Yast GA,L (17)
Bending deformation is:
P(L—a) (2?
= —-———— —_ 1

The boundary conditions are substituted into Equation (18), when z = 0; y = 0 to find
Cy =0.
Now, value of “Cy” is substituted into Equation (18):
3

yr = —P(;f;) (% + 01x> (19)

Substituting = a, into Equation (19) to find the displacement y = y,s1, where the
concentrated force is localized:

_ P(L—a) (d®
Yaf1 = _TZL (E + C’1CL> (20)
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Then, Y451 and yqs1 are summed to find the total displacement y::

_Pa(L-a) P(L-a) <%3 n Cla> (21)

Yart = 7 CAL ELL

We analyze for a <z < L.
Equations (9) and (10) are substituted into Equation (4):

dy Pa Pa
— = — L —zx)d 22
dv ~ GA,L FELL / (L~ 2)d (22)
The integral of Equation (11) is developed:
dy Pa Pa z?
& _ . Lo — 2 2
de ~ GA,L ELL < T3 +C4> (23)

Substituting x = a into Equation (23) to find the rotation dy/dx = 0,3, where the
concentrated load is localized:

Pa Pa a®
Y= GAL T BLL (L“ 37 C4> (24)

Equation (23) is integrated to obtain the displacements, because there are unknown
conditions for rotations, this is as follows:

Pa Pa (Lx 23
= - - - = 2
Yy GAsLx—l-C's EIZL<2 6+C4$+C5> (25)
Then, shear deformations and bending are separated to obtain the integration constants,
this is as follows.
Shear deformation is:

~ Pa
 GA,L
The boundary conditions are substituted into Equation (26), when x = L; y = 0 to
obtain Cg = —Pa/G A,.
Now, value of “Cg” is substituted into Equation (26):
Pa Pa
s — xr —
VT GALT T GA,
Substituting * = a, into Equation (27) to find the displacement y = y,42, where the
concentrated load is localized:

Ys r+ Cg (26)

(27)

P(a® — La)
as - Q= 2
Yo =TT GALL (28)
Bending deformation is:
Pa (Lz*> 23
yf__EIZL <—2 ——6 +C’4x+05> (29)

The boundary conditions are substituted into Equation (29), when x = L; y = 0 to
find “C'5” in function of “Cy”.

L3
Now, value of “C5” is substituted into Equation (29):
Pa [Lz* 23 L}
= =L 5 1
A 7 R R (31
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Substituting = a, into Equation (31) to find the displacement y = y, s, where the
concentrated load is localized:

Pa [La®> o L3
afy = ———— | — — — —L)— — 2
Yaf2 ELL[ y ~ g TGile—1) 3] (32)
Then, o2 and y4s are summed to find the total displacement y:
P(a*—-La) Pa [La a L3
bz = - - -2 ~0) - =
Y2 =TT GALL ELL[Q g tOila—1)—3 (33)

Then, Equations (13) and (24) are equalized, because rotations must be equal at the
point x = a, where the force is applied to find the constant “C,” in function of “C”, this
w' EILL La Cy(L-a)
- aGA, 2 + a

Also, Equations (21) and (33) are equalized, because the displacements must be equal at
the point x = a, where the force is applied and subsequently Equation (34) is substituted
to find the constant “C;”, this value is:

EI, a(a®— 3aL + 2L?)

Cy

(34)

Ch=— — 35
TG4, 6(L —a) (35)
Equation (35) is substituted into Equation (34) to find the constant “Cy”:
ET, 24217
¢ = Bl (2l (36)

G A, 6
Equation (35) is substituted into Equation (12) to obtain the rotations anywhere of the
segment 0 < x < a:

dy ~ P(L—a) P(L—a)[2*> EI  a(a®—3al+2L?)

=— — — — — 37
dx GA,L EI,L 2 GA; 6(L — a) (37)
Substituting z = 0 into Equation (37) to find the rotation in support “A”, this is:
Pa(a® — 3aL + 2L?
a0 = T ) (38)

6E1,L

Equation (36) is substituted into Equation (23) to obtain the rotations anywhere of the
segment a < z < L:

d P P 2 FI, 24212
ay _ a  Pa Io— z n _a (39)
de  GA,L FEI,L 2 GA, 6
Substituting 2z = L into Equation (39) to find the rotation in support “B”, this is:
Pa(a® — L?)
O = 28— ) 4
Bl 6ELL (40)
The beam of Figure 2(c) is analyzed to find “045” and “fp” in function of “Mp”
[7-12].
Shear force and moment anywhere of the beam on axis “x” is:
Myp
V.= — 41
2 (41)
M
M, = 23 (L — ) (42)
Equations (41) and (42) are substituted into Equation (4):
dy Map | Map
o _ I— 4
du G&L+ELL/( z)dz (43)



FIXED-END MOMENTS FOR BEAMS 469

The integral of Equation (43) is developed:
dy . MAB MAB ( IL’2 )

9 _ Lo — =
o AL TELL\FFT oG

Equation (43) is integrated to obtain the displacements, because there are unknown
conditions for rotations, this is as follows:

(44)

IMAB luAB L 2 1'3
— 4

Then, shear deformations and bending are separated to obtain the integration constants,

this is as follows.

Shear deformation is:
My

GA,L
The boundary conditions are substituted into Equation (46), when = = 0; y = 0 to find
03 - 0
Now, value of “C3” is substituted into Equation (46):

_ Mug

y=— r+ Cy (46)

= 4
Y=rGgar” (47)
Bending deformation is:
MAB L 2 1'3
- 5T T = 4
Y ETZL<2x 6+Clx+C’2 (48)

The boundary conditions are substituted into Equation (48), when = = 0; y = 0 to find
Cy = 0.
Now, value of “Cy” is substituted into Equation (48):

3
y = Mas (£x2 S Clx> (49)

 EILL \2 6

Now, the boundary conditions are substituted into Equation (49), when z = L; y = 0
to find C; = —L?/3.
Then, the value of “C)” is substituted into Equation (44):

d M M 2?2 L?
ﬁ - _GZSBL * EIAJZ (Lx T2 ?) (50)
Substituting x = 0 into Equation (50) to find the rotation in support “A”, this is:
QAQZ_MABL_ Myp :_MABL <4 12EIZ> (51)
3EI, GA,L 12E1, GAL?
Being [7-12]:
o — 12E1, (52)
GA,L?
where @ is shape factor.
Then, Equation (52) is substituted into Equation (51), this is as follows:
040 = —%(4—1—@) (53)
Substituting x = L into Equation (50) to find the rotation in support “B”, this is:
0,0y — MagL — Map _ MupL (2 _ 12E1 ) (54)
6EI, GA,L 12FI, GAL?
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Then, Equation (52) is substituted into Equation (54), and this is as follows:

MapL
— 92—
Op2 12F1, ( ) (55)

”

Now, the beam of Figure 2(d) is analyzed to find “043” and “fp3
of the same way as was done in Figure 2(c), it is obtained:

MpaL

in function of “Mp4”

= — 2—o
043 2T, ( ) (56)
MgaL
=— 44+ o
B3 12E1, 4+ 2) (57)

Now, Equations (38), (53) and (56) are substituted into Equation (5) and Equations
(40), (55) and (57) into Equation (6) are presented:

Pa(a® — 3aL + 2L?) Myl

MpyL
— 2—-0)=0 58
6E1,L 12E1, ( ) 12E1, ( ) (58)
Pa(a2 - L2) MABL MBAL
2—-0 4+2)=0 59
6E1,L 12E1, ( )+ 12E1, (4+2) (59)

We develop Equations (58) and (59) to find “M4p” and “Mp,” shown:
Pa(L —a)[2(L — a) + L2]

Mag = 60
A8 202(1 + ©) (60)
Pa(L — a)(2a + Lo)
Mpgs = 61
oA 202(1 + @) (61)
Therefore, if shear deformations are neglected (& = 0), we arrive at:

Pa(L — a)?
My = UL (62

Pa?*(L —a
My = PO (63)

3. Application. Then, a steel beam is presented to obtain the fixed-end moments by
traditional Equation (shear deformations are neglected) and the proposed Equation (shear
deformations are considered), the beam used is of profile W24X94 and the beam length
varies from 1 to 10 m, the profile properties are:

E =20019.6 kN/cm?

A =173.12 cm?
A, = 78.25 cm?
I = 105469 cm*
v =0.32
The shear modulus is obtained as follows:
E
G =
2(1+v)
20019.6 9
G=———- ="7583.18 kN
2(1+0.32) fem

Equation (52) is used to find the shape factor. By means of Equations (62) and (63)
are obtained the fixed-end moments, when shear deformations are neglected. By means of
Equations (60) and (61) are found the fixed-end moments, when shear deformations are
considered. Table 1 presents the fixed-end moments for ¢ = 0.1L, and Figure 3 shows the
behavior of the fixed-end moments with respect to length of the beam. Table 2 presents
the fixed-end moments for ¢ = 0.3L, and Figure 4 shows the behavior of the fixed-end
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TABLE 1. Fixed-end moments to ¢ = 0.1L
B Fixed-end moments | Fixed-end moments
camm Shape | neglecting the shear | considering the shear Comparison of results
length . .
(m) factor deformations deformations
Magn Mgpan Magc Mgpac | Masn/Magce | Mean/Mgac
1.00 | 4.2700 | 0.0810PL | 0.0090PL | 0.0518PL | 0.0382PL 1.5637 0.2356
2.00 |1.0675 | 0.0810PL | 0.0090PL | 0.0624PL | 0.0276PL 1.2981 0.3261
3.00 |0.4744 | 0.0810PL | 0.0090PL | 0.0694PL | 0.0206PL 1.1671 0.4369
4.00 |0.2669 | 0.0810PL | 0.0090PL | 0.0734PL | 0.0166PL 1.1035 0.5422
5.00 |0.1708 | 0.0810PL | 0.0090PL | 0.0757PL | 0.0143PL 1.0700 0.6294
6.00 |0.1186 | 0.0810PL | 0.0090PL | 0.0772PL | 0.0128 PL 1.0492 0.7031
7.00 |0.0871 | 0.0810PL | 0.0090PL | 0.0781PL | 0.0119PL 1.0371 0.7563
8.00 |0.0667 | 0.0810PL | 0.0090PL | 0.0787PL | 0.0113PL 1.0292 0.7965
9.00 |0.0527 | 0.0810PL | 0.0090PL | 0.0792PL | 0.0108 PL 1.0227 0.8333
10.00 | 0.0427 | 0.0810PL | 0.0090PL | 0.0795PL | 0.0105PL 1.0189 0.8571
0.09 Fixed-End Moments = «PL
0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081
0.08 :
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FIiGURE 3. Fixed-end moments to ¢ = 0.1L

moments with respect to length of the beam. Table 3 presents the fixed-end moments
for a = 0.5L, but in this relationship it was not necessary to show a graph, because the
values are the same in both models.

4. Results. Table 1 presents the fixed-end moments at the supports, when the force is
applied to a distance a = 0.1L of beam. The results showed that the differences are
significant for short members. The fixed-end moments neglecting the shear deformations
have an increase of 56.37% with regard to the fixed-end moments considering the shear
deformations for the support “A”. However, to the support “B” the fixed-end moments
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TABLE 2. Fixed-end moments to a = 0.3L
B Fixed-end moments | Fixed-end moments
canl Shape | neglecting the shear | considering the shear Comparison of results
length . .
(m) factor deformations deformations
Magn Mgpan Magc Mgpac | Masn/Magce | Mean/Mgac
1.00 |4.2700 | 0.1470PL | 0.0630PL | 0.1130PL | 0.0970PL 1.3009 0.6495
2.00 | 1.0675 | 0.1470PL | 0.0630PL | 0.1253PL | 0.0847PL 1.1732 0.7438
3.00 |0.4744 | 0.1470PL | 0.0630PL | 0.1335PL | 0.0765PL 1.1011 0.8235
4.00 |0.2669 | 0.1470PL | 0.0630PL | 0.1382PL | 0.0718PL 1.0637 0.8774
5.00 |0.1708 | 0.1470PL | 0.0630PL | 0.1409PL | 0.0691PL 1.0433 0.9117
6.00 |0.1186 | 0.1470PL | 0.0630PL | 0.1425PL | 0.0675PL 1.0316 0.9333
7.00 |0.0871 | 0.1470PL | 0.0630PL | 0.1436PL | 0.0664PL 1.0237 0.9488
8.00 |0.0667 | 0.1470PL | 0.0630PL | 0.1444PL | 0.0656PL 1.0180 0.9604
9.00 |0.0527 | 0.1470PL | 0.0630PL | 0.1449PL | 0.0651PL 1.0145 0.9677
10.00 | 0.0427 | 0.1470PL | 0.0630PL | 0.1453PL | 0.0647PL 1.0117 0.9737
Fixed-End Moments = oPL
0 150.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147
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FIGURE 4. Fixed-end moments to ¢ = 0.3L

neglecting the shear deformations have a decrease of 76.44% with regard to the fixed-end
moments considering the shear deformations, these are presented in length of 1.00m.

Table 2 shows the fixed-end moments at the supports, when the force is applied to a
distance a = 0.3L of beam. The results showed that the differences are significant for short
members. The fixed-end moments neglecting the shear deformations have an increase of
30.09% with regard to the fixed-end moments considering the shear deformations for the
support “A”. However, to the support “B” the fixed-end moments neglecting the shear
deformations have a decrease of 35.05% with regard to the fixed-end moments considering
the shear deformations, these are presented in length of 1.00m.
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TABLE 3. Fixed-end moments to a = 0.5L
Fixed-end moments | Fixed-end moments
Beam Shape | neglecting the shear | considering the shear Comparison of results
length . .
factor deformations deformations
(m) Magn Mgpan Magc Mgpac | Masn/Magce | Mean/Mgac
1.00 |4.2700 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
2.00 |1.0675 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
3.00 |0.4744 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
4.00 ] 0.2669 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
5.00 |0.1708 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
6.00 |0.1186 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
7.00 |0.0871 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
8.00 |0.0667 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
9.00 |0.0527 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000
10.00 | 0.0427 | 0.1250PL | 0.1250PL | 0.1250PL | 0.1250PL 1.0000 1.0000

Table 3 presents the fixed-end moments at the supports, when the force is applied to
a distance a = 0.5L of beam. The results showed that there are not differences, because
these are equal.

5. Conclusions. This paper presented a mathematical model to obtain the fixed-end
moments of beams subjected to a concentrated force localized anywhere taking into ac-
count the bending deformations and shear. The mathematical technique presented in
this research is very adequate to obtain the fixed-end moments and rotations for beams,
because it presents the mathematical expression.

The significant application of fixed-end moments, rotations and displacements is in the
matrix methods of structural analysis for the moments acting on member and stiffness of
the beam.

Besides the efficiency and accuracy of the method developed in this investigation, a
significant advantage is that the rotations and displacements and moments acting are
obtained in any cross section of the beam using the respective integral representations as
mathematical formulas.

The mathematical model presented in this paper is applied only for fixed-end moments
subjected to a concentrated force localized anywhere of the member for constant cross
section. The suggestions for future research: when the member presented a variable cross
section, by example of rectangular type, drawer type, “T” and “I”.
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