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ABSTRACT. To suppress the vibration of the motor caused by the flexibility of mechanical
transmission devices and load inertia, it is needed to use FFT algorithm to analyze
the spectrum of speed or position of motion components in servo system. So a high
precision and rapidity of the FFT algorithm is very necessary. Firstly, the radiz-2, radiz-
4 and traditional split radiz FFT algorithms are introduced in this paper. Secondly, an
optimized split radix FFT algorithm is proposed in this paper, and the optimization of
FFT algorithm is carried out mainly from three aspects. These three aspects are bit-
reversed order, real sequence input instead of the traditional complex sequence input and
rotation factor. Thirdly, the effectiveness of the radiz-2, radiz-4 and traditional split radix
FFT algorithm is analyzed by simulations. Based on the XMC/4500 floating-point ARM
chip, 1024 points and 512 points of the optimized split-radiz FFT algorithm’s operation
time and accuracy are tested. The experimental results show that the optimized split-
radiz FFT algorithm has certain quickness and accuracy, and it can be used to detect
mechanical resonance frequency in the industrial servo system. Finally, split-radiz FFT
algorithm is adopted for spectral analysis of position signals when motor is positioned to
obtain accurate buffeting resonant characteristics. The ultimate simulation experiments
have shown the effectiveness of the optimized split-radix FFT algorithm which is utilized
to suppress the vibration of the motor when positioning.

Keywords: Resonance frequency, Optimized split-radix FFT algorithm, Bit-inversion
sequence optimization, Real sequence input, Plural sequence input, Rotation factor,
Motor vibration, Motor positioning

1. Introduction. The mechanical transmission part of industrial servo system generally
chooses connection device, such as the coupling, transmission shaft, speed changer. The
main functions of connection device are to transfer the torque of the servo motor to load
and matching speed and torque [1]. However, the actual connection device is not ideal.
There will be a certain elastic deformation when it is under torsion, which will cause
mechanical resonance in the servo system [2-4]. Mechanical oscillation not only emits
an acoustic noise, which will form noise pollution, but also can cause serious damage to
mechanical connection device, thus affecting its life span. In addition, the mechanical os-
cillation seriously affects the stability of the whole servo system, and limits the bandwidth
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of the system. Therefore, detection and suppression approaches of mechanical resonance
frequency have become a very important topic in industrial servo drive system [5-7].

In recent years, suppression approaches of mechanical resonance frequency mainly in-
clude three types: (1) Use the sensor to measure load and motor’s speed and position
signals directly, according to the signals to estimate the states of the mechanical reso-
nance, then to restrain [8,9]. However, it not only requires measuring the position of the
load, but also makes the system more complex, raise the cost of the system. So it is
difficult to realize in regular application. (2) Use the sensor to measure motor’s speed
and position signal, and use the observer to estimate the load’s speed and other related
variables, then to suppress resonance [10-12]. The control structure of this method is
complicated and it is needed to design corresponding observers according to different sys-
tems. (3) Based on the control structure of industrial servo system, using only one sensor
to measure the motor’s speed and position signals, and then using notch filter to sup-
press mechanical resonance frequency in the control loop [13-19]. In his approach, it only
needs to use simple compensation device or corrective action to suppress the resonance
frequency, without changing the system control structure and the controller parameters.
There are two major steps to implement this approach. Firstly, speed error signals of servo
system control loop should be transformed using real-time FFT to obtain the mechanical
resonance frequency of system. Then, the appropriate filter can be designed according
to the resonance frequency. In recent years, to improve this method, many scholars have
brought up a variety of ways to improve the filter. Since the low pass filter to suppress
resonance is less reliable and the low pass filter will lead to a phase lag problem [2], the
notch filter has been proposed to suppress resonance frequency [20]. In order to achieve
better effect, on the basis of the traditional notch filter, a complex falling filter is pro-
posed [21]. Furthermore, some suggestions are also proposed for improving the filtering
performance in view of the deficiencies of the conventional filter [9,10]. In order to en-
sure both detection speed and precision of the resonant frequency, the traditional FFT
transformation needs to be optimized. However, there are no relevant results reported
in literature to investigate how to obtain resonance frequency quickly and accurately. So
in this paper, operation time and detection precision of several different FFT algorithms
are compared, emphasis on optimizing split-radix FFT algorithm so as to shorten the
detection time and improve the precision of the resonant frequency.

When using FFT algorithms, specific to the algorithms of N equals integral power of 2,
there are three major algorithms; they are radix-2, radix-4 and split-radix FFT [22-24].
Firstly, the traditional split-radix FFT algorithm is optimized mainly from three aspects
in this paper. These three aspects are bit-inversion sequence optimization, real sequence
input instead of the traditional plural sequence input and rotation factor optimization
respectively. Secondly, compared to the calculation of three kinds of FFT algorithms,
the results showed that, with the increase of operational points, the split-radix FFT is
more conducive to the real-time requirements, its computational time is much less than
the radix-2 and radix-4 FFT algorithms. Then a comparative analysis between the tra-
ditional and improved split-radix FFT through MATLAB simulation needed to be done
to verify the optimized split-radix FFT has certain quickness and accuracy in the res-
onant frequency detection. Thirdly, based on the XMC4500 floating-point ARM chip,
the effectiveness of the traditional and improved split-radix FFT algorithms is verified
in the DAVE (Digital Application Virtual Engineer) environment. Emphasis on testing
optimized split-radix FFT algorithm’s operation time and precision when detect oscil-
lation frequency, and compared with theory operation time and actual operation time.
Experimental results show that the optimized split-radix FFT algorithm can meet the
requirements of speediness and accuracy of mechanical resonance frequency detection.
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The actual operation time and accuracy do not appear to be much different from the
theoretical analysis. The results also show that the optimized split-radix FF'T algorithm
has certain quickness and accuracy, and it can be used to detect mechanical resonance
frequency in the industrial servo system.

At last, in this paper, the dynamic performance of PMSM servo system is investigated
through the dynamic modeling, frequency property analysis, and computer simulation.
The influence of the elastic deformation in transmission mechanism on the dynamic per-
formance is studied. Then the flexible connection device between the motor and load will
cause the motor vibration in PMSM when positioning. In order to suppress the vibration
of motor, split-radix FFT algorithm is adapted for spectral analysis of position signals
when motor positioning to obtain accurate buffeting resonant characteristics. According
to the accurate buffeting resonant characteristics, filtering the resonant part in position
signals could suppress the vibration of the motor end when positioning. The ultimate sim-
ulation experiments show the optimized split-radix FFT algorithm is effective to suppress
the vibration of the motor when positioning.

2. Radix-2, Radix-4 and Traditional Split-Radix FFT Algorithms.

2.1. The radix-2 FFT algorithms. The form of discrete Fourier transform (DFT) is
as follows.

=

-1

X (k)=Y z(n)Wgk (1.1)

1]

n

k=0,1,...,N—1 (1.2)

where Wik = ¢=i%¥ "k is rotation factor, X (k) is discrete Fourier transform of N points
sequence x (n). The radix-2 FFT algorithm extracted by decimation-in-time (DIT) is to
make z (n) into two groups according to the odd and even. The expressions are described
as follows.

N/2—1 N/2—1
X (k)= z@)Wi,+ Wk Y z(2r+1) Wi, (2.1)
r=0 r=0
N/2-1 N/2—1
X (N/2)= > @)Wk, =W Y x(2r+ )W, (2.2)
r=0 r=0
k=0,1,...,N/2 -1 (2.3)

2.2. The radix-4 FFT algorithms. The radix-4 FFT algorithm extracted by DIT is
to divide x (n) into four groups, which are z (4r), = (4r + 1), = (4r +2) and z (47 + 3),
and the expressions are described as follows.

X (k) = Xo (k) + WEX, (k) + WX, (k) + WX (k) (3.1)
X (k+ N/4) = Xo (k) — jWEX, (k) — WX, (k) + jW3F X5 (k) (3.2)
X (k+2N/4) = X (k) — WEX, (k) + WX, (k) — WiFX; (k) (3.3)
X (k+3N/4) = X (k) + jWEX, (k) — WEX, (k) — WX (k) (3.4)

N/4—1
Xo (k)= > a(anwy* (3.5)

N/4—1

Xy (k)= Y a(dr+ )Wyt (3.6)

r=0
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N/4—1
Xo (k)= Y a(dr +2)Wy* (3.7)
r=0
N/4—1
Xy (k)= > a(r+ 3wyt (3.8)
r=0
k=0,1,...,N/4—1 (3.9)

2.3. The traditional split-radix FFT algorithms. The traditional split-radix FFT
algorithm is extracted by decimation-in-frequency (DIF), and its first progression is de-
composed into one N/2 points DFT and two N/4 points DFT, even sequence uses radix-2
algorithm, odd sequence uses radix-4 algorithm, and the expressions are described as
follows.

N/2-1
X (@)=Y [z(n)+z(n+N/2JWy,, r=01,...,N2-1 (4.1)
N/4—1
X (4r+1)= 2_:0 [(z(n) —z(n+ N/2))—j(x(n+ N/4) —z(n+ 3N/4))] (4.2)
*Wﬁ_m, r=0,1,...,N/4—1
N/4—1
X (4r+3)= ; [(z(n) —x(n+ N/2))+j(r(n+ N/4) —x (n+ 3N/4))] (4.3)

n=0
TWFW,, r=0,1,... N/4—1

2.4. Comparison of calculation for radix-2, radix-4 and traditional split-radix
FFT algorithms. In the calculations of the radix-2, radix-4 and traditional split-radix
FFT algorithms, the multiplication is more complicated than the addition operation in the
computer implementation and it is the main factor to affect the computing speed. So here
we mainly compared the multiplication operations of the three kinds of FFT algorithms
when complete the same tasks. The theory complex multiplication of the radix-2, radix-4
and traditional split-radix FFT algorithms are % log), % log) and g log). Tt is obvious
that the split-radix FFT algorithm needed the minimum calculation when accomplish the
same tasks. In particular, by using the split-radix FFT algorithm will save much more
computation when the sampling points N is large. For the system needs to analyze the
continuous time signals and has real-time requirements, and the comparison of calculation
for radix-2, radix-4 and traditional split-radix FFT algorithms is showed in Figure 1.

From Figure 1, we can see the changes of the required computation of the three different
FFT algorithms with the increase of sampling points. Through the MATLAB simulation,
we can clearly see the computation time of split-radix FFT algorithm is less than the
other two FFT algorithms.

3. Optimized Split-Radix FFT Algorithms.

3.1. Bit-inversion sequence optimization. For radix-2, radix-4 and split-radix FFT
algorithms, no matter DIT or DIF, input or output need for bit-inversion sequence trans-
formation. So a rapid bit-inversion sequence implementation method can improve the
execution efficiency of FFT algorithms. In the traditional bit-inversion sequence algo-
rithm, the data not only need for exchange judgment, but also shift judgment. The data
requires multiplication and addition operations (multiplication can be done through a
shift method) in the shifting judgment. The optimized bit-inversion sequence algorithm
do not need for shift judgment.
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FicUrE 1. Comparison of calculations for three different FFT algorithms

TABLE 1. Implementation process table of optimized bit-inversion sequence

Cloumn
0 1 2 3 4 5 6 7 8 9 10 1 | 12 13 14 | 15
Progression
0 0 1
1 0 2 1 3
9 0 4 2 §] 1 5 3 7
3 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Take N = 16 as an example, Table 1 is the realization way of optimized bit-inversion
sequence algorithm.

As one can see in Table 1, 0 progression adds one number only in the 8th column, that
is to say, the 0 progression’s increment is 1 and step length is 8. On the basis of the 0
progression, the first progression adds two numbers, respectively are number 2 (equals 2
+ 0) in the fourth column and number 3 (equals 2 + 1) in the 12th column, that is to
say, the first progression’s increment is 2 and step length is 4. Similarly, on the basis of
the first progression, the second progression increased by four numbers, the four numbers
are 4 (equals 4 4+ 0), 6 (equals 4 + 2), 5 (equals 4 + 1) and 7 (equals 4 + 3) respectively,
so the increment of the second progression is 4, the step length is 2. By that analogy, we
can infer the third progression’s new eight numbers respectively are 8 (equals 8 4+ 0), 12
(equals 8 4 4), 10 (equals 8 + 2), 14 (equals 8 + 6), 9 (equals 8 + 1), 13 (equals 8 + 5),
11 (equals 8 + 3), 15 (equals 8 + 7), thus the increment of the third progression is 8, the
step length is 1.

Assuming the power of the data is p (27 = N). Through Table 1, bit-inversion sequence
is mony ... n,_1ny, original sequence is nyn, 1 ...n1Ng, the initial state of ny to n, is 0,
thus original sequence is 0; n, in bit-inversion sequence at the 0 progression is 1 (the
increment is 2°), n, in original sequence at the 0 progression is 27 (that is on the basis of
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FIGURE 2. The programmed-thinking and flow chart of optimized bit-
inversion sequence algorithm

the initial state add 2P). The first progression on the basis of the 0 progression adds two
numbers, are number 2 (equals 2 + 0) and 3 (equals 2 + 1) respectively. Thus, original
sequence are 2P 1 4+ 0 27 and 27! 4 1 % 2P respectively. By that analogy, suppose that j
is the current progression, thus the increment is 27, step length is 277!, the number of
new numbers is 27.

Depending on the above rules, the programmed-thinking and flow chart of optimized
bit-inversion sequence algorithm is showed in Figure 2.

As shown in Figure 2, with the increment of progression j, get the location of the new
data nb firstly, nb is original sequence, and the bit-inversion sequence n6’s location is
obtained by original sequence data plus increment. When execute exchange judgment, as
long as the original sequence data is greater than the bit-inversion sequence data, then
the two dates exchanged, keep the cycle going, the bit-inversion sequence of N points
date can be obtained.

From the above analysis, the optimized bit-inversion sequence algorithm has the fol-
lowing advantages:

(1) Bit-inversion sequence process of N points dates can be completed only with N — 1
times operation.

(2) The optimized bit-inversion sequence is completed without the need to work in every
bit of data. The process is easy and clear.

(3) The greater the N, the faster the computing speed.

3.2. N points real sequence input, instead of traditional plural sequence input.
In practical applications, the input data x (n) are generally real sequence. However,
when processing real sequence, the traditional FFT algorithms usually look the z (n)
as plural sequence which the imaginary part is zero. There is no doubt that this will
increase operation time. In order to further reduce the computation time and storage,
the improved real sequence FFT algorithm use N/2 points sequence’s FFT to calculate
N points sequence’s DFT. Set the real sequence’s even sequence to be plural sequence’s
real part, set the real sequence’s odd sequence to be plural sequence’s imaginary part,
and the improved FFT algorithm can reduce the half of the computation time.

For the input = (n) (z (n) is N points real sequence), n = 0,1,..., N — 1, according
to the following way, plural sequence d(n) with N/2 points can be constituted, n =
0,1,...,N/2 — 1, x(2n) is the real part of d (n) and x (2n + 1) is the imaginary part of
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d(n).
d(n)=x2n)+jr(2n+1) (5.1)
n=0,1,...,N/2—1 (5.2)
According to conjugate symmetry of DFT, the DFT of z (2n) corresponds to the conju-

gate even symmetric component of D (k) (D (k) is the DET of d (n)), the DFT of = (2n + 1)
corresponds to the conjugate odd symmetric component of D (k):

DFT[Re{d(n)}] = DFT [z (2n)] = % D (k) + D* (N — k)] (6.1)

DFT [Im{d(n)} = DFT [z (2n+1)] = % [D (k) — D* (N — k)] (6.2)
Thus, the X (k) (X (k) is the DFT of x (n)) can be obtained
N-1 N/2-1 N/2-1

(W= "z (2n)WrE, + W Z (2n + 1)WRh, (7)

Submitting Equatlons (6.1) and (6.2) into Equation (7), then Equation (8) can be got
1 1
X (k) =5 [D (k) + D" (N k)] + Q_jW]Iff [D (k) = D" (N = k)] (8)

Thus, the Fourier transform of N points sequence can be obtained by FFT of N/2
points plural sequence.
D (k) can be composed of real part and imaginary part
D (k) = R(k) +jI (k) (9)
Submitting Equation (9) into Equation (8), X (k) can be expressed as
R(k)+jI(k)+ R(N —k)—jI (N —k)

X (k) =XR (k) +jXI (k)= 5

(oo — iy 2o R 3T 0 RN )TV o)

" XR (k) = RP (k) + TP (k) cos (2’%) — RM (k) sin <2]€Tﬂ> (11.1)
XT (k) = IM (k) — RM (k) cos (”%) 1P (k)sin (”‘%) (11.2)

RP (k) = B+ }; (V= k) (11.3)

R () = 7L = z(N —k) (11.4)

1P (k) = L) ”2(N k) (11.5)

v () = L) = ;(N £) (11.6)

where R (k) and I (k) are the real part and imaginary part of D (k) respectively, X R (k)
and X7 (k) are the real part and imaginary part of X (k) respectively.

In programming, constitutes d (n) with input x (n) firstly and get real part and imagi-
nary part of D (k). That is to say, R (k) and I (k) can be obtained, thus RP (k), RM (k),
IP (k) and IM (k) can be solved. Real part and imaginary part of X (k) can also be
obtained at last, that is to say, X R (k) and XTI (k) can be obtained.
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3.3. The optimization of rotation factor. After transforming Equation (4.2) and
Equation (4.3), the following equations are available.

N/4—1
X (4r+1 Z fi(n r=0,1,...,N/4 —1 (12.1)
N/4—1
X (4r + 3) ng n)WhWhi, r=0,1,...,N/4 —1 (12.2)
z (n)
fi(n) | _ z (n+ N/4) _
[f;(n)]_W*R* v (n+ NJ4) n=0,1,...,N/4—1 (12.3)
z(n+ N/4)

Compared to the traditional split-radix algorithm, rotation factor is changed in the opti-
mized split-radix algorithm. Equation (12.1) and Equation (12.2) can make the operation
easier.

The rotation factor of Equation (12.4) is as follows.
2 2
Wy = cos% — jsin ]7:[71,

The rotation factor of Equation (4.3) is as follows.

W™ = cos 22 4 jsin 22 (13)

2mn 2mn
WN—COS%—jsm ]7([, W]%"—COSMT"—Jsm&rTn (14)

From Equation (13) and Equation (14), one knows the traditional split-radix algorithm
needs four times calculations of sine and cosine and the optimized algorithm only needs
two times calculations of sine and cosine. As a result, the optimized algorithm saves a lot
of time.

4. MATLAB Simulations of Traditional and Improved Split-Radix FFT Algo-
rithms. In order to verify the accuracy and rapidity of traditional and improved split-
radix FFT algorithms in harmonic analysis, a simulation analysis in MATLAB is given
for these two algorithms firstly.

Currently, the vast majority of PMSM servo systems are digital computer-controlled.
It can be convenient to realize the resonance analysis of the signals which we concerned
about. The purpose of the spectrum analysis of the servo system is to obtain the frequency
and amplitude information of the resonant frequency signals in real time, which provide
a basis for the design of the notch filter. Here, therefore, we are merely concerned with
the amplitude information of each resonant frequency point and not to consider the phase
information.

Due to the mechanical resonance frequency is commonly 0~1000 Hz, so the sampling
frequency of FFT computing is set to fs = 2000 Hz. Considering the spectral resolution,
so FFT transform points is set to 1024, thus the theoretical spectral resolution is 1.953
Hz. Assume that the input time-domain signal is z(#) = 200 sin(4007¢) 4+ 400 sin(8007¢) +
600 sin(12007t) 4+ 800 sin(16007t).

Figure 3(a) shows the input time-domain signal z(t), and Figures 3(b) and 3(c) show
the spectrum results of the time-domain signal x(¢) which are respectively analyzed by
the traditional and improved split-radix FFT algorithms.
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Ficure 3. MATLAB simulations of traditional and improved split-radix
FFT algorithms

MATLAB programs can find out the frequency corresponding to the signal’s amplitude,
and the theory frequency is 800 Hz, through MATLAB program can find the actual
frequency frec = 801.5625 Hz, and frec is within the range of spectral resolution.

Compared the frequency spectrum of Figures 3(b) and 3(c), we can find there is a large
gap in accuracy between the traditional and improved split-radix FF'T algorithms.

5. Comparison of Operation Time and Accuracy between the Traditional and
Improved Split-Radix FFT Algorithms. The following results are based on Infineon
XMC4500 chip, and the testing environment is DAVE environment which is developed by
Infineon company itself. XMC4500 chip is a floating-point chip, and the CPU master clock
frequency is 120 MHz. Due to the mechanical resonance frequency is commonly 0~1000
Hz, so the sampling frequency of FFT computing is set to fs = 2000 Hz. Considering
the spectrum resolution, set FFT transform points to 1024 and 512 which can be used to
compare. In order to test the time of detecting the resonance frequency by FFT algorithms
accurately, by controlling the voltage level of an 1/O pin at the beginning and end of the
whole code running, we can get the executing time of detecting programs with the help
of the oscilloscope.

5.1. Traditional split-radix FFT operation time. Based on XMC4500 floating-point
chip, through the oscilloscope measure operation time of the radix-2 FFT of 1024 points
and 512 points, respectively, as shown in Figures 4(a) and 4(b).

5.2. Bit-inversion sequence optimization. In the traditional bit-inversion sequence
algorithm, the data need for exchange judgment and shift judgment. However, in the opti-
mized bit-inversion sequence algorithm the data do not need for shift judgment. Based on
XMC4500 floating-point chip, by controlling the voltage level of an I/O pin at the begin-
ning and end of the whole code running, we can get the executing time of the bit-inversion
sequence (only is the time of bit-inversion sequence) with the help of the oscilloscope. In
order to ensure detecting speed and precision of the resonant frequency simultaneously,
FFT transformation points are set as 1024 and 512 respectively for comparison.
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FIGURE 5. (a) Bit-inversion sequence time before optimization of 1024
points; (b) time of optimized bit-inversion sequence of 1024 points
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FIGURE 6. (a) Bit-inversion sequence time before optimization of 512
points; (b) time of optimized bit-inversion sequence of 512 points

The bit-inversion sequence operation time (only for the time of bit-inversion sequence)
of before and after optimization of 1024 points is as shown in Figures 5(a) and 5(b). The
bit-inversion sequence operation time (only for the time of bit-inversion sequence) before
and after optimization of 512 points is as shown in Figures 6(a) and 6(b).
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FIGURE 7. (a) Optimized real sequence input, total time of 1024 points;
(b) optimized real sequence input, total time of 512 points

5.3. Real sequence input instead of traditional plural sequence input. Instead
of traditional plural sequence input, the improved real sequence FFT algorithm uses N/2
points sequence’s FFT to calculate N points sequence’s DFT, and there is no doubt that
the improved FF'T algorithm can reduce a half of the computation time.

The improved split-radix FFT algorithm adopts real sequence input instead of tradi-
tional plural sequence input. Based on XMC4500 floating-point chip, by controlling the
voltage level of an I/O pin at the beginning and end of the whole code running, we can
get the executing time of the total operation time (including the time of optimized bit-
inversion sequence, real sequence input and rotation factor before optimization) of 1024
points and 512 points with the help of the oscilloscope. The executing time of these two
cases is shown in Figures 7(a) and 7(b).

From Figure 4(a), we can see the time of traditional split-radix FFT of 1024 points is
35 ms, from Figures 5(a) and 5(b), we know the traditional and optimized bit-inversion
sequence operation time of 1024 points are 2.08 ms and 1.04 ms respectively, so the total
time (including the time of optimized bit-inversion sequence, traditional plural sequence
input and traditional rotation factor) of 1024 points is 33.96 ms (35 ms — 2.08 ms + 1.04
ms = 33.96 ms). From Figure 7(a), we know the total operation time (including the
time of optimized bit-inversion sequence, optimized real sequence input and traditional
rotation factor) of 1024 points is 16 ms. So the 1024 points optimized real sequence input
spent 17.96 ms shorter than the traditional plural sequence input. Similarly, from Figures
4(b), 6(a), 6(b) and 7(b), the 512 points optimized real sequence input spent 8.64 ms
shorter than the traditional plural sequence input.

5.4. Rotation factor optimization. The traditional rotation factor needs four times
calculations of sine and cosine, compared with the traditional rotation factor; the opti-
mized rotation factor only needs two times calculations of sine and cosine, as a result, the
optimized algorithm saves a lot of time.

After the rotation factor optimized, through the oscilloscope respectively measure the
total operation time (including the time of optimized bit-inversion sequence, optimized
real sequence input and optimized rotation factor) of 1024 points and 512 points by
controlling an I/O pin at the beginning and end of the whole code, as shown in Figures
8(a) and 8(b).

From Figure 7(a), we can see the total operation time (including the time of optimized
bit-inversion sequence, optimized real sequence input and traditional rotation factor) of
1024 points is 16 ms. From Figure 8(a), we can see the total operation time (including
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the time of optimized bit-inversion sequence, optimized real sequence input and optimized
rotation factor) of 1024 points is 12 ms. So the operation time of 1024 points optimized
rotation factor is 4 ms shorter than the traditional rotation factor. Similarly, from Figures
7(b) and 8(b), we know the operation time of 512 points optimized rotation factor is 2
ms shorter than the traditional rotation factor.

Based on XMC4500 floating-point chip, through the oscilloscope measure split-radix
FF'T’s operation time after three times optimization, and the split-radix FFT computation
time before and after optimization of 1024 points and 512 points are summarized in Table
2.

Due to the single computation time of sequence input and rotation factor cannot be
measured precisely, so in Table 2, assuming t1 and t2 are the time of sequence input before
and after optimization respectively, and t3 and t4 are the time of rotation factor before
and after optimization respectively. However, the time discrepancy between traditional
plural sequence input and optimized real sequence input, the time discrepancy between
traditional rotation factor and optimized rotation factor can be measured precisely. The
total operation time of 1024 points and 512 points split-radix FFT can be measured
precisely after three times of optimization.

5.5. Comparison between actual and theory spectral resolution of optimized
split-radix FFT. The input signal is z(¢) = max sin(27 fot)+y; sin(27 fit)+ys sin(27 fot),
fo is the frequency corresponding to the biggest energy point of the input signal, fy = 50
Hz~950 Hz.

A = 12.00000000ms

FIGURE 8. (a) Optimized rotation factor, total time of 1024 points; (b)
optimized rotation factor, total time of 512 points

TABLE 2. Split-radix FFT computation time before and after optimization

Time Before optimization After optimization Before optimization After optimization
Optimization (1024 points) (1024 points) (512 points) (512 points)
Bitminversion 2. 08ms 1. Odms 1. 2ns 0. B4ms
sequence
Sequence input tlms (£1-17.96)yms tams (t2-8.64)ms
Rotation factor +3ms (t3-4)yms tdms (t4-2)ms
Total 35ms 12ms 17ms 5. 8ms
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Based on XMC4500 floating-point chip, inputing a signal which contains different fre-
quency, split-radix FFT program can identify the frequency which corresponding to the
biggest energy point of the input signal, and the frequency can be read by DAVE envi-
ronment window. frec can be identified by split-radix FFT programs and it is the actual
frequency, f0 is the theory frequency, frec and f0 are corresponding to the biggest energy
point of the input signal, n0 is split-radix FFT transformation points, and fs is sampling
frequency.

Input theory frequency f0 are 50 Hz, 200 Hz, 300 Hz, 300 Hz, 400 Hz and 500 Hz, 650
Hz and 700 Hz and 800 Hz and 950 Hz respectively, the actual frequency can be identified
by the optimized split-radix FFT programs, respectively as shown in Figure 9(a), Figure
9(b), Figure 9(c), Figure 9(d), Figure 9(e), Figure 9(f), Figure 9(g), Figure 9(h), Figure
9(i) and Figure 9(j).

Through the above DAVE environment window, actual frequency frec corresponding to
the biggest energy point of the input signal can be got. Compared with theoretical fre-
quency f0, spectral resolution corresponding to different point n0 and different frequency

Hew Valus Funn Valse

[ 50. TS O fres 199.2108
o o) T oo -

Fae Vidua Kune Valua
i s . 675 0 gree 200, 128
o wid LI P xD 512
(S8 000 o i am

(a) (b)

[ Vadus Hune Valae
A b 300 TH: o 1. 568
[ (L2 e w 10

Wane Value Fuaa ek
o frac 298 475 ot = %5
[ ] 52 = £
s o o s 2000

() (d)

N, Valu T A
P free 0. w8 o frer w00
o o 1024 0 o

LT Valus Nene Value
oA frec I8 4375 oA frac 0.0
e 20 12 e o) sz
ol s 2000 o fn 000

(e) (f)

Numa Valms L Valus
[= - B0 LTS e fres sUe 2188
[ 1024 o 1024

Yaa Valus LT Value
o free R O o frec o 18
o ol 812 ] E1H
o in 2000 o gy 000

() (h)

o Valme Fas Valna

R e 00,7812 O trae 9 1
# ) 102 " ey

Wen Valus ¥on Valas
[y 790 BTE o "1, 155
Cr] sz bt 81
i 2000 2000

(i) ()

FIGURE 9. (a) f0 = 50 Hz, actual frequency is identified by programs; (b)
f0 = 200 Hz, actual frequency is identified by programs; (¢) f0 = 300 Hz,
actual frequency is identified by programs; (d) f0 = 350 Hz, actual frequency
is identified by programs; (e) f0 = 400 Hz, actual frequency is identified by
programs; (f) f0 = 500 Hz, actual frequency is identified by programs; (g)
f0 = 650 Hz, actual frequency is identified by programs; (h) f0 = 700 Hz,
actual frequency is identified by programs; (i) f0 = 800 Hz, actual frequency
is identified by programs; (j) f0 = 950 Hz, actual frequency is identified by
programs
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TABLE 3. The spectral resolution under different points and different fre-

quency f0
- fesolution Split-radix FFT (1024 points) Split-radix FFT (512 points)
0"300Hz 0. 8Hz 3.2Hz
300™700Hz 1. BHz 1.5Hz
700™1000Hz 0. 8Hz 3.2Hz

f0 can be obtained. According to Figure 9, the spectral resolution under different points
and different frequency f0 can be summarized in Table 3.

From Table 3, considering the FF'T operation time and spectral resolution, N takes
1024 at the best point.

5.6. The comparison of actual time and theory time of optimized split-radix
FFT algorithm. Theoretically, split-radix FFT algorithm’s butterfly computation have
N/3 x1log2(N) times plural multiplication and N x log 2(N) times plural addition. Each
plural multiplication needs four times real multiplication and two times real addition, and
each plural addition needs two times real addition. For XMC4500 chip, completing one
time of real addition needs one clock cycle and one time real multiplication needs two
clock cycles. The master clock frequency of XMC4500 is 120 MHz. N is split-radix FFT
transformation points. Thus theoretically, butterfly computation of 1024 points takes
about 0.5 ms; butterfly computation of 512 points takes about 0.21 ms.

The operation time of 1024 points split-radix FF'T programs is theoretically about 3.74
ms which include bit-inversion sequence time (1.04 ms), butterfly computation (about
0.5 ms) and cycle to find the frequency corresponding to the biggest energy point of the
input signal (2.2 ms). However, the actual operation time of 1024 points split-radix FFT
programs is 12 ms by oscilloscope measured. Similarly, the operation time 1024 points
split-radix FF'T programs is theoretically about 1.95 ms, and the actual operation time
is 5.8 ms by oscilloscope measured.

Compared the actual time and the theory time, we know actual time is about three times
as much as theory time. The reasons are as follows. (1) Butterfly operation theoretically
only considered the real multiplication and real addition computation times, but the sine
and cosine computation should spend a lot of time when does butterfly operation. (2)
Butterfly computation theoretically is complex operation, however, in the actual complex
operation programming, real part and imaginary part need for separation operation which
consumed much time. So the operation time of optimized split-radix FFT algorithm is
acceptable.

6. Positioning Vibration for PMSM Servo System.

6.1. Position loop model frame of PMSM servo system without flexibility dis-
tortion. In order to simplify the model, the design and simulation of PMSM servo system
generally do not consider flexibility distortion of the transmission mechanism.

Figure 10 is a simplified block diagram of PMSM servo system without the flexibility
distortion. Due to the current response is very fast, so merged the current loop time
constant and other small time constants of speed loop into a small time constant ¢ inertia,
unit. The command of motor position is 6;, and position controller APR is a PI adjuster.
The output of APR controller is speed command. The inside loop is speed loop and speed
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FiGure 10. Block diagram of PMSM servo system without flexibility distortion

controller ASR is a PI adjuster. The output of ASR controller is current command. The
inner loop is current loop and controller ACR is a PI adjuster. This paper focuses on
the study of performance of the position loop and speed loop. In Figure 10, C', is speed
feedback coefficient, 7 is reducer ratio, K; is magnification of the current closed-loop, K; is
motor torque coefficient, .J,,, is motor rotor inertia, .J;, is load inertia, T, is output torque
of elastic axis, and 6, is motor position.

6.2. Position loop model frame of PMSM servo system with flexibility distor-
tion. In the actual industrial servo system, the torque of the servo motor transferred
to the load usually through mechanical transmission devices. However, the actual me-
chanical transmission devices are not the ideal rigid, and the devices will appear certain
flexibility distortion subjected to torsion, which cause the mechanical resonance in the
servo system.

Reference [3] gives the elastic model and its structure diagram. As showed in Figure 11
is position loop model frame of PMSM servo system with flexible distortion which can be
obtained by combining the elastic model with the ideal system. In Figure 11, 6, is load
position, K is transmission mechanism stiffness, and F7j, is speed friction coefficient of
load axis.

K
'
T

FiGure 11. Block diagram of PMSM servo system with flexibility distortion

6.3. The influence of mechanical resonance on system performance in MAT-
LAB simulation. The key parameters of PMSM servo system used in the simulation
respectively are motor torque coefficient K; which is 1.05, transmission mechanism stiff-
ness K, which is 500, motor rotor inertia .J,,, which is 3.617 %10 N em?2, load inertia .J;,
which is 1009 N em?, speed friction coefficient of load axis F;, which is 0.05. Adopted the
same normal design method to configure parameters to ensure normal work and band-
width for the system with and without flexibility distortion.

The transfer function of the system is very complex when flexibility distortion is consid-
ered. And using the Bode diagram is easier to obtain conclusions intuitively and clearly.
So in order to analyze the positioning vibration problem visually, it is needed to draw the
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Bode Diagram
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FicUrE 12. Bode diagram with and without flexibility distortion of the
PMSM servo system

Bode diagram of the system in MATLAB simulation. Bode diagram with and without
flexibility distortion of the PMSM servo system is obtained by the MATLAB simulation
as showed in Figure 12.

Regardless of flexibility distortion, according to the normal design method to config-
ure parameters could meet the requirement of the expected effect. However, harmonic
oscillation exists in the system with flexible distortion. Figure 12 shows the frequency
characteristics curves with flexibility distortion and without flexibility distortion, we can
see that there is an overlap between these two curves in the low frequency band, but a
significant difference in the high frequency band. The curve with flexibility distortion
of 201g0y/0;| has a +7.17 dB resonance peak and a mechanical anti-resonance peak;
201g |0;,/6;| is the curve with flexibility distortion which has a +17.7 dB electromechani-
cal combination resonance peak and the mechanical resonance offsets the anti-resonance,
and the existence of a positive resonance peak indicates that there is a electromechanical
combination resonance peak in the same frequency.

Figures 13(a), 13(b) and 13(c) show the simulated performance of the influence of
mechanical resonance on system. Figure 13(a) shows the comparison of motor position
step response between the system without and with flexibility distortion; Figure 13(b)
shows the comparison of load position step response between the system without and
with flexibility distortion; Figure 13(c) shows the comparison of electromagnetic torque
step response between the system without and with flexibility distortion.

We can see from the simulation results, when compared to the ideal rigid transmission
device, in the actual transmission device, the motor speed is much more stable depending
on the closed-loop control, however, the load speed and electromagnetic torque are serious
oscillation. Oscillation will damage the mechanical transmission device and shorten its
working life.
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FIGURE 13. (a) Comparison of motor position step responses between the
system without and with flexibility; (b) comparison of load position step
responses between the system without and with flexibility; (¢) comparison
of electromagnetic torque step responses between the system without and
with flexibility distortion

7. The Application of Optimized Split-Radix FFT Algorithm in Suppression
of PMSM Servo System Positioning Vibration.

7.1. The scheme for suppression of PMSM servo system positioning vibration.
In order to suppress the PMSM servo system positioning vibration, it is necessary to
eliminate the position command signal’s resonance frequency components. The scheme
of suppressing position vibration of PMSM servo system is showed in Figure 14.

When positioning, speed vibration and position vibration are the same, so adopt a split-
radix FFT algorithm to analyze position error to get vibration frequency, then filtering
the position error through the notch filter.

Here the notch filter chooses improved double-T" net notch filter whose transfer function
is as follows.

2
Hp = tetl Ly kR (15)

as®> +bs + 1 wd’ Wy W,
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FIGURE 14. Scheme of suppressing position vibration

T

Among them, notch frequency wy, notch bandwidth parameters k; and notch depth
parameter ko, these three variables can determine notch filter coefficients a, b, c. Configure
the filter parameters a, b, ¢ needed to quickly and accurately obtain the resonance point,
which requires the split-radix FF'T algorithm to analyze resonance frequency.

7.2. The split-radix FFT algorithm to detect and suppress vibration in MAT-
LAB simulations. Asshowed in Figure 15, it is the split-radix FFT spectrum of position
error when positioning. Exclude the impact of the DC frequency components near 0 Hz,
we can see the position vibration frequency is 17.58 Hz, which is the same resonance
frequency as observed in Figure 13(a), and also verify the accuracy of the split-radix FFT
spectrum analysis. According to the analysis results of resonance frequency, notch filter
parameters can be configured and the notch filter can cut the resonance frequency part.

Focused on the PMSM servo system mechanical vibration, Figure 16 is the position
waveform comparison of before and after suppression; Figure 17 is the speed waveform
comparison of before and after suppression. According to the spectrum analysis results
through the split-radix FFT algorithm transformation, then to configure the notch filter
parameters, positioning vibration can be effectively suppressed.

8. Conclusions. In detecting mechanical resonance frequency of servo system, how to
improve the accuracy of detection resonance frequency and shorten the time of the identifi-
cation is a very important challenge. An optimized split radix FFT algorithm is proposed
to detect mechanical resonance frequency of servo system in this paper. Verified by many

The spiit radix FFT spectrum of position ermor when positioning
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FIGURE 15. The split-radix FFT spectrum of position error when positioning
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experimental results based on Infineon XMC4500 floating-point chip, the optimized split-
radix FFT algorithm can effectively detect the mechanical resonance frequency. In the
case of guaranteeing the detection accuracy, the optimized split-radix FF'T is much faster
than radix-2, radix-4 and traditional split-radix FFT algorithms.

Finally, due to the elastic transmission device will cause PMSM servo system positioning
vibration, the improved split-radix FF'T algorithm is adopted to analyze position error
signal, and according to the spectrum results obtain resonance frequency information to
configure the notch filter parameters appropriately, and then filter resonance frequency
parts position signal. So positioning vibration of PMSM servo system can be suppressed
effectively.
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