International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 2, April 2015 pp. 523-539

PROPOSAL FOR PARALLELISM BASED ON EQUIVALENT
TRANSFORMATION MODEL AND ANALYSIS

HirosHI M ABUCHI

Software and Information Science
Iwate Prefectural University
Takizawa, Iwate 020-0693, Japan
mabu@iwate-pu.ac.jp

Received April 2014; revised August 2014

ABSTRACT. In imperative programming languages, the more complicated a problem is,
the more difficult extracting parallelism becomes. On the other hand, it can be said that
declarative programming languages are suited to parallelism extraction. The equivalent
transformation (ET) programming language used in this study is a type of declarative pro-
gramming language and is based on the ET computation model. The ET programming
language is superior to other declarative programming languages in terms of guarantee-
ing independence, correctness and granularity of the rules that a program consists of
as well as the correctness of its computing results (including parallel computing). To
demonstrate the effectiveness of parallelism based on the ET computation model, it is es-
sential to introduce the traditional concepts of And-parallelism and Or-parallelism in this
study. Through the introduction of these concepts, this paper proposes And-parallelism,
Or-parallelism and And € Or-parallelism based on the ET computation model. Then,
using these parallel algorithms, a number-place problem, a type of constraint satisfaction
problem (CSP), is solved and, by comparing the computation results, the characteristics
of each algorithm are analyzed.

Keywords: Parallelism, Parallel algorithm, Equivalent transformation programming
language, Equivalent transformation model, Constraint satisfaction problem

1. Introduction. Recently, parallel processing, which improves computation efficiency
by executing many calculations simultaneously, is growing in significance [7, 21, 24, 25].
Parallel processing works on the principle that a large problem can be split into small
problems. These small problems are then processed in parallel.

For many years parallelism was utilized mainly in high-performance computing systems;
lately, however, interest has grown in the use of multithreaded applications on multi-core
processors [13, 21].

In the field of parallel algorithm study, researchers have been developing efficient par-
allel algorithms for use in problems' which are solvable by sequential solutions [4, 7, 8].
Although some of these algorithms are effective only in a theoretical framework, there are
many algorithms which are efficient in practice or provide important concepts for effective
implementations.

Extracting parallelism implicitly is not easy. In imperative programming languages,
the more complicated a problem is, the more difficult extracting parallelism becomes.
On the other hand, it can be said that declarative programming languages are suited to
parallelism extraction. This is because declarative programming languages are like logic
programming languages in that they use a higher-level of abstraction so that there is no

IMany problems in AI and other areas of computer science can be viewed as special cases of constraint
satisfaction problems (CSPs) [3, 14, 17, 23, 26, 27, 28].
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need to see the detail of how a specific problem must be solved [2, 4, 15, 18, 19, 22]. The
challenge faced by parallel computing systems is how to describe a problem and then how
to split its functions [24]. Imperative programming languages, typified by C language or
C++ language, use low-level abstraction and therefore the problem’s functions are deeply
intertwined. This makes it difficult to efficiently split the problem’s functions. Because of
this, it is generally difficult to detect parallelism with imperative programming languages.
It is also difficult to guarantee the correctness of parallel computing results. By contrast,
of the programming languages, a high level of abstraction is found in declarative pro-
gramming languages because they express the problem through declarative descriptions.
Therefore, the problem’s functions can be split in an appropriate and efficient manner and
through the use of declarative semantics, the correctness of parallel computing results can
also be guaranteed. Based on this, it can be said that declarative programming languages
are well suited for extracting parallelism.

The equivalent transformation (ET) programming language [9, 10, 11, 12] used in this
study is a type of declarative programming language and is based on the ET computa-
tion model. The ET programming language is superior to other declarative programming
languages in terms of guaranteeing independence, correctness and granularity of the rules
that a program consists of as well as the correctness of its computing results (includ-
ing parallel computing). Also, from high-level abstraction to low-level abstraction, ET
rules, through a single language, express the problem in declarative descriptions and the
problem’s functions can be split in an appropriate and efficient manner through paral-
lel processing [9, 11]. As a result, the execution efficiency of parallel programs can be
improved.

To demonstrate the effectiveness of parallelism based on the ET computation model,
it is essential to introduce the traditional concepts of And-parallelism and Or-parallelism
[5, 6, 20] in this study. Through the introduction of these concepts, this paper proposes
And-parallelism, Or-parallelism and And & Or-parallelism based on the ET computation
model. Then, using these parallel algorithms, a number-place problem, a type of con-
straint satisfaction problem (CSP) [3, 14, 17, 23, 26, 27, 28], is solved and, by comparing
the computation results, the characteristics of each algorithm are analyzed.

2. Parallelism Based on ET Model. This section proposes three parallelism, which
are And-parallelism, Or-parallelism, and And & Or-parallelism, based on the ET compu-
tation model.

2.1. And-parallelism based on ET model. This section proposes a parallel model in
which a CSP that has only a single solution solved by And-parallelism.

As shown in Figure 1, And-parallelism processes, in parallel, tasks which have And-
relations. And-parallelism must simultaneously and logically satisfy the conditions of each
task. The fundamental basis by which problems are solved is to eliminate in the early
stages anything irrelevant from the problem domain. This will not result in contradiction
as each function of the problem is processed individually in each task. Furthermore,
each task solves a partial problem through the use of the same rule set. At this time,
And-parallelism can be applied for the solution.

Problem solving by And-parallelism is explained as follows. The following ans clause
may be taken as an example.

ans < atoml, atom2, ---, atomn.

ans is the solution obtained by the computations on the right side. For this ans clause,
because the computation sequence on the right side of < does not depend on atomj’s
sequence (1 < j < n), computation may be executed by And-parallelism.
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FIGURE 1. Parallel solution in And-parallelism

In Figure 1, the And-parallelism solution is explained. In the problem’s initial state,
if there are n constraints to the problem, the number of slaves is set to n. Once compu-
tations are started, the master computer sends body atoms to each slave and each slave
simultaneously performs specialization (see Section 4.2) [1, 11]. In Figure 1, the number
of slaves is 4 (n = 4). Of the specialization results from each slave, the first-obtained
result (R1) is sent to the master computer and it is then applied by the master computer
(Apply R1). Through this application, the problem’s constraints are updated and a new
atom (A4) is sent to the slave (S1) on which calculations have not yet been performed.
And then, the three slaves are compared and the first result (R4) obtained is sent to the
master computer. By repeating a full sequence of these operations, parallel computing is
realized.

2.2. Or-parallel based on ET model. A program for solving CSP is constructed with
“non-splitting” rules and “splitting” rules in Or-parallel model. A “non-splitting” rule is
one in which the problem state may not be split while a “splitting” rule is one in which
the problem state can be split. In this model, we use “splitting” rules to realize the
mechanism of Or-parallel.

In the case of Or-parallel computations, there will be two or more splits. And there is
no interrelation between those split computations. Therefore, it is a model in which each
computation may be carried out independently and simultaneously.

Problem solving by Or-parallelism is explained as follows. The following three ans
clauses may be taken as an example.

ansl < atomll, atoml?2, --- ) atomln.
ans2 < atom21, atom22, ---, atom2n.
ans3 < atom31, atom32, :---, atom3n.

In this example, the range for 7, j of atomijis 1 <:<3,1< 7 < n.

These three ans clauses are independent of each other. The rules are applied when
processing (computing) each atomij, and solution ans is obtained when all atoms in a
single ans clause are processed. The order of priority for the application of the rules must
be defined at the beginning of the program, so the priority of “non-splitting” rules will
be higher than that of “splitting” rules. That is, “non-splitting” rules should be given
priority in application. This is because computation efficiency decreases when “splitting”
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FiGure 2. Parallel solution in Or-parallelism

rules are used. Only when the problem cannot be solved with “non-splitting” rules should
“splitting” rules be used.

Figure 2 shows parallel solution in Or-parallelism. After the master computer starts
processing (Processl), the process is executed through application of “non-splitting” rules
(ans0) as long as the rules are applicable. Only when the rules are no longer applicable
should “splitting” rules be then applied. As a result, ansO is split into ans1 and ans2.
Similarly, Process1’s computations are carried out using “non-splitting” rules (ans1) until
the “non-splitting” rules are no longer applicable and the use of “splitting” rules becomes
absolutely necessary. As a result, ans1 is split into ans11 and ans12. The problem may
be solved by repeating the application of these processes. As the number of problem state
splits increases, so too does the number of processors, thus increasing the computation
cost.

2.3. And & Or-parallelism based on ET model. And & Or-parallelism is parallelism
in which And-parallelism and Or-parallelism are mixed. Figure 3 shows parallel solution
in And & Or-parallelism.

In this model, And-parallelism computations are performed as long as “non-splitting”
rules can be applied. When computation becomes impossible through the application
of “non-splitting” rules, it will switch to Or-parallelism processing and apply “splitting”
rules.

3. Comparison between Parallelism Based on ET Model and Conventional
Parallelism. In this section, we will demonstrate the advantages of parallelism based on
the ET model through a detailed comparison of it to conventional parallelism.

3.1. Characteristics and problem areas of parallelism in imperative program-
ming languages. This section presents C++ language, an efficient programming lan-
guage.

[Characteristics]

In principle, because the language is capable of directly controlling hardware, it can
make maximal use of computation resources to describe a program that has higher pro-
cessing efficiency.
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Ficure 3. Parallel solution in And & Or-parallelism

[Problem areas]

As program complexity increases, difficulty in its manual optimization also increases.
Especially, global optimization of a program by manpower is difficult. Even if an attempt
is made to automate global optimization, in theory it is difficult to achieve because exact
correctness does not exist in the specification and program.

3.2. Characteristics and problem areas of parallelism in declarative program-
ming languages. This section presents declarative programming languages [2, 4, 15, 18,
19, 22].

[Characteristics]

Ideally, it lets problems be automatically solved through its description of the problem
with declarative descriptions.

[Problem areas]

If the computation’s correctness must be strictly guaranteed, either the problem de-
scription’s expressive power or its execution efficiency becomes insufficient and, in many
cases, operations with no theoretical grounding are employed in the name of execution
efficiency.

3.3. Importance and advantages of parallelism based on ET model. This section
presents the importance and advantages of parallelism based on ET model.

[Importance]

In parallelism based on ET model, the program’s correctness is strictly defined as a
mathematical relationship between specification and program by completely separating
the problem description (formal specification), which uses definite clause sets and repre-
sentation sets of first-order predicate logic in its declarative description, from the program
(procedure). Instead of directly executing the formal specification, a correct program
specifically for the formal specification is created.

Under this general framework for correct parallel processing, application of parallel
processing may be made to a wider range of general problems compared to those that can
be handled by conventional parallel processing (see Sections 3.1 and 3.2) and it is possible
for problems to be efficiently solved while guaranteeing the computation’s correctness.

[Comparison with imperative programming languages|

In ET model-based parallel processing, the correctness of the executable program, ob-
tained through a theory that guarantees the correctness of program generation and parallel
processing, is fully guaranteed. Also, at the time of rule creation, global optimization and
guaranteeing correctness for the program can take place at the same time. Because the
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resultant program that is generated is an executable procedure that is independent of
implementation, it can be converted into an existing imperative programming language.
At this point, the existing optimization technique can be utilized.

[Comparison with declarative programming languages|

In the ET model, executable programs can describe more than other declarative pro-
gramming language frameworks because any type of description is acceptable as long as
the requirements for the program’s correctness are satisfied. Therefore, the existence of
efficient programs in the ET model is highly likely and, as a result, efficient computation
can be performed compared to declarative programming languages.

In program processing, many declarative programming languages have more constraints
on their computation principles than imperative programming languages, but there are
fewer constraints with the ET theory than with declarative programming languages.

4. Formalization of Problem and Rules for Problem Solving. In this section, a
number-place problem, a typical CSP, is formalized based on the ET computation model
[9, 11, 12] and the rules for solving this problem are explained.

4.1. Formalization of problem. This section formalizes number-place problems (hence-
forth NP represents a single problem and NPs represents more than one problem) by
declarative descriptions [16]. Constraints to be satisfied when solving a number-place
problem are to satisfy an initial arrangement of the problem and to adhere to the con-
straints of the problem. These are represented with the following clause. Symbols starting
with “*” represent variables.

(answer #*NP) <
(initial-arrangement *NP),
(rules-of-NP *NP).
“initial-arrangement” predicate is defined as follows. The “?” marks represent anony-
mous variables, each of which is different from all others.

(initial-arrangement *NP) <«

(= *NP ((? 47317?267T7)
6?272727?27737
(??2727287774)
(7?27?27?2727?2577)
(??736772477)
(1?2?25 727?27287)
45728727272 709)
(71 ?27?272372727)
(??227257?277 7).

A variable, *NP, is equal to the list which represents the given assignment of a problem.
“rules-of-NP” predicate is expressed in accordance with the following two constraints:

(Constraint 1): The numbers 1 through 9 will be placed into each small blank square.
(Constraint 2): The same number cannot be placed in any one column or row, nor
within any one sub-grid surrounded by a thicker border.

4.2. Specialization in number-place problem. allDifferent atom representing (Con-
straint 2) (see Section 4.1), providing that elements of the list are different from each
other. As seen in (allDifferent (3 *a~(2 3 4) 5 *b~(2 3 4 5))), an atom includes
the predicate name, allDifferent, and the list which is surrounded at both ends by ( and ).
The allDifferent predicate controls the constants, variables and i-vars, which are elements
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of its list, to eliminate numbers based on the relationship between elements, to substi-
tute numbers for variables or to eliminate an i-var’s information. An i-var is defined as
a variable which has been given information. An i-var has the form in which a vari-

able is followed by a symbol, “” and ends with S-expressions such as “(1 2 3),” as with
*x~ (1 2 3). Specialization of each variable is executed based on the following six rules.

1. Rule allDifferentl (see (1) in Appendix): In the constraint list *1ist, the constants
and variables are first separated and only the constants are eliminated from the list.
ex.)
(allDifferent (3 *a~(2 3 4) 5 *b~™(2 3 4 5)))

!

(allDifferent (*a”(2 4) *b"(2 4)))

2. Rule allDifferent2 (see (2) in Appendix): If the constraint list is empty, it means that
specialization of the list has been performed and the list can be eliminated from the
specialization routine.

3. Rule allDifferent3 (see (3) in Appendix): When i-var information contains only one
number, its variable can be specialized to that number and the number can be
eliminated from the list.

ex.)

(allDifferent (*a~(2 3 4) *b~(2 3 4) *c~(3)))
{

(allDifferent (*a~(2 3 4) *b~(2 3 4) 3))
1

(allDifferent (*a~(2 4) *b~(2 4))

4. Rule split2-1 (see (4) in Appendix): If the information of two variables in the con-
straint list *1ist consists of the same two numbers, these two numbers can be
eliminated from the other variables in *1ist.

(allDifferent (*a”(2 3) *b~(1 2 3 4) *c“(2 3) *d~(2 3 4)))

!

(allDifferent (*a~(2 3) *b~ (1 4) *c~(2 3) *d~(4)))

5. Rule splitN-1 (see (5) in Appendix): If the information of two variables in the con-
straint list *1ist consists of the same n numbers, these n numbers can be eliminated
from the other variables in *1ist. This rule follows similar processing to Rule split2-
1.

6. Rule allDifferent4 (see (6) in Appendix): This rule splits the problem state into two
states. Using *a~ (1 2) as an example, if the i-var information contains two elements,
the problem state is split into two cases where the first element is 1 and the second
element is 2 and the computations then continue for each. As a result, there will
now be two “Body”. Because this rule results in high computation costs, it should
be given a lower priority.

5. Serial and Parallel Solutions for Number-Place Problems. In this section,
using each parallelism proposed in Section 2, the solutions to number-place problems, the
computation processes and the execution times are explained.

5.1. Serial solution for number-place problems. Figure 4 depicts a serial solution
for number-place problems. As demonstrated in this figure, to solve a given problem,
the serial solution removes a sub-constraint from the given problem. Specialization is
performed to the removed sub-constraint and through the transmission of information
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FIGURE 4. Serial solution for number-place problems

resulting from the specialization, the information of the variable in the sub-constraint is
updated. Next, another sub-constraint is removed and the same process is repeated. This
process will be repeated until all variables in the given problem have been eliminated.
When all variables in the given problem are transformed into constants, that will be the
solution to the problem.

It is easy to predict the execution time that will be required for this solution to solve
the problem. The serial solution’s execution time is the sum of the sum of specialization
times and the time required to update each variable’s information.

5.2. Solution for number-place problems in And-parallelism. Figure 5 depicts the
solution process in And-parallelism. Since there are 27 constraints (9 rows, 9 columns,
9 sub-grids) for the And-parallelism solution, 27 cores need to be set. Each of the 27
cores performs a constraint specialization sent from the master computer. Let the time
required to complete all constraint specializations — in the case of Processl in Figure 5,
and this is the time to complete Constraint2’s specialization as it took the most time — be
T'1_spe. Then, the information of all variables in all constraints in Processl is updated.
Let the time required for this be T'1_update. This process will be repeated n times until
all variables are eliminated and from this, the given problem’s solution is obtained.

The execution time required to solve this problem is the sum of the sum of T'1_spe to
Tn_spe and the sum of T'1_update to Tn_update.

5.3. Solution for number-place problems in Or-parallelism. With “splitting” rules,
Or-parallelism can be easily realized. A “splitting” rule is a rule that splits a single prob-
lem state into multiple different states. The master computer performs successive spe-
cializations of each constraint until the split point is reached. For example, the variable
*a in the i-var *a~ (1 2) can have two numbers, 1 and 2, placed into it. Therefore, *a is
split into case 1 and case 2.

Figure 6 depicts Or-parallelism for number-place problems. Although the problem state
is always split into two different states in this example, it may be split into three or more
states.

The numbers (D to () indicate the number of body atoms (see Appendix) to be split,
and in this example, a split into six body atoms is shown. Each of the six body atoms
is individually processed in the flow as depicted in (O) to (6). The horizontal axis shows
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the execution time; the reason why the lines are different lengths following a split, shown
on the horizontal axis, is because different computations are performed. These splits are
performed under a “splitting” rule.

The state of the end atom (leaf-node) is the result of multiple splits. The execution
time required to achieve each leaf-node state is individually measured and the longest of
these execution times will be the computation time for this solution. In Figure 6 example,
(D and (2 took the longest time to obtain the leaf-node state, so their time becomes the
computation time.
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5.4. Solution for number-place problems in And & Or-parallelism. In this model,
computations are performed in And-parallelism as long as “splitting” rules are applicable.
And, Or-parallelism is implemented by “splitting” rules. Therefore, the total execution
time is the sum of the And-parallelism execution time and the Or-parallelism execution
time without including the time that was taken to perform the splitting (see Figure 7).

Execution Time

FIGURE 7. Solution for number-place problems in And & Or-parallelism

Also, the execution time for this parallel solution depends on the number of working
cores. If m cores perform processing as child-nodes, the And-parallelism execution time
at the first node is assumed to be t0/m. ti is the execution time at each Or-parallelism
node 7 shown in Figure 6.

The total computation time can be assumed to be the sum of the execution time at
each node (including each leaf) and the split time at nodes other than leaves. When
compared to serial computation, if the average magnification of And-parallelism is m, the
computation time at each node or leaf is assumed to be % of serial computation. Here,
average magnification is the average of the number of cores used in a computation.

Using Figure 8 as an example, the process of obtaining execution time is explained.

Let
Actual serial time: T,

Theoretical serial time: T,

Parallel computation time: 7, = ¥ ¢,
Number of splits: n,

And-parallelism magnification: m,
Average split time: t; = (T, — Ty)/n.

Using these, And & Or-parallelism execution time can be calculated with the following
equation.

Tang-or = [(t0 — ts0)/m + ts0]
+ [(t1 — tsl)/m + tsl]
+ [(t2 — ts2)/m + ts2]
+[(#11 — ts1l)/m + tsll]



PARALLELISM BASED ON EQUIVALENT TRANSFORMATION MODEL 533
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=T,/m + nxtsx[(m—1)/m]

Here, [(t0 — ts0)/m + ts0] to [(¢21 — ts21)/m + ts21] are nodes from which leaves
have been removed, and ¢sj indicates the split time at each node j.

t111/m

(]
e
KN
e
o
(———4 '
Com |
3
t21/m ’ V—
]
—)l t2/m | l

| t22/m ’

Execution Time

FiGURE 8. Execution time in And & Or-parallelism

6. Results and Analysis of Evaluation Experiment. The efficiency of the solu-
tion model described in Section 5 is estimated. First, 100 number-place problems to be
solved under And-parallelism (A-group) and 100 number-place problems to be solved un-
der Or-parallelism (B-group) are selected. Then, these problems are executed and the
characteristics of these two solutions are analyzed. Lastly, we will demonstrate that And
& Or-parallelism is more efficient than Or-parallelism.

6.1. Characteristics of A-group’s problems. When solving each of the problems,
if a regular pattern is not detectable, it is difficult to correctly analyze each problem’s
execution results. In discussing the characteristics of the problems, all the problems are
executed. Then, the execution time, the number of numbers assigned to the number-place
problem’s grids and the specialization time are examined. These three sets of data have
a significant effect on the difficulty of each problem.

When these experiment data are analyzed, the following conclusions are drawn.

e In solving a number-place problem, the longer it requires for execution time, the
more difficult that problem is.

e The higher the number of numbers assigned to a number-place problem’s grids is,
the quicker that problem can be solved.

e If less time is required for specialization to solve a problem, it can be thought that
the problem is easy.
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TABLE 1. Experimental results

Relationship between times of specialization and magnification

Problem No. | Times of specialization Magnification
A001 9 12.9972384
A002 5 11.498833
A003 8 12.2501142
A004 6 12.2575068
A005 4 10.4339508
A006 5 12.8154586
A007 7 12.6742232
A008 8 14.164478
A009 9 12.5454958
A010 6 11.9636074
A011 9 14.5604178
A012 6 14.3381648
A013 10 13.5176254
A014 7 12.5706168
A015 6 13.6237528
A016 10 11.9367016

6.2. Execution efficiency of A-group problems in And-parallelism. In this sec-
tion, the average magnification of the 100 problems in A-group in And-parallelism will
be found. To achieve this, an experiment was conducted to estimate the serial solution’s
execution time the And-parallelism execution time [8].

In this experiment, the serial solution program was executed first. From its actual
execution time, the And-parallelism execution time was estimated, the magnifications of
the time estimated by Section 5.2’s method and the actual time were computed, and the
number of times of specialization was examined.

From Table 1, the average magnification of And-parallelism can be assumed to be 12.

6.3. Execution efficiency of B-group problems in Or-parallelism. The solution
described in Section 5.3 was used to estimate parallel execution time. Then, the serial
execution time and the number of splits were examined, and the magnification between
parallel execution and serial execution was computed.

Experiment procedure:

1. Execute all the problems in B-group.

2. Compare the parallel execution time (paraTime) with the serial execution time (ser-
iTime).

3. Examine the relationship between the number of splits and execution time.

Results:

1. In parallel computation, there is no significant variation in each problem’s execution
time.

2. In serial computation, there is an explosion in execution time when problems require
more splitting.

3. When problems require more splitting, their execution time becomes longer.

6.4. Comparison between And-parallelism and Or-parallelism. In order to com-
pare And-parallelism of A-group with Or-parallelism, of the problems for which the correct
solution was obtained by serial computation, problems that were both easy and difficult
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TABLE 2. Experimental results

Problem No. | paraTime (msec) | seriTime (msec) | times of split | magnification
B001 2437 2515 1 1.032
B012 1796 2139 2 1.191
B013 2078 2863 3 1.378
B025 2000 2610 4 1.305
B029 1594 2362 5 1.482
B088 2563 3690 6 1.440
B030 2485 4198 7 1.705
B047 3047 5828 8 1.913
B009 3904 9155 9 2.345
B023 4140 13052 16 2.015
B045 4359 8785 18 3.152
B033 4328 15131 22 3.496
B015 4530 16324 31 3.604
B081 3609 18844 38 5.221
B068 4292 24808 47 5.780
B0O17 4609 32454 49 7.041
B063 4531 27662 50 6.105
B039 4578 34051 52 7.438

TABLE 3. Serial execution time

Problem No. | Serial execution time (msec)
A075 1122
A031 3748

Execution Time in And-Parallelism and Or-Parallelism (A075)

@ And-Parallelism

B Or-Parallelism

1 2 3
Number of Cores

FIGURE 9. Execution time in And-parallelism and Or-parallelism (A075)

were chosen. Then, the execution efficiency of And-parallelism and Or-parallelism was
compared.

As demonstrated in Figure 9, the execution efficiency of Or-parallelism is higher than
that of And-parallelism.
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6.5. Execution efficiency of B-group problems in And & Or-parallelism. Here,
the execution efficiency of And & Or-parallelism is compared with that of Or-parallelism.
For the purpose of comparison, take B030, a large and complex problem in B-group, as
an example.

The following data are obtained from the experiment.

Actual serial time: T, = 5983 (msec),

Theoretical serial time: T = 4198 (msec),

Parallel computation time: T, = ¥ t; = 2484 (msec),

Number of splits: n = 7,

And-parallelism magnification: m = 12,

Average split time: t; = (T, — Ts)/n = 255.

Therefore, based on computation method in Section 5.4, the execution time obtained
was 1843 (msec), and And & Or-parallelism execution time was approximately 3.25 times
faster than that of Or-parallelism.

7. Application of the Proposed Method. In general, it can be considered that the
proposed method is very effective for problems, such as NP-hard problems, that are
difficult to solve.

For example, we are currently addressing container pre-marshalling problems [31]. A
container pre-marshalling problem is one in which prioritized containers that are randomly
stacked two dimensionally are reshuffled so that higher priority containers will not be
brought down while minimizing the total number of moves required for the reshuffie.

Also, the proposed method is effective for puzzle problems such as Pic-a-Pix puzzles,
number area problems and crossword puzzles in addition to number-place problems used
in this paper.

On the other hand, when it comes to practical applications, the proposed method can
be applied to scheduling problems and the proposed method would prove to be effective
in solving this type of problem [30]. Examples of this type of problem include class
scheduling problems, travel scheduling problems and nurse scheduling problems.

8. Conclusions. This paper proposed And-parallelism, Or-parallelism and And & Or-
parallelism based on the ET computation model. And using these algorithms, we solved
number-place problems — a type of CSP — and analyzed the characteristics of each algo-
rithm by comparing their computation methods and execution times.

It is hoped that the outcomes reached in this study can be applied to other CSPs,
possibly with similar results.
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Appendix.

Rule allDifferent1
Head (allDifferent x list))
Cond (existNumber x list 7))
Body (exec (search x*list * N x1I)
diffnumbers * N)
allDel *1 xN))
(allDifferent *1I))) (1)

“allDifferent1” is the name of the rule and “Head” stands for the proposition before
replacement. “Cond” is the condition under which this rule can be applied. In this
example, the rule can be applied in cases where there are constants in *1ist. “Body”
stands for the proposition obtained by replacing the proposition in the Head. “exec” in
“Body” means that there is execution of search atom, diffnumbers atom and allDel atom.
When this execution succeeds, (allDifferent *1ist) is replaced by (allDifferent *I).

An explanation is omitted for the following rules because similar procedures are per-
formed.

(
(
(
(
(
(

(Rule allDifferent2
(Head (allDifferent ()))

(Body)) (2)

Rule allDifferent3
Head (allDifferent x* list))
Cond (ivars s list)

choice xlist *x *rest))

rmInfo * x)
= % X *one)
allDel xrest (x one)))

(

(

(

(

(Body (exec (getInfo *x (or = one))

(

(=

(

(allDifferent x rest))) (3)

Rule split2 — 1

Head (allDifferent x* list))

Cond (ivars x* list)

split2 xlist *x *y *m *n xrest)

notNil x rest))

Body (exec (remove *rest «m n % newrest))

allDifferent * newrest)

(
(
(
(
(
(
(
(allDifferent (x x xy)))) (4)
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Rule splitN — 1

Head (allDifferent x list))

Cond (ivars x* list)

splitN — 1 xlist *x *rest *union xkazu x val))

Body (exec (update xx *union xkazu x val))
allDifferent * rest))) (5)

N N N N /N /N

Rule allDifferent4
Head (allDifferent = list))
Cond (ivars x* list)

choice — w =« list * double)

(
(
(
(
(ivar * double)
(getInfo x double (or *one * two)))
(Body (exec (rmInfo * double)
(= * double *one))
(allDifferent  list))
(Body (exec (rmInfo * double)
(= #* double *two))
(allDifferent x list))) (6)

For further information on built-in atoms, etc., please refer to [29] in References.



