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ABSTRACT. Moving average (MA) filter is widely used in power system applications as
a low pass (LPF) or a high pass filter (HPF). It is used as a main processing technique
or as a preprocessing step for a wide variety of signal processing applications in power
system and control. The selection of the appropriate value of the MA filter length is the
most significant criterion in specifying its characteristics. This work presents a novel
method for identification of the MA filter length. The method is based on the indepen-
dent component analysis (ICA). In power system applications, the MA filter is used for
smoothing purposes or to separate the fast and slow components of the measured data.
The implementation of this method is easy and straightforward. It is also adaptive with
the measured data. The proposed method is validated using IEEE 30 bus model.
Keywords: ICA, Fast varying component, Moving average filter, Power flow, Power
systems

1. Introduction. Generally, signals are classified into time domain and frequency do-
main encoded signals. The NIR spectra, electromagnet interferences, and sound waves
fall in the frequency domain category while the power system signals, are time domain
signals. The information of the time domain signals are encoded in the shape of the signal
waveform, whereas the information of the frequency domain signals are encoded in the
magnitude or phase of the signal. Based on that, there are mainly two used approaches
in filtering process; the frequency and time domain filtering [1]. The frequency domain
filtering is obtained by converting the signal into the frequency domain using fast Fourier
transform (FFT), followed by multiplying the signal by a window in the frequency do-
main, and finally computing the inverse FFT. The time domain filtering is performed by
convolving the measured data with the filter impulse response function. The time domain
filtering has the advantage over the frequency domain that the measured data can be
filtered online without waiting for the whole data.

One of the most common time domain filtering is the MA filter or running filter [2-6].
MA is a finite impulse response filter (FIR) based on computing the weighted average of
adjacent points. The unrivalled combination of flexibility, speed, being easy to be used
and realized make MA filter one of the most popular digital filters in several disciplines.
MA filter has received a great attention in chemometrics [7,8], marketing and finance [9],
biomedicine [10,11], communication, and power system applications [12-16].

In the field of power systems many signal processing techniques such as neural net-
works, genetic algorithm, fuzzy logic, fast Fourier transform FFT, wavelet, and ICA are
used. These methods allow us to effectively estimate the voltage, current, active and
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reactive powers, harmonic sources, load forecasting, power quality analysis, power factor
correction, power electronics, and control systems.

Several studies used the MA filter in the field of power system either as a preprocessing
technique or as a main processing technique. Nakata et al. [12,13] introduced a technique
based on moving average filter to compensate harmonic currents by using a dc filter capac-
itor with a high accuracy and good response. MA filter is used in harmonic identification
due to their regular frequency response and sharp step response as mentioned in [14,15].
Freijedo et al. in [14] presents a novel algorithm for harmonic identification; it combines
the moving average filtering and Fourier correlation algorithm for controlling of active
filters. In [15] the MA filter is integrated with heterodyning for harmonic identification.
The MA filter is used as an adaptive filter for control systems of power electronics. In
[16] the filter is designed to give a step response as fast as possible while retaining good
noise canceling properties.

The MA filter is combined with the neural network for short term load forecasting [17].
The results obtained in [17] show that the filter is able to handle noise, missing data
and abnormal data. Forbes and his group [18] have used the MA filter to improve the
dynamic response of power factor correctors (PFC). Their analysis shows that the MA
filter is excellent for PFC control. In [19-31] the MA filter is used as a preprocessing step
for power flow analysis based on ICA.

The MA filter requires setting only the filter length (smoothing factor) from a wide range
of selectable lengths. The length of MA filter specifies the number of waveform samples
that the MA will span each time. The required amount of filtering is dependent on the
value of smoothing factor, type of data and the application. Increasing the smoothing
factor, for instance, produces a greater smoothing and a sharp impulse response. At the
same time, increasing this factor reduces the signal intensity and produces significant
distortions. Therefore, the problem addressed in this study is the determination of MA
filter length that provides the best smoothing process without introducing a distortion.

All the above mentioned points motivated us to introduce a new method for the deter-
mination of the appropriate value of the filter length. The proposed method preserves the
adaptation between the filter length and the variation in the measured data. The pro-
posed method combines ICA and the filtering process. Amari performance index [32,33]
is used in this work as an objective function to measure filter ability to separate the
fast components and select the appropriate value of the filter length. To the best of our
knowledge, no method exists addressing the determination of the MA filter length.

This paper is organized as follows. Section 1 is the introduction. In Section 2 we
formulated the problem addressed in this work, in Section 3 introduced the proposed
technique and the basic background theory of ICA and MA filter, JADE algorithm and
Amari Index. In Section 4 we presented the case study. The results and an extensive
discussion for IEEE 30 bus system is presented in Section 5. In Section 6 we presented
the concluded remarks of the work.

2. Statement of the Problem. The MA filter is a simple type of FIR filters that
does not need assigning a cut-off frequency value. It is considered as one of the most
common filters used for smoothing application by enhancing the long-term fluctuation
and attenuating the short-term fluctuation. Compared to other linear filters with the
same edge of sharpness, MA filter produces the lowest amount of noise. The possible
amount of noise reduction is equal to the square-root of the number of points in the
average, i.e., a 16 point filter reduces the noise by a factor of 4.
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There are several types of the MA filter; the simple MA (SMA), the weighted moving
average (WMA), and the exponential moving average (EMA). In this study, the SMA
method is used to demonstrate the proposed algorithm.

The SMA filters can be implemented either as a one sided point or as a symmetry.
The output y(7) of the one sided MA filter represents the average of the present and past

values each time:
M1

i) = 5 Y ali= ) )

where M is the filter length. This type of MA filter is easy to implement, however,
it produces a phase shift between the output and the input. On the other hand, the
symmetrical MA filter is a window of size (M) moving along the data one element each
time. The middle element of the window is replaced by the weighted sum of the elements
within the window, so the filtered data represents the average of the present, future, and
past values each time. At the starting and the end of the data, parts of the data are
usually lying outside the window, so the averaging is performed upon less data. This
type of MA filter cannot be applied upon online data; it can be used for the processing
of offline data only. The symmetrical MA filters are called zero phase shift filters since
there is no phase shift between the input and output. The output of the symmetrical MA
filter y(7) can be represented by the general formula of the causal FIR filter

Wi =57 (i = J) o

where b, = %
The unit impulse response h(n) of the one sided MA filter can be represented as the

sum of the weighted shifted unit impulse functions

hin] =) bpd(n — k) (3)

Since MA filter is a time domain filter, the output y(n) and the input are related by
the convolution expression

yln] = Y hlk]aln — ] (4)

The frequency response of the MA filter is the Fourier transform of the unit impulse

response h(n) and is given as
(p) = 2D )
sin(7 f)

The frequency response of the filter explains the effect of the filtering process upon
each frequency. It is a complex function, so it can be represented by its amplitude and
phase. The phase components describe the effect of filtering on the phase shift (delay) of
each frequency component on the time domain. The amplitude component, on the other
hand, represents the quantity of attenuation at each frequency component as a result of
filtering.

The amplitude frequency response of the MA filter shown in Figure 1 has been com-
puted using Equation (5). It is clear from Figure 1 that the frequency response of the
filter possesses low pass characteristics. The figure shows that the MA filter has a bad
performance in the frequency domain. A careful inspection of Figure 1 shows that the

frequencies greater than fs (fs = ZM”) oscillates rather than going to zero and major parts
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Ficure 1. Amplitude frequency response of the MA filter for different
values of the MA filter length

of the high frequency components are not removed, therefore, it possesses a weak stop-
band attenuation. Additionally, the magnitude response has M — 1 spectral zeros and is
at frequencies equal to f; or multiple of f.

It is also obvious from Figure 1 that increasing the filter length will sharpen the roll-off
of the filter, and therefore, a large amount of the noise is filtered out. However, this
will not reduce the amplitude of the side loops significantly and will increase the hidden
latency on any signal passing through the filter. Latency equals to the required time for
a signal to propagate through the filter (or simply it is the difference in time between the
input and the response). Generally, digital filters introduce latency, which is a function
of the number of delay elements in the system. Therefore, increasing the filter length will
increase the number of delay elements and as a result, the latency is increased.

Passing the signals through MA filter several times can improve the stop-band attenu-
ation of the filter. In this case the filter impulse response h(n) will look like a Gaussian
filter (central limit theorem). However, this reduces the sharpness of the edges of the step
response of the filter in the time domain, while the filter roll-off in the frequency domain
will be improved.

From the above literature review, it is clear that the most significant issue in the MA
filter design is the selection of the appropriate length of the filter. Taking in consideration,
that filter length is dependent on the threshold between the fast and slow fluctuation and
on the field of application as well.

Therefore, there is a need for a technique to determine the appropriate value of the MA
filter length. All these points motivate us to introduce a new method for the determi-
nation of the appropriate value of the filter length. The proposed method preserves the
adaptation between the filter length and the variation in the measured data.

3. MA Filter Length Estimation. Generally, in power systems, the variation of load
profiles can be characterized as a summation of two components [20,21,34]; fast varying
component and slow varying component. The slow varying components, which are not
statistically independent, represent hour-to-hour variations and they are due to several
factors such as the weather variations. On the other hand, the fast components are a
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stochastic process and they are due to the second to minute variations in the load demand.
In [20], it has been shown that the fast varying components are statistically independent
and have supergaussian distribution. Therefore, the load profiles of electrical system can
be modeled as the sum of the fast trend (independent) and slow trend (dependent) data:

V=21 (6)
where I = [Ip + Irast], hence,
V= Z-Islow + Z-Ifast - ‘/slow + Vfast (7)

The n rows of V' represent the outputs of sensors for L samples. The m rows of I are
the independent components measured at L samples where I refers to the bus current.
Each row in the mixing matrix Z represents the weight of each pure component in the
sensor output, where Z corresponds to the network impedance. I, and If,s, are the
slow and fast components of the load profiles, respectively.

Several methods are used for the preprocessing of data for ICA algorithm such as PCA
[35-37], filtering [38-40], and the second derivative [41-43]. Low pass filtering (LPF) is
widely used to smooth signals and remove high frequency components that corrupt the
observed data such as noise. The filtering operation can be achieved by using time domain
filtering [37], which is obtained by multiplying the measured load profiles V' by a matrix
H [38], where H is a component wise filtering matrix and its elements depend on the aim
of the filter; lowpass, highpass, or bandpass filter.

V*=V.H=Z2IH=ZI* (8)

where V* is the filtered data. In [44], it has been shown that the standard ICA algorithms
can be used to analyze V* since the filtering operation preserves the original mixing
matrix. The extracted components I'* are the filtered form of the underline sources. The
following is an example of the LPF matrix H:

1 111000
001110

The fast varying components in [20-23] have been separated from the measured data
by first extracting the slow varying components V* = V.H = Z.1,,, using MA filter.
Then the fast components are computed by subtracting the slow components from the
measured data Vi, =V — V' = Z.1744.

Figure 2 depicts the procedure of the introduced method to estimate the MA filter
length. The introduced algorithm is used in this study in the analysis of power flow
analysis using blind source separation [20-31]. As shown in Figure 2, the measured load
profiles are used to obtain either the ac or dc power flow using Newton-Raphson method.
Then apply MA filter to separate the fast components of the bus voltages as in Equation
(7) for a specified filter length. The resultant fast components are then fed to ICA model
to estimate the mixing matrix. In this work, the Joint Approximate Diagonalization of
Eigenmatrices (JADE) algorithm [45] is used to process complex data without the need
to deal with the imaginary and real parts of the data individually. The estimated mixing
matrix Z is used to compute the global matrix G:

G=YZ (10)



696 A. 1. AL-ODIENAT AND A. A. AL-MBAIDEEN

where G will be needed to compute Amari index [32,33]. The whole process is repeated
for each filter length. Finally, the obtained indexes are plotted versus the filter length
and the filter that gives minimum index is selected as the optimum filter length.

r Measured data J

DCor AC Power Flow

Bus voltage

MA filter
N l . 4
Slow varying components Fast varying components
Repeat the process for a new filter length 1 =
Estimated mixing matrix components

L

Computing Amari index and save its components

1

Selecting the filter length with the minimum index

Prior knowledge Impedance matrix of the system

FiGURE 2. Estimation process of MA filter length

3.1. Independent component analysis (ICA). ICA was first introduced by Jeanny-
Herault and Christian Jutten in 1986 [46]. It has attracted a great interest in different
fields such as in communication, biomedical, power systems, and chemistry. ICA is a high
order statistical (HOS) algorithm used for blind source separation. HOS is an extension
of the first and second order measures, (such as the autocorrelation, power spectrum, and
variance) to the higher orders measures (known as cumulants) [47]. The HOS measures
can identify correctly the non-minimum phase signals since they are capable to preserve
the phase information about the process compared to the first and second order measures
[44,48]. HOS measures use the third or higher power of the sample such as the skewness
and kurtosis instead of the second order measurements like the variance, first and second
momentum. Moreover, HOS are less affected by the additive noise like additive white
Gaussian noise since this type of noise is completely defined by the first and second order
momentum.

In power systems’ applications, ICA approach is used to predict the harmonic load
profiles [20-30] and load forecasting [31,49]. The application of ICA approach requires that
the underlying components are statistically independent, however, in the power systems,
there is a degree of dependency between the basic components of the load profiles due to
the slow varying components. Therefore, there is a need for a preprocessing technique to
remove this dependency.

The free noise standard ICA model can be defined as

V=21 (11)
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where the n rows of V represent the outputs of sensors measured for L samples. The
m rows of I are the independent components measured for L samples. Each row in the
mixing matrix Z represents the weight of each pure component in the sensor output. In
this paper, Z, V, and I refer to the bus current, network impedance, and bus voltage,
respectively.

Regardless of the ICA method used, the main objective of the ICA algorithm is to
determine the mixing matrix Z as well as the bus current I from the measured data
without any prior information:

I=7'V=YV (12)
where, I is the estimated bus current (independent components) matrix and Z~! is the
demixing matrix, which physically represents the admittance matrix Y. If the indepen-
dent components I are extracted correctly, the product of the Z and Y is a generalized
permutation matrix. There are several algorithms used to extract the independent com-
ponents from the measured data such as FASTICA that based on fixed-point iteration
method [50,51], (JADE) [45], Infomax ICA [52], Mean-field ICA (MF-ICA) [53], and ker-
nel ICA (KICA) [54]. The difference between ICA methods comes from the criteria that
are used to measure the independency and the optimization method.

3.2. JADE algorithm. JADE algorithm is developed to process off-line data. It is
designed originally to deal with complex data, and this was the reason for using it in this
work. Another form of this algorithm is developed to deal with the real data efficiently.
Its efficient ability to estimate the mixing matrix is due to the use of the second and
fourth order cumulants and matrix diagonalization technique. The algorithm requires no
parameter tuning compared to other ICA algorithms. The presence of parameter tuning
in ICA methods leads to different solutions for the same data depend. The data size and
the number of ICs, as well as the distribution of sources influence the speed of JADE.
The data size that can be used for JADE is limited and dependent on the used memory.
JADE algorithm can be summarized in the following steps:

Step 1: Whitening the data matrix V'

Generally, Irrespective of the used ICA algorithm the first step of the ICA is to compute
the principal component model (PCA) [40-42] for the centered rows of the measured ma-
trix. Whitening is a type of preprocessing technique aims to reduce the dimensionality of
the data matrix so that most of the additive noise can be filtered. Moreover, it transforms
the data matrix to have orthonormal columns. That means the covariance matrix of the
whitened data equals to the identity matrix. Several methods are used for whitening such
as Gram-Schmidt orthogonalisation (GSO) [55,56], PCA with their eigenvalue decompo-
sition (EVD) and singular value decomposition (SVD) [57]. The linear whiting can be
obtained by multiplying the measured matrix V' by a linear matrix W:

W =0C,'?=FED \2ET (13)

where C, is the covariance matrix E[VVT]. The columns of E are the unit norm eigen-
vectors of the covariance matrix C,. D is a diagonal matrix, the diagonal elements of
which are the eigenvalues of the covariance matrix C,. The linear matrix W is not the
only unique whitening matrix.
Step 2: Cumulants Computation

In this step, JADE algorithm computes the fourth order tensor K [n xn xn xn], where
n is the number of independent components and equals to the dimension of the rotating
matrix. The diagonal of the tensor matrix is the fourth autocumulant (kurtosis) that can
be defined as follows:

Oum4{Vwa Vw; Vwa Vw} = E{Vw}4 - 3E2{Vw}2 (14)
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While the nondiagonal elements of tensor are the crosscumulant and defined as:
— E{ViVi}. EAV;Vi} — E{ViVi} . E{V; Vi }

If the vectors V; and V; are mutually statistically independent, the crosscumulant will be
equal to zero while the autocumulant will be maximum. Based on that, JADE algorithm
attempts to find the rotation matrix that diagonalizes the tensor matrix.

Step 3: Cumulants Tensor Decomposition

In this step, JADE algorithm computes the eigenvalue decomposition of the tensor
matrix and produces n(n + 1)/2 orthogonal symmetry matrix (A/;) with Frobenius norm
being equal to 1. Then it projects the fourth tensor matrix into the orthogonal n x n
matrices. After that, the JADE algorithm diagonalizes the eigenmatrices using Jacobi
algorithm by minimizing the sum square of the off diagonal elements of the orthogonal
matrices, so that M; is transferred as follows:

MP = MV (16)

(15)

where V' is the rotation matrix. Finally, the demixing matrix Y is obtained by multiplying
M? by the score matrix of the original data.

3.3. Amari index. In the present work, the performance index (PI) (known as Amari
index) [26] is used to evaluate the efficiency of the MA filter and determine the appropriate
length of the filter. Amari index is defined as
n n n n
p[i:lz<w_1>+lz M_l (17)
n <= \ max; |g;;| n < \ max; |93

where g;; is the ijth element of Global matrix (G), which is defined as the multiplication
of the mixing matrix Z and the estimated demixing matrix Y (G = Y Z). For perfect
estimation, G should equal to the identity matrix. However, if the mixing matrix is un-
known or it is not estimated perfectly for real data, the Global matrix will be a generalized
permutation matrix [44,57,59], where the permutation matrix is a matrix that has only

one nonzero element in each row and column. PI will be zero for statistically independent
components and increase as the dependency increased.

4. Case Study. As it is mentioned in the introduction, the MA filter is used in several
applications of power systems such as the harmonic and load forecasting analysis. In
power system analysis using ICA [20-31], the MA filter is used as a low pass filter to ex-
tract the fast varying components. The ICA algorithm required that the fast components
should be statistically independent in order to separate the underlying components. In all
of these studies, there is no any guaranty that the fast components are statistically inde-
pendent. Our proposed method is aimed at extracting the fast components so that they
are statistically independent. To evaluate the performance of the proposed method, it is
demonstrated on an IEEE 30-bus system [20]. The observation vector data is generated
using centered and normalized typical load profiles downloaded from the website of Elec-
tric Reliability Council of Texas (ERCOT) [60]. The fast varying fluctuation is modeled
by adding Laplace distribution data [61-63] with zero mean and 0.02 variance to centered
and normalized load profiles. In this work, the observed vectors are varied according to
1l-minute samples by manipulating the original load profiles that vary according to 15
minutes samples, so we have 1440 samples per day.

The load buses of the IEEE-30 bus model in [20] is used in this work; the loads at buses
5 and 8 are assumed constants. Bus 1 is a slack bus. The 17 load buses 2, 3, 7, 10, 14, 15,
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16, 17, 18, 19, 20, 21, 23, 24, 26, 29, and 30 are generated by multiplying the active and
reactive powers of each load by one of the load profiles. The observation vector for the
IEEE 30 bus system is obtained by computing Newton-Raphson ac and dc power flow at
each sampling test using the public domain program MATPOWER [63].

The fast and slow varying components of the observed vector are separated using MA
filter of several lengths. The fast varying components are processed using JADE algorithm
for complex data [64,65] to get the mixing matrix Z that will be used to estimate the
independent sources, the performance index (Amari index) is then computed. This process
is repeated for each MA length. The obtained performance indexes are plotted versus the
filter length. The filter length that produces the minimum value of PI is selected as the
optimum filter length.

5. Discussion and Results. The optimization method described above was applied to
IEEE 30 bus. The effect of number of samples and fast components fluctuations on the
optimum filter length is studied for both dc and ac power flow analysis. In each case Amari
performance index is plotted versus several values of the filter length where that produced
the minimum Amari index is selected as the optimum filter. Figure 3(a) is produced by
adding zero mean Laplace distributed random fluctuations with 0.002 variances to the
data with 1440 samples. Figure 3(a) shows that the dc power flow in the introduced
method produces the best separation of the fast components as compared to ac power
flow. We see in Figure 3(a) that the optimum filter length for the dc power flow is lower
than that obtained for ac power flow where it is 5 and 10 for the dc and ac power flow,
respectively. As compared to the ac power flow, the dc power flow has more fluctuation
and at most produces high values for the Amari index.

In general, the harmonic estimation methods [20-31] require a large number of mea-
surements that are limited because of the cost and instrumentation requirements. The
performance of ICA is dependent on the number of samples since it is a statistical method.
If the number of samples is less than the number of independent sources then this will lead
to overlearning in ICA [66], while if the number of samples is greater than the number of
sources, an artefactual (spikes and bumps) signals are produced by the ICA algorithm.
On the other hand, the number of samples in digital signal processing (DSP) implies an
important factor in determining the characteristics of the signal and the filter design re-
quirements. Therefore, the impact of the sample size on the introduced method should be
investigated by implementing it several times for 1440, 720, 288, and 96 samples. Amari
index for each number of samples is computed and plotted versus the filter length as
shown in Figures 3(a)-3(d).

Figures 3(a)-3(d) show that the proposed method has the ability to predict the optimum
length of the MA filter even if the number of samples is low. The figure also shows that
using dc power flow leads to clear and specified value of the filter length with the lowest
value of Amari index, since the dc power flow guarantees the conditions of the ICA
algorithm.

Figures 3(a)-3(d) show also that as the number of samples is decreased the optimum
filter length is increased. The optimum filter length for 1440 samples is 5 and it is
increased to 11, 12, 13 for number of samples 720, 288, and 96 samples respectively.
The reduction in the number of samples implies that the measured signals are corrupted
with more error, which required that the bandwidth of the filter should be decreased as
shown in Figure 3(a). Additionally, [67] shows that even for small sample sizes, the ICA
algorithm performs quite well, and it is confirmed that the estimation error decreases with
an increase of the number of samples. Obviously, the curves of the ac power flow analysis
have less fluctuation compared to that of the dc analysis.
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Figure 4 shows the plot of the 15" IC versus the 5 IC for 720 samples and added
Laplace distribution with variance = 0.002. Figures 4(a) and 4(b) are generated for the
optimum filter of the ac power flow (MA length = 13) and Figure 4(b) for filter length
= 7, whereas Figures 4(c)-4(d) are for the optimum MA length of dc power flow (MA
length = 11) and MA length = 7. It is obvious that the optimum filters for both of dc
and ac show more independency between the extracted components and less scattering
compared to other filter length.

Figure 5 shows the correlation coefficients between the estimated IC components for
the model that based on the dc power flow analysis. Figure 5(a) is obtained for filter
length of 11 (optimum filter) while Figure 5(b) is for filter length 8. The figure shows
that the correlation coefficients for the optimum filter compared to the second filter are
lower which imply that the independency between the IC components is higher for the
optimum filter. Figure 5 verifies the results obtained in Figure 4.

To investigate the effect of the amount of fluctuation of the fast components, the in-
troduced method is implemented for different values of variance of the added Laplace
distribution 0.0002, 0.002, and 0.02. Figures 3(b) and 6(a), 6(b) show the plot for the
Amari index versus the filter length with number of samples = 720 and different values
of variance. A careful inspection of the figures shows that the models that based on the
dc power flow analysis has a clear and a specific optimum filter and also it has more
fluctuation compared to the ac models. Moreover, it is clear that the optimum filter
length is increased as the variance is increased due to the fact that increasing the noise
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required that the filter bandwidth should be decreased, which imply that the filter length
is increased.
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FIGURE 5. The correlation coefficients between the obtained ICs compo-
nents from using (a) optimum filter for the DC power flow and (b) MA filter
with length = 8
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6. Conclusions. The proposed method is aimed at estimating the appropriate MA filter
length. The proposed model combines the ICA and dc or ac power flow analysis to
compute the bus voltages, which will be processed using MA filter to separate the fast
and slow components. ICA algorithm is applied to fast components to estimate the mixing
matrix. Amari index that based on the general global matrix was used to evaluate the
ability of the MA filter to separate the independent components (fast fluctuation) and
dependent components (slow varying components). This process was repeated for different
values of the filter length. From the plot of Amari index versus the filter length, the MA
length that produces the minimum index is selected as the optimum filter length.

The proposed method is flexible; it can be used to select the filter length even for the
harmonic frequencies, or if there is a variation in the new data relative to the training
data. Additionally, using the optimum filter length will lead to a minimum dependency
between the fast components, so it can be used in the blind load profile estimation,
harmonic analysis, or forecasting problems.

The results show that a high accuracy of estimation is obtained in case of the dc power
flow. Regarding the sample size, the results show that the accuracy of estimation of
the filter length is increased as the number of samples is increased. A good accuracy to
estimate the filter length is achieved even for the smallest size of data used in this work.
In our case study, overlearning of the ICA algorithm did not present a problem in our
model. The proposed method is quite promising since it is compatible with the measured
data each time.
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