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ABSTRACT. In this paper, an uncertainty and sensitivity assessment method is devel-
oped for the Supply-driven Inoperability Input-output Model (SIIM). The SIIM model
has been proposed to investigate the initiating perturbations related to the input factors
(value-added) and understand the infrastructure interdependencies upon vicious external
attacks or unfortunate natural disasters. This work extends the existing research work in
the literature and incorporates the stochastic perturbations related to value-added to con-
duct the analysis. A four-sector example is provided in this paper and the Monte Carlo
simulation and the variance-based sensitivity analysis method is used to demonstrate the
construction of the proposed risk model.

Keywords: Interdependent infrastructure sectors, Supply-driven IIM, Stochastic per-
turbations, Uncertainty and sensitivity assessment, Monte Carlo simulation

1. Introduction. With the rapid economic development, the interconnections among in-
dividual economic sectors have become increasingly strong. Interdependency — enhanced
operations offer great convenience, reduced cost and high efficiency. However, technical
complexity and the general lack of understanding of interdependent relationships within
and among the infrastructures expose the systems to unknown risks and vulnerability. Dis-
ruptions occurring in one infrastructure sector can trigger the disruptions in another sector
with magnifying effect. Consider the disastrous earthquake that occurred in Wenchuan,
China, on May 12th, 2008. It caused devastating damage to buildings and public facilities,
including transportation systems such as roads, railways and the airports. The infrastruc-
ture systems are so closely interconnected that the damage further affected every aspect
of people’s daily lives. It took a long time to pinpoint the source of the disruption and
explain the reasons behind the disaster.

Interdependencies among infrastructure sectors generate new assurance challenges, whi-
ch need to be addressed on several decision-making levels. The challenges involve multiple
stakeholders and have been modeled from various perspectives. Scholz et al. (2012) [20]
develop the risk and vulnerability definition from a decision-theoretic perspective. Farkas
et al. (2013) [27] develop Sensitivity analysis in lightning protection risk management.
The Inoperability Input-output Model (IIM) has been developed to understand infras-
tructure interdependencies (Percoco et al. 2006 [17,18]; Santos, 2006 [22]). The model
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offers a macro-level, deterministic, and equilibrium approach to modeling interdependen-
cies among economic infrastructures, which are estimated from the input-output accounts
(Lian and Haimes 2006, 2007 [14,15]; Haimes et al. 2005 [6,7]).

The supply-driven IIM presented by Leung (2007) [16] complements the demand-driven
perspective of the demand-reduction IIM (Santos et al. 2007 [16]; Haimes and Jiang
2001 [5]). This perspective addresses the impact that relates to the supply of input
factors (value added). The initial perturbation describes the events that regard the value
added perturbation as the first-round perturbation, and it may trigger a change in output
prices, which may further trigger the second-round perturbation (for example triggering
the change in the final demand quantity). After a disaster occurs, the value added in
the supply-driven IIM can be more easily controlled than the final demand, since the
final demand perturbation may be affected by the psychological impact on consumers.
Moreover, in the interdependent infrastructure systems, there are more supply-driven
sectors than demand-driven ones, and the value added perturbation is the dominant
feature in the supply-driven sectors upon an interrupt event (Xu et al. 2011 [24]).

The supply-driven IIM considers the value added perturbation. Xu et al. (2011) [24]
have developed a static model into a dynamic one. The perturbations of value added are
assumed to be deterministic in this supply-driven IIM. However, in the real world, most of
the initial perturbations are stochastic. It is very difficult to find a deterministic solution
(Barker et al. 2009, 2010 [10-12]). In this paper, a Stochastic Supply-driven IIM (S-1IM) is
developed by extending the Supply-driven IIM and allowing the perturbations of the value
added to take the form of probability distributions. Moreover, the method to conduct
uncertainty and sensitivity analysis is developed for the supply-driven inoperability input-
output model.

The rest of the paper is organized as follows. Preliminaries are described in Section
2. Section 3 presents the stochastic supply-driven IIM. Section 4 applies the Monte
Carlo simulation to conduct the uncertainty assessment, and uses the global sensitivity
analysis method to conduct sensitivity analysis. And then a four-sector economic system
is presented to demonstrate the methods. Finally, the paper is concluded in Section 5.

2. Preliminaries. This section first presents the supply-driven input-output price model
and then its extension in the literature, called supply-driven inoperability input-output
model (Leung et al., 2007 [16]).

2.1. The supply-driven input-output model. The supply-driven perspective of the
input-output model was introduced by Ghosh (1958) [3]. He contended that the supply
factors become more important than the production and demand factors in the cases
where the markets are monopolistic and when there is a general shortage of resources.
There have been a variety of studies on the supply-driven model. However, there are
also some arguments on the validity of its application to the economic analysis. Most
arguments were discussed in the papers by Davar (1993) [2] and Zaghini (1971) [26].

The supply-driven input-output economic model is expedited by value added inputs
rather than final demands. The input in terms of the observed monetary value of commod-
ity flow (in dollars) from sector ¢ to sector j is denoted as z;;. The matrix of commodity
flows is X = (zy5) The technical coefficient is defined in Equation (1):

nxn'
LL‘..
aij = :C_Zj (1)

Equation (2) is the traditional input-output Ghosh model:
-1

x:A(s)x+z:>x:(T—A(s)) z (2)



ANALYSIS OF THE INFRASTRUCTURE SECTORS BASED ON THE SIIM 617

This relationship among all n sectors is represented as a matrix, as shown in Equation
(2), where x is the vector of total inputs; A®) = (aij)TX = (aE?) is the interde-
nxn nxn

(s)

ij

the proportionality coefficient corresponding to the input from sector i to sector j, with

respect to the total output of sector i; and z is the column vector of value added inputs
such as labor, wages, taxes, income, and rental.

pendency matrix derived from the economic input-output data, where {a } specifies

2.2. Supply-driven inoperability input-output model. The supply-driven static
[TM was derived by Leung et al. [16], and the supply-driven static inoperability input-

output model is given as
1

p=(I—AD")" 2 (3)
where A®)* is the interdependency matrix which is derived from the economic input-
output data, z* is the value added price perturbation vector, Z is the value of nominal
value added, and Z is the value of degraded value added after perturbation. We suppose
that (I — A®*)~1 = (b;;)nxn, and

2" = diag(2)™" (2 — 2) (4)
p = diag(z) (% — 1) (5)
AW = diag(#) L A®diag () (6)

where p is the vector of the cost change in output due to value added perturbation. The
supply perturbation is expressed by vector z*, whose elements represent the difference be-
tween the planned supply and the perturbed value added divided by nominal production,
which is equivalent to the increase of value added as a proportion of total planned input.

2.3. Variance-based sensitivity analysis. The main idea of this method is to express
the sensitivity through variance, and evaluate how the variance of such an input or group
of inputs contributes to the variance of the output of a model.

Consider the model (Yu and Harris 2009 [23]; Jacques et al. 2006 [9]):

f:R"—> R (7)
X =Y = f(X)
where Y is the output of a model, X = (X, Xy, -+, X,) is a vector of n independent
inputs of the model, f is the model function. We define:

Vi=VIEY|X;)] (8)

Vi =VIEY X, X;)] - ViV (9)

Vige = V[E(Y | X3, X5, Xp) | = Vig = Vie = Vi = Vi = V; = V4 (10)
The first-order sensitivity index is defined by:
17

S; = — 11

7o) (11)

The second-order sensitivity index is defined by:

Vii

Sij = 12

Similarly, we can calculate higher order sensitivity index. The greater the index value
is, the more important the variable or the group of variables is, which is linked to this
index.
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3. Uncertainty and Sensitivity Analysis. This section develops the theory and meth-
odology based the supply-driven IIM to conduct the uncertainty and sensitivity analysis.
Since the value added perturbation can be easily managed by the domain expert based
on the expert probability assessments, the value added perturbation of the supply-driven
uncertainty IIM is extended to take the form of the probability distribution.

3.1. The uncertainty analysis. Since the value added in the proposed supply-driven
[IM is more controllable than the final demand after a disaster (based on the domain
expert assessments), we assume that the increase of the value added in affected sectors
are distributed triangularly. The triangular distribution is applied in various problems
associated with risk analysis and uncertainty elicitation. The probability density function
of triangular distribution is as follows (Barker and Haimes 2009 [10,11)):

Faea 0ST<ec
f(z) = ﬁ%, c<xz<b (13)
0, elsewhere

And the cumulative distribution function of the triangular distribution is:

0, T € [—00,a)
“a (2—a)\2
i (20), welad
F(.TL') - b—c (b—z\2 (14)
1—E(E) s xE[C,b]
1, z € [b, +00)
We can get the expected value and the variance of the triangular distribution:
b
E(z) = atote (15)
3
Loy 4o, o
D(x)zﬁ(a + b + ¢ —ab — ac — be) (16)

A price increase is the initiating event, and will cause other sectors to increase their
production costs; again, this may or may not be able to be transformed to the increased
costs on customers. It can be absorbed as the economic losses. The economic losses for

each sector and overall economic losses are given in Equation (17) and Equation (18)
[16,17]:

D1

(Q1, Q-+, Qu)" = diag (1,39, &) | T2 (17)
Pn

Q=:i"p (18)

The Monte Carlo simulation is used to handle more complex calculations demanded by
a larger set of sectors and general types of probability distributions. Through the Monte
Carlo simulation, we can obtain the expected and the standard deviations values of the in-
operability and the economic losses through the four-sector interdependent infrastructure
system example. It gives the decision makers the insight into making the right decisions
for risk management.
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3.2. The sensitivity analysis. This section develops the variance-based global sensi-
tivity analysis method (Iooss and Ribatet 2009 [8]; Volkova et al. 2008 [25]) to assess the
uncertainty of the stochastic perturbation of value added of the supply-driven inoperabil-
ity input-output model for the interdependent infrastructure systems.

Consider the supply-driven inoperability input-output model in the form of Equation
(3). In general, we can rewrite Equation (3) as follows:

p=f((1-a9) ") (19)

The purpose of this paper is to assess the volatility in the stochastic elements of z*.
Suppose that the elements of z* are effected by uncertainty and that the elements of A®)*
are known. Therefore, for the purpose of the sensitivity analysis, we can write Equation
(19) as the following format:

p=f(z") (20)
where z* is the stochastic perturbation of the supply-driven inoperability input-output
model. We can write the variance of the output as follows:

Vip)=E[V(pl")]+VIE(plz")] (21)

In particular, the importance of z* replies on how well z* drives the changes in p, that
is, how well E(p|z*) represents p. If the total variation in p is matched by the variability
in F(p|z*) as z* varies, then z* could be a very important inter-industry linkage; that
variation is measured by the term V [E(p|z*)]. The term E [V (p|z*)] can be described
as a prediction error, measuring the remaining variability in sector output. If we divide
Equation (19) by the unconditional variance, we obtain the first-order sensitivity index
of the value added decrease for sector i:

VI[E(p|z")] E[V(p|z*)]
Sl =Py ZWPIE ] 22
v V(p) V(p) (22)
Since the economic loss for each sector is:
Q=1"p=2a"f(z") = g(z") (23)

Similarly, we can obtain the first-order sensitivity index of the final demand decrease
for sector ¢ on the variance of the economic losses as follows:

5102 VIEQIZN | EVQE)
He V(Q) V(Q)

4. An Example. The example in this section is used to illustrate the theory and the
methodology of the uncertainty risk analysis using the supply-driven IIM. The model
is extended to incorporate stochastic perturbations for the uncertainty and sensitivity
assessment. Its fundamental analytical concepts and procedures are analyzed.

(24)

Example 4.1. It is noted in the latest report from the Intergovernmental Panel on Cli-
mate Change that the temperature in China is rising and the extreme weather, including
cyclones, droughts and floods, is on the increase. A massive flood struck the area along
the Yangtze River in China this summer. The flood disaster destroyed the critical infras-
tructures, and the sectors such as electricity power grids, railway systems are negatively
affected. Since these affected sectors had to pay higher costs to maintain normal opera-
tions, it is regarded as an increase in their value added component.

We assume a four-sector interdependent infrastructure system for the city of Wuhan,
which is comprised of (1) an electric power sector; (2) a railway transportation sector;
(3) a water supply sector; and (4) a gas supply sector. Table 1 shows the transactions in
terms of money-value flows. we suppose that the interdependent system is stable before
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TABLE 1. The transaction balance in the four-sector economy (CNY)

j=1 7=2 57=3 j=4 Demand ¢ Total output =

1 = 1 Electric power 175 280 280 140 350 1225

1 = 2 Rail Transportation 140 315 350 280 525 1610

1 = 3 Water supply 245 140 280 140 280 1085

1 = 4 Gas supply 175 280 105 280 175 1015
Value added 27 490 595 70 175
Total input z” 1225 1610 1085 1015

perturbation. In this table, an element in row ¢ and column j represents the required
input of services from sector i to j.
From Table 1, we get:

T
A = T
T

0.14 023 023 0.11)\ 0.14 0.09 0.23 0.17 (25)
1 0.09 0.20 0.22 0.17 | 0.23 0.20 0.13 0.28

0.23 0.13 0.26 0.13 | 0.23 0.22 0.26 0.10

0.17 0.28 0.10 0.28 0.11 0.17 0.13 0.28

The interdependent matrix of the four sectors is:

AW = diag(#) "' A®diag(7)

0.14 0.17 0.26 0.14 0.14 0.11 0.20 0.14
| 011 020 032 028 | [ 017 020 0.10 017 (26)
0.20 0.10 0.26 0.14 | — | 026 0.32 0.26 0.10
0.14 0.17 0.10 0.28 0.14 0.28 0.14 0.28
o1
(1= A®") " = (bij)axa
0.14 011 020 0.14 )\ ' 1.57 0.65 0.60 0.55
|, 017 020 010 017 | 058 1.72 047 0.59
= 0.26 0.32 0.26 0.10 = 089 1.10 1.84 0.69
0.14 0.28 0.14 0.28 0.60 0.99 0.64 1.84

(27)

Assume that both value added increases in sectors are distributed triangularly. Specif-
ically, for sector 1, its value added increase is assessed to be a minimum of 10%, most
likely 15%, and a maximum of 18%. For sector 2, the three-point estimates of minimum,
most likely, and maximum are 15%, 20%, and 28%, respectively. In the example, the
Monte Carlo simulation is used to generate the distributions of the inoperability and the
economic losses for this interdependent infrastructure system.

4.1. The uncertainty analysis. Applying the supply-driven IIM in Equation (3), we
denote (I — A®*)~! = (b;;)nxn, the system equations of the four-sector economy can be
written as follows:
P11 = bHZT + b12Z; + b13z§ + b14ZZ
P2 = b21ZT + bQQZ; + b23z§ + b24ZZ
P3 = b312’1§ —+ ngZ; —+ b332§ + b34ZZ
P4 = 17412’1< —+ b422)2k —+ ()43,25;,’K + 1744,221’K

(28)
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We have:
E(p1) = buE(2]) + biaE(23) + bisE(23) + b B(2])
E(p2) = ba1 E(2]) + boo E(23) + bos E(23) + bas E(2]) (29)
E(ps) = b31 E(2]) + by E(23) + bss E(23) + bsa B (2])
E(ps) = b E(2]) + b E(23) + by B(23) + baa B(2])
Applying the Monte Carlo simulation to Equation (28) generates the distribution of the

inoperability for individual sector as presented in Figure 1 to Figure 4. There are 10,000
samples conducted in the simulation.

The simulation results show that the expectation and the standard deviation of the
four sectors’ inoperability can be calculated. For example, as for the water supply sector,
the expectation is 0.3583, which is close to the theoretical expectation of 0.3556, while
the standard deviation is 0.0332. Similar results for other sectors can also be obtained
and interpreted in the same way.
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FIGURE 1. Inoperability distribution of the electric power sector (mean:
0.3618 std: 0.0322)
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FIGURE 2. Inoperability distribution of the rail transportation sector
(mean: 0.4447 std: 0.0478)
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FIGURE 3. Inoperability distribution of the water supply sector (mean:
0.3583 std: 0.0332)
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FIGURE 4. Inoperability distribution of the gas supply sector (mean:
0.3072 std: 0.0293)

Using the following equation, the economic loss for individual sector (); and the total
economic loss @) can be computed from Equation (17) as follows:

(Q1,Qs,Q3,Qu)" = diag(1225,1610, 1085, 1015)p (30)

Q = 2"p = (1225,1610, 1085,1015)p ey

Based on Equations (29) and (30), through 10000 Monte Carlo simulation, Figure 5
shows the resulting distribution of the overall economic loss for the system.

From Figure 5, the Monte Carlo simulation results show that the expectation of the
overall economic loss is CNY 1857.7 and the standard deviation is CNY 171.7057, which
is close to the theoretical value. The results show the value of the infrastructure interde-
pendency in the risk assessment process.

4.2. The sensitivity analysis. From the above section, we have:

V(2) = 0.00027, V(z%) = 0.00072 (32)
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FIGURE 5. Distribution of the overall economic loss for the four sectors
(mean: 1857.7 std: 171.7057)

From Equation (26), we have:

p1 = 1.572] + 0.6525
p2 = 0.582] + 1.72z5

p3 = 0.8927 + 1.1023 (33)
pa = 0.6927 + 0.9923
The economic loss for individual sector:
Q=2"p=2"f(z") = g(z") (34)
We have:
Qs = Tapy = 1610 (0.5827 + 1.7223) (35)
Q3 = x3p3 = 1085 (0.8927 + 1.1023)
Q4 = x4ps = 1015 (0.6927 + 0.9923)
VI|E * EV *
SZ.|Q:M:1_M (36)
V(Q) V(Q)

Using the variance-based global sensitivity analysis and the Monte Carlo simulation
results, the first-order sensitivity indexes is as follows:
For ();, we have:

Sy 0 Sy =0.68:0.32 (37)

For ()5, we have:
Ser 0 Sy =0.23:0.77 (38)

For ()3, we have:
Ser 0 Sy = 0.194: 0.806 (39)

For ()4, we have:
Ser 0 Sy = 0.155:0.845 (40)

Results in Equation (36) indicate that z} is the most important factor for @1, which
has the largest impact on the variance of @);. Results in Equations (37) to (39) indicate
that z3 is the most important factor for (Q2, Q)3 and @4, which has the largest impact on
the variance of ()2 to Q4. This will give decision makers some insight into making the
right decisions for the risk management upon unexpected disruptive events.
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5. Conclusions. This paper extends the supply-driven IIM to incorporate probabilistic
dimensions to analyze the uncertainty and sensitivity of interdependent infrastructure
sectors. In the case of the supply-driven uncertainty IIM, the distributions of the result-
ing economic loss and other impacts are represented as the triangular distribution for
each of the initially affected sectors. And then the paper proposes the method in which
the triangular distribution is used to represent risks. Given the distributions of initial
inoperability of the sectors that are directly perturbed, the distribution of the overall loss
of the economy is derived through the uncertainty supply-driven IIM. In this paper, the
Monte Carlo simulation framework is utilized to derive the triangular distribution.

Sensitivity analysis is a useful tool when the uncertainty is present. The analysis
examines the response of the outputs by exploring a finite region. Through the sensitivity
analysis of the supply-driven uncertainty IIM, we can obtain the largest impact on the
variance of variables, and thereby identify the key sectors (which indicate an industry
with strong influence on the expansion of others in a system) for the purpose of risk
management.
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