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ABSTRACT. This paper brings up an improved high degree cubature H-infinity filter for
a class of nonlinear discrete-time systems with non-Gaussian and colored system moises.
The proposed H -infinity filter is deduced by introducing the fifth-degree spherical-radial
rule into a frame of nmonlinear point-based H -infinity filters. Stability analysis demon-
strates that the high degree cubature H -infinity filter can effectively improve the stability
of standard high degree cubature Kalman filter. Furthermore, the improved filter is con-
trastively tested in two different classic nonlinear problems with three kinds of uncertain
system noises. Simulation results show that the proposed filter achieves better perfor-
mance in filtering accuracy and robustness than other compared nonlinear filters.
Keywords: Kalman filter, Fifth-degree cubature rule, Target tracking, Nonlinear filter-
ing, H-infinity

1. Introduction. Recently, a high degree cubature Kalman filter (HCKF) is proposed
by B. Jia et al., which has superior performance in high-dimension estimation to the
traditional nonlinear filters such as cubature Kalman filter (CKF), unscented Kalman
filter (UKF), particle filter and Gauss-Hermite quadrature filter. To guarantee approxi-
mate suboptimal linear minimum mean square error of system state estimation, the pro-
cess and measurement noises are assumed to be the independent white noise sequences
with zero means in traditional HCKF and other traditional nonlinear filters [1]. How-
ever, the assumption may decrease filtering performance in many practical problems with
non-Gaussian, time-variant or colored noises [2, 3, 4, 5, 6, 7]. Furthermore, for nonlin-
ear dynamical systems with large uncertainties, for example, long term orbit uncertainty
propagation and magnetometer-based space craft altitude estimation, the statistical prop-
erties of the system noises are liable to be unknown, which also limits the stability and
accuracy performances of traditional HCKF [1].

One of the promising solution is to improve the traditional HCKF to the corresponding
nonlinear H-infinity filter. Over the past decade, various nonlinear H-infinity filters are
brought up based on traditional nonlinear filters, such as extended H-infinity filter (EHF),
unscented H-infinity filter (UHF) and cubature H-infinity filter (CHF) [8, 9, 10, 11, 12, 13,
14, 15]. Unlike traditional nonlinear filters which need an exact and accurate system model
as well as perfect knowledge of noise statistics, nonlinear H-infinity filters require no prior
statistical knowledge of the noise with finite bounded energies, and minimize the effect
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of the worst possible disturbances on the estimation errors. Therefore, the nonlinear H-
infinity filter has wide application, ranging from maneuvering target tracking, integrated
navigation, positioning to information fusion. Moreover, the presented research works
indicate that the performance of traditional nonlinear filter is positively correlated with
that of the corresponding nonlinear H-infinity filter. Accordingly, an improved nonlinear
H-infinity filter is brought up based on HCKF, which has not been investigated.

The main contributions of this paper is to propose a high-degree cubature H-infinity
filter (HCHF) for a class of nonlinear discrete-time systems. The improved algorithm
aims to achieve higher accuracy than EHF, UHF and CHF, with better stability and
robustness than the HCKF. The solution is to generalize a common frame of nonlinear
H-infinity filters and introduce the fifth degree spherical-radial rule into the frame. So
the intractable Gaussian integrals encountered in the nonlinear H-infinity filtering can be
approximated using a set of deterministically chosen fifth-degree cubature points. In the
end, stability analysis and simulation contrast tests are done to verify the effectiveness.
The rest of the paper is organized as follows. The problem is formulated in Section 2.
In Section 3, the nonlinear point-based H-infinity filters are briefly described, and the
HCHF is proposed. Section 4 analyzes the stability of the improved filter. Contrast tests
of maneuvering target tracking and demodulation of frequency signals are provided in
Section 5. Section 6 concludes the paper.

2. Problem Statement.

2.1. System description. A considered nonlinear discrete-time system can be given by

xXp = f (Xk—1) + Vi1
zr = h (X)) + W (1)
Vi = Lgxg

where £ is a discrete time index; x; € R" and z, € R™ are the system state and mea-
surement at discrete time k, respectively; f : R* x Rl = R” and h : R™ x R — R™ are
some known nonlinear functions. Ly is an arbitrary known matrix which can be linearly
combined to the state x;. Usually, we make L; equal to an identity matrix with appro-
priate dimension to simplify computation. {v;} and {w;} are energy bounded I, [0, +00)
process and measurement noise sequences separately which are defined as the following.

o0 T T
E W, W, < 00 E V.V, < 00
oo kWi ) oo Yk VE

where the superscript ‘7’ denotes the matrix transpose. The statistical properties of
process noise v; and measurement noise wy are unknown.

The initial state is xg, and associated covariance is Py. xq is uncorrelated with {wy}
and {vi}. Let ¥, = Fy(Zy) denote the estimate of yj, when the measurements Z;, =
{21, 29, - , 2z} are given. The estimation error is defined as below.

e, = ¥r — Lpxi (2)

Let T}, (Fy) denote the transfer operator that maps the unknown disturbances to the
estimation errors. And the H-infinity norm of the transfer operator T}, (F%) is defined as
the following.

k

. 5 fenll
T E s = :
X0,1Vm fs1Wm € A 2 2
0 : (HXO—XOOHPO_I + 3 [Vl + zo||wm||Ral>
m= m=

(3)
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where the process noise vi, the measurement noise w;, and the initial state error xo — Xq)o

are regarded as unknown disturbances to the estimation error e;, where Xy is a priori
. . 2 . .

estimate of xo. The notation ||A|| -, is defined as the square of the weighted [, norm of A,

that is to say |A|>-; = ATo~"A. Qp and Ry are the initial covariances of corresponding
noise.

2.2. Problem formulation. The HCHF strengthens the filtering robustness and accu-
racy by making the norm of T} (F) satisfy:

1T (Fp)ll o <7 (4)

where v > 0 is a given scalar, standing for error attenuation parameter. The main work
in the paper includes:

(i) Considering the system (1), generalize a universal frame of point-based nonlinear
H-infinity filters.

(ii) Using the fifth-degree spherical-radial rule and the frame presented in (i), establish
the HCHF algorithm.

(iii) The HCHF is applied to solve two typical nonlinear problems, and contrast tests
are done compared to CHF, UHF and HCKF.

3. High Degree H-infinity Cubature Filter.

3.1. Point-based nonlinear H-infinity filter. In this section, a frame of point-based
nonlinear H-infinity filters is briefly generalized. Considering a class of nonlinear discrete-
time system described by Equation (1), a suboptimal nonlinear H-infinity filter consists
of time update and measurement update two steps [9, 10]. The two steps both involve
Gaussian integrals calculations to obtain probability density functions (PDFs) and likeli-
hood functions of system state because they are partly derived from Gaussian filter. These
types of integrals are generally intractable unless it is approximated by different quad-
rature rules which lead to different nonlinear H-infinity filters, such as, the UHF based
on UT transformation, the CHF based on 3rd-degree cubature rule. If any Gaussian
integral T (f) in suboptimal nonlinear H-infinity filters is approximated by the following
quadrature rule, then the class of suboptimal nonlinear H-infinity filters can be called
point-based nonlinear H-infinity filters.
Ny
1= [ fEN@EOP)dx~ > Wif (Ay) (5)
i=1

where N, is the total number of quadrature points; A; and W; are the quadrature points
and weights, respectively; f (-) is a known nonlinear function, N (x;0,P) is a Gaussian
density with argument x, zero mean, and covariance P.

The complete solution of them can be summarized as the following.

Time Update

Evaluate predicted state X;;_; and the associated covariance Py _;.

Ny,
Ripeo1 = 2 Wif (Xig—1jp-1)
N T (6)
Py = W <Xi,k71\k71 - fik‘k_l) (Xi,k71|k71 - ﬁm_l) + Qo
i=1

where the propagated point X;;_j,— is evaluated from the following state equation.

Xik—1jk=1 = Sp_1/k—16i + Xp—1]p—1 (7)
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where Pp_yp—1 = Sp_1jp—1 (Sk_l‘k_l)T; Si—1k—1 can be obtained from the cholesky de-
composition or the singular value decomposition of error covariance Pj_;;_; at discrete
time k£ — 1.

Measurement Update

Update state X, and the associated error covariance Pyy.

~ A -1 ~
Xk = Xglk—1 T sz,k|k71Pzz,k‘k,1 (Zk - Zk|k71)

L [P ]
Py = Prje—1 — [ Prapip—1 Prjp—r | -R'e’i { PT”“““ 1 } (8)
k|k—1
where
Pore 1 PL,..-
Rle = z2,k| xz,k|k—1
g { | S A |

where I is an identity matrix with appropriate dimension. v is adjusted as following to
guarantee the positiveness of Py [9].

™ —1
7]3 = B max {eig <P,:}Cl + Pla}cflsz,mqual |:P];|}c—1sz,k|k71:| ) } 9)

where [ is a scalar bigger than one; max {eig (A)_l} denotes the maximum eigenvalue of
the matrix A~!.
Predicted measurement Z;_; is given by the following equation.

Ny

Zi|k—1 = g WiZi,k|k71 (10)
i=1
The covariance and cross-covariance of predicted measurement are given

Ny T
Prsitr 1= 20 Wi (Xie 1= %o 1) (Ziww 1 — 20 )
Vo T (11)
Popk1=2 Wi (Zi,k|k71 - Zk‘k,l) (Zi,k\kfl - ik|k,1> + Ry
i=1

where the predicted transformed points X; -1 and measurement propagated points
Z; kjk—1 are defined by Equation (12).

Xiklk—1 = Skik—1Si + Xkjk—1
Zigk—1=nh (Xi,k|k71)

and factor Sgj,_; can be obtained from the Py,_; with similar decomposition to Sy_y;_1.

The quadrature points ¢; and weights W, can be obtained through many numerical
rules, such as unscented transformation, 3rd-degree cubature rule, and Gauss-Hermite
quadrature rule. For example, if the unscented transformation is adapted, N, = 2n + 1;
the symmetric points g; and weights W; are given by [16]:

(12)

CZ':[O,...,O]T, Wi=k/n+r, i=1
G=vn+re_, Wi=1/2(n+k)), 2<i<n+1 (13)
G=—-vVn+ee_n_1, Wi=1/2(n+k)), n+2<i<2n+1

where e; ; is the unit vector in R* with the (i — 1)th element being 1 and x is a scalar
with the suggested optimal value of K = 3 —n. Note that the 3rd-degree cubature rule
has the identical form with the unscented transformation if x = 0.
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Remark 3.1. It should be noted that point-based H-infinity filters have the similar struc-
tures to the traditional point-based filters. The only difference between point-based H -
infinity filters and traditional ones is the solution to obtain error covariance Py, as shown
in Equation (8). Furthermore, when -y, — 00, the point-based H-infinity filters reduce to
the corresponding traditional ones. The parameter v, can be seen as the tuning factor, to
make point-based H-infinity filters reach equilibrium between H-infinity performance and
approximately minimum variance performance.

3.2. High degree cubature H-infinity filter.

3.2.1. High degree cubature rule. The high-degree cubature rule refers mostly to the 5th-
degree cubature rule. Similar to the 3rd-degree cubature rule, it is still approximated
efficiently to the Gaussian weighted integral by a set of corresponding 5th-degree cubature
points and weights. The Gaussian integer as in Equation (5) is approximated by 5th-
degree cubature rule as the following [1].

) R
1)~ 0 (n+2) Zl <f( nt2 S)

(n—1)/2

ety S )
)+ 2;“;((%2%)

y (—mea)

where the point of s;” and s; are given by

st} = {\[ewel) k<l,k,l:1,2,...,n}
{Si_}é{\/g(ek—el)Ik<l,k,l:1,2,...,n}

The total number of 5th-degree cubature points N, is equal to 2n? + 1. According to
Equation (14), we have the cubature points and weights of 5th-degree cubature rule as
the following.

(15)

St =vn+2sf, ¢ =vn+2s;, Wi=1/(n+2)°*, 1<i<n(n-1)/2

Cf:_\/”—msitn(n_n/z_p S =—Vn+2s_ n(n—1)/2—1> Wi:l/(”+2)2
n(n—1)/241<i<n(n-1)

s =vVnt2e, Wy=@-n)/[2(n+2)°], 1<j<n

i =—Vn+2e 1, Wj=@A—-n)/[2(n+2)?], n+1<j<2n

Remark 3.2. Some weights of 5th-degree cubature points maybe negative, and they are
less stable than that of 3rd-degree cubature points, just as the UT with Kk = 3 — n is less
stable than the 3rd-degree cubature rule, especially for large n. However, the 5th-degree
cubature rules behave very differently from the UT with k = 3 —n. As n — oo, the
negative weight in the UT (see Equation (13)) goes to —oo, but the negative weight in the

(16)
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Sth-degree cubature rule goes to 0 (see Equation (16)). The weights of the cubature rules
are therefore much more balanced.

3.2.2. High degree cubature H-infinity filter. In this section, HCHF is proposed by intro-
ducing the 5th cubature points and weights into the frame of point-based H-infinity filter
Equations (6)-(12). The time-update and measurement steps of HCHF are denoted as
the following.

The initial state estimates X;_;;—1 and associated covariance Py_y;_; are both known
quantity.

Time Update

(1) In practice, due to errors introduced by arithmetic operations performed on finite
word-length digital computers, the error covariance is likely to turn out to be non-positive
definite. Therefore, we apply the singular value decomposition to Pj_i,_1 instead of
Cholesky decomposition which is limited to positive definite matrix.

Pr_tjk—1 = Up—1jp—1Sk—1k—1 Vi1 1 (17)

where Sj,_1x_; is a diagonal matrix, Uj_;;,_; and V;_;;_; are both unitary matrices.
(2) Evaluate the cubature points (i = 1,2,---,n(n—1), j =1,2,---,2n)

X:rk k=1 — Uk—l\k—lv Sk—1|k—1§i+ + fik—1|k_1
X;k k=1 — = Up—1jk—1v/ Sk—1|k_1§{ + fck_1|k_1 (18)
Xjk-1k-1=Up 1k1 \/Sk71|k71§; + X 1jp—1

(3) Estimate the predicted state

n(n—1)
2 1
Xt 1 = —F (XKoo 110 - D, GETRII
Xk|k—1 n+2f (Xk 1)k 1) + (n+2)2 ; (f( Je—1k 1)
(19)
+f (X ipm1k—t1)) + Zf ik—1]k—1)
(4) Estimate the predicted error covariance
Py = if (p—1ph=1) £ (Xn—1j—1)
n+2
n(n—1)
DY 2 Xt ipop1) fT (X ip 1)
+f ( i,lc—1|k—1) /T (X i,k—1|k—1)) (20)
Lng if (Xjpmtppo—1) F T (Xj1j=1)
2(n+2)" ’ ’
— Rppo1®p 1+ Qo
Measurement Update
(1) Singular value decomposition of predicted error covariance.
P11 = Uk\k—lsk|k—lvz|k71 (21)

where Sy x_; is a diagonal matrix, Uy;—; and Vi are both unitary matrices.
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(2) Evaluate the cubature points (i = 1,2,---,n(n—1),j=1,2,---,2n)

X:r,qk,l = Upjp—1y/ Sk|k—1§i+ + Rpfk—1
Xipte-1 = Uklk-1y/Skle16; + Xkjk1 (22)
Xjklk—1 = Uglk—1/Skjk-16] + Xkjk—1

(3) Estimate the predicted measurement

n(n—1)
. 2 . 1
Zy|p—1 = n——|—2h (Xk\k—l) + m (h (X+i,k\k—1)
=1
P (23)
+ K (X7 + X kb
h ( klk 1)) 2(TL—|— 2)2 ]z_;h’ ( .k |k 1)
(4) Estimate the innovation covariance matrix
2
Pozkjk—1 = n—+2h (Rir—1) BT (K1)
n(n—1)
1
+— h (X k1) BT (XF i
(n + 2)2 ; ( ( K|k 1) ( K|k 1)

+ h (Xii,k\kfl) hT (Xii,k|k71) (n+t 2 Zh 5k |k— 1 (Xj,k\kfl)

— Zrk—1Z4, 1 + Ro
(24)

(5) Estimate the cross-covariance matrix
9 . 1 n(n—1) .
_ o < +. +
Py kjk—1 —n+2xk|k71h (Xk\kfl) + (n+2)2 ; (X iklk—1h (X z,k|k71)

(25)

4 2n
+ X ippoth” (X igpo1)) + 7n2 Z X;nr-1h" (Xjxmr-1)
2(n+2)" ‘=

- &k\kfli;ﬁkq
(6) Evaluate the state X, and associate covariance Py, using Equations (8) and (9).
4. Stability Analysis of HCHF. Since the HCHF originates from linear H-infinity

filter, we can obtain the approximated equation of predicted error covariance of it as the
following [9].

P & PP, + Qo (26)
0
where Fy, 1 = 8_f x=%,;, - And then, substitute Equation (8) into Equation (26), we can
X
obtain

T
(P
H. ~ H. T Hoo Hoo —1 xz,k|k—1 T
P @ PPy Fro + Qo —Fra | Poi Prps ] ‘R Fin
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If we assume that the states and associated covariance at time k — 1 of HCHF and
traditional HCKF are equal, indicated as the following.

o Hoo _ GHCKF Hao _ pHCKF
k1 = X1 Py = Pt (28)

that is to say

He _ pPHCKF pHs _ pHCKF He _ 1¢HCOKF
P =P P = Paaple—1, K™ = Ky (29)
so, we have
T
HCKF _ pHe  tcHeo (pHso

Py =Pyl — Ky (sz,k|k—1> (30)

Based on the matrix inversion lemma in [17, 18], and substitute Equation (30) into Equa-
tion (8). The Re_/,lc is shown as the following.

1
Hoo

—1 I — (KHOO)T (Pzz,k|k*1) 0 I 0
R = k 1 "

€ 0 I 0 (PHCKF _ %31> -K,>~ 1

|k
where KkHoo is the filtering gain of HCHF at discrete time k.
Substitute Equation (31) into Equation (27), we can derive the predicted error covari-
ance of HCHF as follows.

T
Heo o Heo Hoo Hoo T
Pk+1|k ~Fp [Pk|k—1 - Ky (sz,k\k—1> ] Fin+Qo

| oy

(32)
_ Fk+1P£I|gKF [PﬁchF . ’Y,%I] -1 PkH‘gKFF{H
Substitute Equation (26)and Equation (30) into Equation (32), we get
P = PG +AQ (33)
where .
AQy™ = ~Fr Py ™" [P ™" — 1] PIITIFY, (34)
let PkH‘lfK F be the eigenvalue decomposition
9 0 -+ 0
P/CKF =L 0 (35)
SR |
0 .-~ 0 o,
where {0, }, k = 1,...,n are the eigenvalues of Py, and L is guaranteed as an orthogonal
matrix. Thus, AQka'i can be expressed as follows:
192
_szi 0o --- 0
Heo 0 T
AQ> = FipL _ ) (F,,L) (36)
: ,
0 e 0 —5

2
where {—% }, [ =1,...,n are the eigenvalues of AQ,’:I;”I. When +;, tends to be positive-
k

infinity, AQkaj tends to be a zero matrix and the HCHF reduces to a traditional HCKF,
if 7y, satisfies v > 9;, [ = 1,...,n, then AQ,’:I;”I is a positive-definite matrix. Moreover,
Equation (8) shows that v, is greater than all the eigenvalues of Pk‘,~c during the whole

filtering procedure. Thus, AQ,’:I;”I maintains to be a positive-definite matrix.
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It is demonstrated that an extra additive positive-definite matrix in predicted covariance
of nonlinear filter can make the filter easier to coverge [19]. Hence, with the help of the
Aij‘i, HCHF can improve the stability of traditional HCKF. The examples in the next
sections further confirm the result.

5. Simulations Tests. One of the HCHF goals is to erase the uncertainty of the system
noises as much as possible. So the proposed HCHF is applied to two nonlinear problems
with three different types uncertain noises setting and compared against the UHF, the
CHF and HCKF to demonstrate its performance in this section.

5.1. Simulations configuration.
Example 1

We consider a communications task of the demodulation of frequency or phase-modula-
ted signals in additive Gaussian white noise, with the modulating signal assumed Gauss-
ian. The frequency modulated signal model which had been discussed using the EHF and
UHF [8, 9] can be described by

x 2 W) = MWp—1 + Vp_y + 04y
Ok arctan(ppg_1 +wp_1) +vi | +op
A<z,£> (cosgok+w,£ )
Zp = 3 | = : 2
zZ, Sin Qg + Wy

where wy and ¢, are the frequency and phase messages of modulating signal, respectively.

(37)

A T A T .
Xp = [wk gok] and z, = [z,i z,%] are the state and measurement vector, respectively.

: T T .
The process and measurement noise vi, = [vp v]" and wy, = [wj wi| are white Gauss-

ian noises with covariance matrices Q = diag{3 30} and R = diag{1 1}, respectively.

o, = [a,i U,%] is assumed to be an extra addictive noise with uniform distribution within

[0,0.5]. We take the same values for parameters as in [8, 9], i.e., n = 0.9, p = 0.99 and
the scalar f is chosen to be 4 in (9). The objective is to estimate the frequency message
wy, from the noise-corrupted measurements zy.

From the noise settings in the state equation, it can be seen that the actual process
noise is uncertain. So, it is difficult to accurately characterize the process noise only by
the covariance Q. The initial estimate of state is generated randomly from the normal
distribution, which is denoted using Xop ~ N (xO,PU‘O) with x being the true initial
value xo = [ 2000 0 ]* and Py|o being the initial covariance Pg = diag([ 200 10 ).
Example 2

A classic maneuvering target tracking application is considered, which executes maneu-
vering turn in a horizontal plane at an unknown turn rate [1, 2]. The kinematic of the
turning motion can be modeled by the following nonlinear state equation.

[ sin Q, At 1 — cos QA i
1 _ 0O - |——] 0
: ()
0 cos 2, At 0 —sin QAL 0
X, = 1 — cos Q At sin Q, At Xp_1 + Vi (38)
0O ——— 1 —_— 0
Q Q
0 sin Q. At 0 cos QL At 0
| 0 0 0 0 1 ]

where the target state x, = [ T Tp Yk Ur S ]T; xj and y, denote the positions, and
11 and 7, denote velocities in & and y directions, respectively; € is the unknown turn
rate at time k; At is the time interval between two consecutive measurement; the process
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noise vy is Gaussian white noise consequences with zero mean, and the covariance Qj
satisfies:

Qi_1 =diag [ ¢M M At ] (39)
where
_ [ (A’ /3 (Ar)? )2
M= [ (A2 /2 At }

The scalar parameter ¢; is related to process noise intensity. A radar is fixed at the
origin of the plane and equipped to measure the range r, and bearing ;. Hence, the
measurement, equation is given by

- VT Y
(50)= [ (2 | > (0

Tk

where At = 1s, ¢; = 1m?s~?, the statistical properties of measurement noise wy are
uncertain, the initial state xo and associate covariance Pg|y are given by

xp = [ 1000m 300ms~! 1000m Oms' —3°s]"
Pojo = diag[ 100m? 10m22 100m? 10m2s 2 100mrad2s }

The initial state estimate Xop ~ N (xo, P0|0). In accordance with Equation (38) and the
parameters defined above, Figure 1 shows the true trajectory of target during 100 sample
times.

For a fair comparison, we make 150 independent Monte Carlo runs. The total number
of scans per run is 100. All the filters are initialized with the same condition in each run.
To compare the various nonlinear H-infinity filter performance, the metrics we introduced
is the root mean square error (RMSE). For example, the RMSE in position at time k is
defined as

N

1 2 2

RMSEpos = [ 1 > (@ — )"+ (yk — 97)
n=1

where (xg,yx) is the true position at discrete time &k and (2}, y7) is estimated position at

discrete time & of the n'* Monte Carlo run. Similarly to the RMSE in position, we may

also write formulas of the RMSE in frequency message wy.

2000

---- L
oF * SO
~
Y
\
-2000} \
\
\
-4000} \‘
E : '
> 1
~6000[ 1\
\ 1
\ '
4
-8000 - ‘\ ’
N 4
“~ 4
-10000} S .7
~ -
~o _ - -
_12000 L L - \- -~ _\ L L
-6000 -4000  -2000 0 2000 4000 6000 8000
X(m)

FIGURE 1. True trajectory of target (dk-radar location)
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5.2. Simulations results.
Example 1

The RMSEs of frequency message wy are shown in Figure 2. It is observed that at
filtering initial stage (the first 30 sampling step or so), the RMSEs of four compared filter
are very close. As the filtering goes on, the estimation errors are accumulative. So the
RMSEs of UHF and CHF significantly increase, but the RMSEs of HCKF and HCHF
are still kept in a narrow, relatively low range, which is far below that of UHF and CHF
at same time. To further compare the performances of four filters, all the RMSE mean
values are indicated in Table 1. From Table 1, it can be seen that the RMSE mean values
of HCHF is smaller than that of HCKF, and the RMSE means of HCKF, CHF and UHF
increase in turn.

-~
o
1

(2]

o

1

1
I
0o
T
m

Frequency RMSE
w B ul
o o o

N
o
T

5
/

0 20 40 60 80 100
Sample Time

Ficure 2. RMSEs in frequency message for Example 1

TABLE 1. RMSE means in frequency message for Example 1

Algorithms | b | ogp | HCHF | UHF
Ttem
_ RMSE Means |\ o061 ¢ 66rm | 40397 | 15.4476
in frequency message

Example 2

In Example 2, to test the robustness of the HCHF, we make the measurement noise
to be non-Gaussian and colored noise, respectively. In view of the importance of target
position in radar maneuvering target tracking, the objective of Example 2 is to estimate
the target position from the noise-corrupted measurements r, and 6.

Scenario 1.

The non-Gaussian measurement noise wy, ~ 0.5N (0, Ry) + 0.5N (0, R»), where

1000m?  150mmrad ]

Ry = [ 150mmrad  100mrad?

2
R, — [ 50m 100mmrad }

100mmrad  1000mrad?
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TABLE 2. RMSE means in position for scenario 1

Algorithms | pevr | cgr | HOHF | UHF
Ttem
RMSE Means | o0 00101 904.0774 | 160.0430 | 237.6226
in Position (m)

the HCKF uses an equivalent measurement noise covariance of the above Gaussian mixture
model. A similar setup has been used to test the robustness of the 3rd degree CKF and
the HCKF [1, 2]. The scalar § is set to 25. The RMSEs in position for scenario 1 and the
corresponding RMSE means are shown in Figure 3 and Table 2.

As indicated in Figure 3 and Table 2, the HCHF achieves better position tracking
performance than other compared filters with position error reductions of 14% to 32% in
RMSE mean values. Furthermore, except HCHF, the RMSE in target position of HCKF
is much smaller than that of CHF and UHF with position error reductions of 9% and 16%
in RMSE mean values. So the RMSEs of four compared filters decline in orders of UHF,
CHF, HCKF and HCHF.

Scenario 2.

The colored measurement noise wj, = ¢y, _1Wi_1 +&x—1, where §_; is a Gaussian white
noise consequences with means zero, and the covariance satisfies:

R:diag[af ag]

where 0, = 40m, 0y = 100mrad. The correlated coefficient ¢y, is chosen to be 0.7.

The HCKF also uses an equivalent measurement noise covariance of above colored noise.
The scalar § is set to 14. The RMSEs in position for scenario 2 and the corresponding
RMSE means are shown in Figure 4 and Table 3.

As shown in Figure 4 and Table 3, the HCHF still performs better than other compared
filters in colored measurement noise environment. In terms of RMSE mean values in
position, the position tracking precision has been improved by error reductions of 8% to
13%.

Therefore, in Examples 1 and 2, the HCHF generates superior performance to other
compared H-infinity filters. This is expected due to the fact that the HCHF is carried out
based on the 5th-degree spherical-radial rule which provides more accurate performance
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FIGURE 4. RMSEs in position for scenario 2

TABLE 3. RMSE means in position for the various filters for scenario 2

Algorithms |y p | cgr | HOHF | UHF
Ttem
RMSE Means 1, 10 g1 { 155.5755 | 137.0812 | 158.0992
in Position (m)

than other numerical integration rules. Since the HCHF performs better than HCKF,
it is illustrated that the HCHF can further improve the robustness of HCKF when the
process noise or measurement noise bias from Gaussian distribution. Moreover, it is noted
that HCKF performs better than other H-infinity filters because it is more robust against
model errors and noise uncertainties than other compared traditional nonlinear H-infinity
filters.

5.3. Numerical computation cost. To assess the computational requirements of the
proposed method, we compute the averaged CPU time in MATLAB 2009b on a 1.60GHz
CPU Celeron-based computer operating under Windows XP System. For Example 1, the
HCHF and HCKF require 0.363s and 0.157s, respectively; while the CHF and UHF only
need 0.11s and 0.13s. For scenario 1, the HCHF and HCKF require 0.50s and 0.456s,
respectively; while the CHF and UHF only need 0.126s and 0.146s. For scenario 2, the
HCHF and HCKF require 0.490s and 0.439s, compared with only 0.120s and 0.146s needed
by the CHF and UHF. It is obvious that the HCHF has a slightly higher computational
cost than the HCKF due to the computational complexity of the updated covariance Py,
and the extra computation of the tuning parameter v, in Equation (8). Furthermore,
for using the 5th cubature rule, the HCHF computes more slowly than other compared
nonlinear H-infinity filters.

6. Conclusion. In this paper, an improved nonlinear H-infinity filtering algorithm is
developed by introducing the 5th cubature rule into the frame of nonlinear point-based
H-infinity filter structure. And then, it is proved that the HCHF can improve the stability
of the traditional HCKF. Moreover, simulation results show that the proposed filter is
robust to the uncertain system noises and can yield more accurate results than HCKF
and other compared nonlinear H-infinity algorithms with additional computation cost.
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