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ABSTRACT. This paper studies how to learn an accurate ranking model for Top-k rank-
ing. Most previous work on learning to rank manages to optimize ranking on the whole
permutation of objects, but in practical applications such as web search, correct ranking
at the Top-k positions is much more important. To tackle the problem, in this paper we
propose a novel Top-k ranking algorithm with rank aggregation. The algorithm is a mul-
tistage approach. In the first stage, we present a Listwise algorithm named TopSlack as
the base ranker. It uses the structural SVM as optimization tool, and defines the objec-
tive function based on slack scaling which is believed can create more precise model than
the margin one. The output of the TopSlack is re-ranked by multiple different rankers
in the next stage, and lastly, the results of those rankers are combined together with Su-
pervised Kemeny Aggregation technique to produce the final list. Experimental results on
benchmark collections prove that the algorithm we proposed has significant advantage in
comparison with several baseline methods, and is suitable for the Top-k ranking.
Keywords: Learning to rank, Top-k ranking, Rank aggregation, Structural SVM, Cut-
ting plane algorithm

1. Introduction. Learning to rank is the central problem in many applications including
information retrieval, and recommender systems. It aims at learning a ranking model
that given a query and a set of relevant documents, finds the appropriate ranking of
documents according to their relevancy. There have been numerous learning to rank
methods developed in the literature, which can be divided into three main categories:
the Pointwise [1,2], the Pairwise [3-5], and the Listwise methods [6-11]. Empirical results
on benchmark datasets have demonstrated that the Listwise ranking methods have very
competitive ranking performances [6-11].

However, even with the Listwise methods, there is still a gap between the learning to
rank and real ranking applications, where the correct ranking of the entire permutation is
not needed [12]. For example, in web search, users usually care much more about the top
ranking results and thus only correct ranking at the top positions is important. While
the ranking methods above all spend some time in adjusting the exact preference orders
among the rest results, to which the users pay no attention.

To fill the gap above, in this paper, we propose a novel ranking algorithm named
TopRank which can produce an accurate Top-k ranking model. The main contributions
of this paper are as follows.

(1) We propose a novel Top-k ranking algorithm with rank aggregating. Specifically,
our approach is based on a mixed ranking model. Firstly, we construct a base ranking
model to capture the total order of the candidates. Secondly, the top candidates of its
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output are re-ranked by r other rankers. Lastly, the r rankers’ results are aggregated and
create a model to capture the relative of the Top-k items. The idea behind our strategy
is that if the first ranker is reasonably accurate, the following re-ranking phase can focus
on improving the precision at high ranks.

(2) To get an accurate base ranker, we design a new ranking algorithm named TopSlack.
It belongs to Listwise method and uses structural SVM as optimization tool, which is
commonly used in the ranking algorithms [7-11]. However, different from those algorithms
which all adopt the margin scaling as the framework, TopSlack employs the slack scaling
as its framework, which is believed can create more accurate model. For the challenge of
finding the most violated constraint in slack scaling, we adopt a variational approximation
to the slack loss so that the most violated labeling can be efficiently found using the same
loss as in margin one.

(3) We demonstrate how multiple rankers can be effectively combined using rank ag-
gregation techniques stemming from the Social Choice Theory literature. Specifically, we
present to use the Supervised Kemeny Ranking technology for ranking aggregation to
create the final rank list.

(4) We evaluate the proposed method on LETOR3.0 benchmark collections [13]. Ex-
perimental results manifest that TopRank we proposed can significantly outperform many
other state-of-the-art ranking algorithms when measured by Top-k.

The remainder of the paper is organized as follows. In Section 2 the related work is
presented. Section 3 discusses the design of TopRank in detail and the empirical results
on the benchmark datasets are reported in Section 4. Section 5 concludes the paper and
discusses the future work.

2. Related Work.

2.1. Learning to rank. The process of learning to rank can be described as follows.
Assume that we have a collection of m queries for training, denoted by {qi1,¢2,...,qn} €
Q. For each query ¢;, we have a collection of n; documents {d},d?,...,d}} € D;, whose
relevance to ¢; is given by a vector y; = (v}, yZ,...,y"), and the relevance label y! €
{ri,ra,...,m}, with 7, > r, 1 > ...r;. The goal is to learn from these examples a ranking
function which, given a new query ¢, can rank the documents associated with the query
such that more relevant documents are ranked higher than less relevant ones.

More formally, we shall assume a query-document feature mapping ®(g;, d?) that maps
each query-document pair to a d-dimensional feature vector. The learner then receives
labeled training examples of the form S = {sy, so, ..., s}, where s; = {(®(q;, d}),v}), ...,
(®(g;,d),y;"")} is the training sample associated with the ith query. The goal is to learn
a ranking function b : R? — R that ranks accurately documents associated with future
queries. h is taken to rank a document d’ associated with a query ¢ higher than a
document d* if h(®(q,d’)) > h(®(q,d")), and lower than d* otherwise. In this paper, we
are interested in linear ranking function given by:

h(si) = h(qi, diyyi) = w" - W((q;, dy), yi) = w’ - U(z;, ;) (1)
where ®(¢;, d;) = Z (g, d{ ), and W represents a mapping function from input list to
j=1

output list. Throuéh designing appropriate supervised learning algorithms, people can
get a ranking model.
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2.2. Top-k ranking.

2.2.1. Motivation. From the description above, we can see that the learning to rank meth-
ods manage to optimize ranking on the whole permutation of objects. While in the prac-
tical ranking applications, people often pay more attention to the top-ranked objects.
Therefore, the correct ranking on the top positions is critically important. We take the
web search as an example, modern web search engines only return top 1,000 results and
10 results in each page. According to a user study, 62% of search engine users only click
on the results within the first page, and 90% of users click on the results within the first
three pages [14], which means that if two ranked lists have the same ranking results for
the top positions, they may provide the same experience to the users. Moreover, a good
ranking on the top results is much more important than a good ranking on the others.
Therefore, in the practical ranking applications, a good ranking method should pay more
attention to the Top-k results, but less attention to the exact preference orders among
the rest results. This, however, cannot be reflected in the traditional learning to rank, so
we refer to it as the Top-k ranking problem.

Before we make further discussion, it should be noted that the Top-k ranking has wide
application prospects. It can be applied not only to web search, but also to many other
information retrieval areas such as collaborative filtering [15], document retrieval [16], and
QA system [17]. Recently, it has been extended to the Bioinformatics task whose goal
is to rank new chemical compounds such that active ones appear at the top of the list
[18,19].

2.2.2. Top-k ranking methods. In contrast to the fact that there have been many attempts
on the issue for learning to rank [1-11], as far as we know, there was only a little work
focusing on the Top-k ranking. For example, Xia et al. first analyze the difference between
Listwise ranking and Top-k ranking, then give the statistical consistence of Top-k ranking,
and based on it, a Top-k ranking algorithm is proposed [12]. This approach is effective,
but it is only suitable for the Listwise method, and whether it can be extended to the
Pointwise or Pairwise method is still unknown. Niu et al. propose a novel Top-k ranking
system, which involves Top-k labeling strategy and evaluation measure [20]. Although the
experimental results demonstrate the effectiveness of algorithm, there are still some limits
of this method. Firstly, the new “Top-k evaluation measures” in the paper are proposed
subjectively, and the correctness of these measures has not been proved. Secondly, even
with the new concept of “Top-k ground-truth”, how to design a new ranking model
remains a valuable problem to investigate. Different from the approach in the paper [20],
we do not utilize the new concept of “Top-k ground-truth”, “Top-k evaluation measures”,
etc. We adopt the same Top-k evaluation measures as the ones used in paper [12], such as
Precision@k and NDCG®@Xk, which are believed the most widely used measures in the Top-
k ranking area. However, the algorithm we proposed has the significant difference with
the one in paper [12]. The key of ours is based on the technique of the rank aggregation
which ensures our approach can not only be applied to the Listwise method, but also can
be extended to the Pairwise or Pointwise method. It should be noted that most of the
existed ranking algorithms including the Top-k rankers in paper [12,20] all try to use one
single ranker that performs best on all datasets, which is very hard to achieve in practice.
The algorithm we proposed is a practical solution to this problem. The idea behind our
algorithm is that it may be better to combine some different rankers to produce a more
robust and accurate ranking. The whole procedure of our approach can be described as
Figure 1, and in the next section we will depict it in detail.
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FIGURE 1. The learning scheme of TopRank

3. TopRank-Direct Optimization of Top-k with Rank Aggregation. As shown
in Figure 1, the algorithm we proposed uses a cascading approach, where the ranking
produced by one ranker is used as input to the next stage. The initial set of Top N
candidates is firstly created by TopSlack, which is the base ranker of our algorithm.

3.1. TopSlack — The base banker of the TopRank. The framework of the Top-
Slack is based on structural SVM proposed by Tsochantaridis et al. [21]. In that pa-
per, Tsochantaridis et al. proposed two formulations for maximum margin training of
structured spaces: margin scaling and slack scaling. The margin scaling formulation has
been widely used in recently “directly optimizing” ranking algorithms [7-11], since it can
exploit the decomposability of the error function to find the most violated constraint us-
ing the maximum a posteriori (MAP) inference algorithm used for prediction. On the
contrary, the slack scaling formulation is rarely used in ranking algorithms, for its non-
decomposability nature. However, as pointed by Sarawagi and Gupta, slack scaling is
believed to be more accurate and better behaved than margin one, because the margin
scaling gives too much importance to instances which are already well separated from the
margin [22]. Therefore, in this paper we present a novel “directly optimizing” ranking
algorithm-TopSlack which is based on slack scaling formulation. It can be described as
the following.
OP1. (Optimization Problem 1)

1, O
g+ 536

.............................. (2)
St Y €V 1 wT [ W(amy) = U (2, ) | 21—
o)

where w is the linear parameter to be learned, C' > 0 is a constant that controls the
trade-off between training error minimization and margin maximization, &; is the slack

variable for query ¢;, y; stands for any possible permutation of ¢;, A : y; X y; — R is
a function used to measure the difference between the real output y; and the possible
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predicted output y;. This function must satisfy the following conditions:

@ for V(y = ¢'), Aly,y)=0; @forV(y#y), Aly,y) >0 (3)
As explained in the Introduction, users mainly care about top results, so in TopSlack,

we define the ¥, A functions by paying more attention to the top relevant documents, so
those two functions are defined as:

U (i, yi) ny 2l (yy> =1- Zajbj (4)

Both #/ and a! are decreasing functions which guarantee the higher ranked document

@) contributes more to the result. b’ denotes the gain of jth document in predicted list

Yi.

We can solve the OP1 (Optimization Problem 1) by substituting (4) with (2). However,
unfortunately there is still a question: the number of possible output permutation y; is
exponential in the size, so the constraints of OP1: (y}, <.y Ym ) € Y™ could be extremely

large. Fortunately, we may employ the cutting plane algorithm to solve OP1. The key
of the cutting plane algorithm is that it iteratively introduces constraints until we can
solve the original problem within a desired tolerance . The algorithm starts with no

constraints, and iteratively finds for each example (z;,7;) the output y; associated with
the most violated constraint. If the corresponding constraint is violated by more than

g, then we introduce this g; into the working set W; of active constraints for example
i, and re-solve formulation (2) using the updated Wi, ..., W,,. The whole cutting plane
algorithm is described as the following.

Algorithm 1 Cutting Plane Algorithm for solving OP1 within tolerance e
Step 1 Input: {(z1,41),. -, (Tm,ym)},C,e >0
Step 2 For i =1,...,m {W; + ¢,& + 0};
Step 3 repeat
Step4 Fori=1,...,mdo
Step 5

yi = argyr;pax [1 —w' (‘I’(xz, yi) =V (ina ?Jz)) - @] (5)
Step 6 if A (yz,y_l) [1 —w’ (\If(xl,yz) - <xz,gjz>)] > & + ¢ then

Step 7 W; « W; U {ym*>}

Step 8

m
(w,§) < argmin 3|jw]|? + £ > &
w,€>0 i=1

st.Vy, € Wyt wA (yl,gjl) [\I'(xl,yl) - (xl,gjl)] > A (3/14]1) - &

Step 9 end if
Step 10 end for
Step 11 until no W; has changed during iteration
Step 12 return (w, ).
It is proved that Algorithm 1’s outer loop is guaranteed to halt within O(Z5) iterations
for any desired tolerance € [21]. However, within the inner loop of cutting plane we have to
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compute the formulation (5), which is known as the problem of “finding the most violated
constraint”. In margin scaling, y"** can be easily found by exploiting the decomposability
of the error function with using the maximum a posteriori (MAP) inference algorithm [7,8].
While it is quite different in slack scaling, even with the decomposable loss and scoring
functions, it is still difficult in finding y*** efficiently. To solve this problem, we adopt a
variational approximation to the slack inference problem proposed by Liu et al. [23].

First of all, we rewrite the formulation (5) as:

Yt = argmax |1 — w?’ (lﬂ(xi,yi) — v (ﬁl,gjz>) — Lﬁ
y;El’/\: A (yza yz)
- (6)
_ | (—.) &
= argmax |s; | y; —
pey | A (y y)

where s; (gjl) = w! (xi,gL), Y = {y Yy # iy si(y) — % > 5;(y;) — 1} is the set of
all violated labeling. We can approximate the exact slack of formulation (6) with an upper
bound as follows:

max |s; (@) — Lﬁ = max min F’ (yZ, )\Z-> (7)
iy A (yi, yz) yiey M0
< migmas (5,0
< g%?jé}? Yir Ni (8)
< mi :
where F' (;]A) = s (gj) TSWN (ygj) _9\/&N, and F(\;) = max F' (gA) For
YiFYi

the fixed \;, we can compute F'()\;) using the loss augmented MAP algorithm employed

in margin scaling [7,8] to first find y,, = argmax [si (gjz) + NA (yl,y_l)] and then set
YiFY:

F(X\) = F'(yy;, \i). We can compute g\n;r&F()\z) with the efficient line search algorithm.

In this paper, we adopt the Golden Sea;Eh. During the search phase, for each \; that we

encounter, we evaluate F'();) and thus get one labeling. Of all these labelings, we return

£

the one with the highest s; (@) — —~t— as y;"*. It has been proved that it is sufficient
Al yisyi

to perform the line search within the range [Ajow, Aypper]. We omit the detail proof due to

the lack of space. The interested reader can refer to Section 4 in Liu’s paper.

By the approximation of slack loss above, we can compute Formula (5) efficiently.

3.2. The rank aggregation. As shown in Figure 1, the Top N candidates in output list
of the TopSlack are re-ranked by r rankers, and the results of these rankers are aggregated
to create the final rank list. By combining these different rankers, we expect to further
improve the precision at high ranks. The core of above phase is how to aggregate the
ranking properly. In this paper, we use the rank aggregation techniques stemming from
the Social Choice Theory literature, which have been successfully applied in many different
areas [24,25].

We begin by formally defining the rank aggregation task. Given a set of entities T,
let V' be a subset of 7', and assume that there is a total ordering in V. We are given r
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individual rankers T'y, Ty, ..., ', who specify their order preferences of the ¢ candidates,
where ¢ is the size of V' ie, ['; = [di,do,...,di], i = 1,2,...,r,if dy > dy > ... > dj,
d;€V,j=1,...,t. If d; is preferred to d;, we denote that by d; > d;. Rank aggregation
function takes input orderings from r rankers and gives I', which is an aggregated ranking
ordering. If V' equals T, then T is called a full list (total ordering), and otherwise, it is
called a partial list (partial ordering).

In this paper, we pay more attention to the top items, so we use the partial orderings
corresponding to that only the Top candidates are re-ranked by different rankers. For
the rank aggregation technique, we focus on the classical Kemeny Aggregation, which is
an aggregation that has the minimum number of Pairwise disagreements with all rankers
[26]. While in traditional Kemeny method, computing a Kemeny aggregation is NP-
Hard for » > 4, so in practice, we use an approach that produces a 2-approximation of
Kemeny optimal aggregation. Specifically, we employ the Supervised Kemeny Ranking
which extends Approximate Kemeny aggregation to incorporate weights associated with
each input ranking. The pseudo-code for Supervised Kemeny Ranking is presented in
Algorithm 2.

Algorithm 2 Supervised Kemeny Ranking (SKR)

Step 1 Input: I'; = [T, T4, ..., Ty, Vi=1,2,...,r,
ordered arrangement of ¢ candidates for r rankers,
p =[p1,po,...,ps|: where p; is the weight of ranker i,

p=[p1, f2, - . ., p¢): initial ordered arrangement of ¢ candidates,
k: the number candidates to consider in each ranker’s preference list
(k<1

Step 2 Initialize majority table M; ; < 0, Vi,j =1,...,t

Step 3 For each ranker a =1 to r

Step 4 For each candidate : =1to k — 1

Step 5 For each candidate j =7+ 1 to k

Step 6 Tai>Taj <~ MTai,Taj + Da

Step 7 end for

Step 8 end for

Step 9 end for

Step 10 Quick sort p, using My, ... It M, .. — My, .., > 0 then p; is greater than p;. If
My, p; — My, i = 0 then p; is equal to ;. If M, .. — My, ., <0 then p; is less
than p;.

Step 11 Return I': rank aggregated arrangement of candidates in decreasing order of
relevance.

In Algorithm 2, the weights p; correspond to the relative utility of ranker ¢. It is clear
that the Supervised Kemeny Ranking turns back to Unsupervised Kemeny Ranking if
we set Vi, p; = % As we know, in general, different ranker has different performance on
different set, so in the following experiments, we do not set a fixed value to each p;. On
the contrary, we define the weight p; proportional to its performance on the validation
set, because we want better ranker to have a bigger weight in the aggregation.

4. Experiments.
4.1. Experiments settings.

4.1.1. Datasets and baselines. In this section, we empirically evaluate the TopRank on
LETORS.0 which are considered as benchmark datasets in rank learning area [13]. Specif-

ically, we select OHSUMED, TD2003, and TD2004 in the LETOR3.0 to perform the ex-
periments. OHSUMED dataset consists of articles from medical journals. There are 106
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queries in the collection. For each query, there are a number of associated documents.
The relevance degrees of documents with respect to the queries are given by humans, on
three levels: definitely, possibly, or not relevant. There are 16,140 query-document pairs
with relevance labels. In LETOR, the data is represented as feature vectors and their cor-
responding relevance labels. Features in OHSUMED dataset consist of low-level features
and high-level features. Low-level features include term frequency (tf), inverse document
frequency (idf), document length (dl), and their combinations. High-level features include
BM25 and LMIR scores. In total, there are 25 features. TD2003 and TD2004 datasets are
from the topic distillation task of TREC 2003 and TREC 2004. TD2003 has 50 queries
and TD2004 has 75 queries. For each query, there are about 1,000 associated documents.
Each query document pair is given a binary judgment: relevant or irrelevant. The features
of TD2003 and TD2004 datasets include low-level features such as term frequency (tf),
inverse document frequency (idf), and document length (dl), as well as high-level features
such as BM25, LMIR, PageRank, and HITS. In total, there are 44 features.

For the sets in LETOR, five partitions are provided to conduct the five-fold cross
validation, each including training, test and validation sets. In our experiments, we
conduct five-fold cross validation, following the guideline of LETOR.

The results of a number of state-of-the-art learning to rank algorithms are also provided
in the LETOR page. Since these baselines include most of the well-known learning to
rank algorithms from each category (Pointwise, Pairwise and Listwise), we select some of
them as comparison algorithms to study the performance of TopRank. Here is the list of
these baselines (the details can be found in the LETOR web page).

Regression: This is a simple linear regression which is a basic Pointwise algorithm [1].

Ranking SVM: Ranking SVM is a Pairwise approach using Support Vector Machine

[5]

[6].

Besides these three baselines, we adopt two other algorithms for comparison. The first
one is TopMargin, which is similar to TopSlack-the first stage ranker of TopRank. The
main difference between TopMargin and TopSlack is that the former selects the margin
scaling as the framework, while the latter employs the slack one. We use the TopMargin
as the fourth comparison algorithm, in order to see whether the slack scaling formulation
can really bring better behavior than the margin one. The other comparison algorithm
is Top-10 ListMLE which is from paper [12]. As mentioned before, it is a novel effective
Top-k ranker in the learning to rank and has very good performance on the LETOR
datasets. We choose it as the fifth example because we are interested in how our ranking
algorithm performs, when compared with another good Top-k ranker. Note that we do
not use the ranker in the paper [20], because it defines different “top-k ground-truth” and
“top-k evaluation measures” from ours.

ListNet: ListNet is a Listwise algorithm. It uses cross-entropy loss as its loss function

4.1.2. FEvaluation measures. Based on the three datasets, we compare our algorithm with
those five ranking algorithms and the evaluation measures are carried out with two stan-
dard metrics in top ranking: Precision@k and NDCG@k.
(1) Precision@k

Precision@k [27] is a measure for evaluating top k positions of a ranked list using two
grades (relevant and irrelevant) of relevance judgment:

k
1
pre@Qk = z g r; (10)
=1
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where k denotes the truncation position and

i 1 if document in jth is relevant
771 0 otherwise

(2) NDCGQk

Different from Precision which only considers two grades, NDCG (Normalized Dis-
counted Cumulative Gain) is an evaluation measure that can leverage the relevance judg-
ment in terms of multiple ordered categories. It is defined as:

k
NDCG@k = N"Y " g(r)) - 1(j) (11)
j=1
k
where N denotes the maximum of ) ¢(r;) - I(j), r; denotes the relevance level of the
j=1

document ranked at jth position, ¢g(r;) is a gain function, and [(j) is a discount function.
In the following experiments, we adopt g(r;) = 2 — 1 and I(j) = which are
defined by Jarvelin and Kekalainen [28].

From the definitions above, we can see that it is obvious that these two measures are
Top-k related and are suitable for evaluating the ranking performance in Top-k ranking
problems.

Note that in following experiments, due to the space limitation, we only list the results
of N (NDCG) at positions 1, 3, 10, and P (Precision) at positions 1, 3, and 10, which are
the same as the ones in paper [12].

1
log(1+7)’

4.1.3. The parameter settings of TopRank. It should be noted that when using the TopR-
ank approach, we need further define some parameters. Firstly, we shall define the pa-
rameters ¢, C' and formulation (4) in the base ranker. In our experiment, we fix £ = 0.001,
and choose C on the validation sets in the set of {107°,107%,...,10% 10%}. For the formu-
lation (4), we consider two kinds of function respectively. Namely, if the ranking measure
is Precision, then the formulations are defined based on Precision@k, which denote:

Loifji<n 1 if &/ is relevant
li=a;= { 0 else and b; = { 0 else (12)

If the ranking measure is NDCG, we then define the formulations as:

if j < v — 1
IS and bj = —— (13)

1
lj =a; = { log(1+j)
Nor(y;)

0 else

where Nor(y;) is a normalized factor.

Next, we shall define the parameters in Algorithm 2. We fix r» = 3. Specifically, we use
the Regression, Ranking SVM, ListNet with rank aggregation. For the weight parameter
pi, as mentioned before, if the ranking measure is Precision, we define the p; proportional
to the P@Q10 computed on the validation sets. If ranking measure is NDCG, the p; is
defined proportional to the N@Q10. For the parameters ¢, k, we set t = 1r<r£i<r71n(100, min(n;)),

and k is set to the 50% of t.

4.2. Experimental results. In this section, we empirically evaluate our proposed rank-
ing algorithm from the following three aspects.
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4.2.1. Comparison between TopMargin and TopSlack. We design this comparison in order
to see whether the algorithm based on slack scaling can be better-behaved than the
margin one. The experimental results on OHSUMED, TD2003, and TD2004 datasets are
illustrated in Figure 2!.

From the figures, we can see that the TopSlack performs better than TopMargin with
most of the statistical data. We would like to point some statistics in detail. On
OHSUMED set, for all the six statistical points, TopSlack outperforms TopMargin with
five points, and only worse than TopMargin at P@10. On TD2004 set, TopSlack is better
than TopMargin with four out of six points, and is inferior to TopMargin at P@3 and
N@10. While on TD2003 set, the two algorithms win three out of six respectively. Top-
Slack performs better at P@Q10, N@3, N@10. TopMargin is better at P/N@1 and P@Q3.
The comparison results above prove that in general, the slack scaling can be more accu-
rate and better behaved than margin one. The reason lies in the following fact. Margin
scaling gives too much importance to instances which are already well separated from the
margin. This hurts because the loss &; is determined by a single most violated labeling.
In contrast, the slack scaling loss will ignore instances that are separated by the margin

1On datasets with only two ratings such as TD2003 and TD2004, N@Q1 equals P@1.
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of 1, and the loss &; is determined by labeling that matter because of their being close to
the margin.

4.2.2. Comparison between TopSlack and TopRank. We design this comparison because
we are concerned about whether the rank aggregation technology can really improve the
performances of the Top-k results. The experimental results on the three datasets are
illustrated in Figure 3.

BTopSlack
BTopRank

2

P@1 P@3s P@10 Ne1 N@3 Ne1o

(a) On OHSUMED dataset

BTopSlack
@TopRank

(b) On TD2003 dataset

BTopSlack
0.45 | ATopRank

(c) On TD2004 dataset

F1GURE 3. The performance comparison between TopSlack and TopRank

By comparing the TopRank with TopSlack, we can find that on all the three datasets,
our aggregation algorithm TopRank consistently outperforms TopSlack in terms of all
the measures. Due to the space limitation, we only take TD2004 as an example and
report statistics measured by NDCG. For N@Q1, N@3, N@10, when compared to TopSlack,
TopRank increases 17.2%, 5.6%, 43.6% in performance respectively. Those experimental
results show that TopRank, as a rank aggregating algorithm, does effectively boost the
ranking accuracies of TopSlack, and once again prove the strategy that we can improve
the precision at the top of list by re-ranking the top results from an initial ranker.



770 F. CHENG, D. SUN AND Y. XIE

4.2.3. Comparison with baselines. In the last set of experiments, we are interested in
how our ranking algorithm performs, when compared with other ranking algorithms.
Specifically, we compare TopRank with the baselines mentioned in Section 4.1.1, and
Figure 4 provides the results on OHSUMED, TD2003, and TD2004 datasets.
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FIGURE 4. The performance comparison between TopRank and baselines

From the figures above, we can see that different algorithms have different performances
on the different sets. For example, on OHSUMED dataset, the algorithms based on
Listwise method (ListNet, Top-10 ListMLE, TopRank) are significantly better than the
two non-Listwise algorithms (Regression, Ranking SVM) with all the statistical points.
However, on the other two datasets: TD2003, TD2004, the results are a bit different.
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Some Listwise algorithms are worse than Ranking SVM with some statistical points. For
instance, on TD2004 set, Ranking SVM performs much better than ListNet and TopSlack
in terms of P/N@1. One possible explanation is that OHSUMED is a multi-level dataset,
and may be more suitable for the Listwise algorithms, while TD2003 and TD2004 are
both binary sets, and the Ranking SVM which is also a binary algorithm may perform
better on them.

Moreover, it can be seen from the figures that no matter on OHSUMED or on TD2003,
TD2004, the two Top-k rankers (Top-10 List MLE, TopRank) are significantly better than
the other algorithms, in terms of all measures, which indicates the effectiveness of Top-
k ranking strategy. Especially, we should point out that even compared with Top-10
ListMLE, the aggregation ranker we proposed is better with most of the statistics. We
take OHSUMED dataset as an example, and for all the six statistical points, TopRank
outperforms Top-10 ListMLE with five points, and is only worse than Top-10 List MLE at
P@l. In fact, among all the algorithms in comparison, TopRank appears to be the most
stable method across all the datasets. Statistics show that TopRank performs best with
11 out of all the 18 points, and is the second best algorithm with the remainder. All those
prove the excellent effectiveness of our ranking approach, and demonstrate that TopRank,
as a mixed ranking model, can effectively cope with the Top-k ranking problem.

5. Conclusion. In this paper, we have proposed a novel Top-k ranking algorithm based
on rank aggregation technique. Firstly, a structural SVM based method, termed TopSlack
is proposed as a main ranker. Different from other “directly optimizing” ranking algo-
rithms which used margin scaling as framework, TopSlack defines the objective function
based on slack scaling, which is believed to be more accurate and better behaved. For the
problem that slack scaling is difficult to optimize, we introduce the cutting plane algo-
rithm for outer optimization, and adopt a variational approximation to the slack scaling
for inner finding the most violated constraint. The top candidates in output list of the
TopSlack are then re-ranked by multiple rankers, and we presented to use the Supervised
Kemeny Ranking technology for ranking aggregation to create the final rank list. The ex-
periments on the benchmark have shown that the algorithm we proposed is indeed better
than the several baseline methods, and is suitable for the Top-k ranking.

Although the empirical studies on benchmark collections justified the effectiveness of
the proposed algorithm, the statistical consistency of the ranking aggregation for Top-k
ranking is still unknown. In future work, we will focus on the consistency analysis on the
ranking aggregation method. We try to provide the sufficient and necessary condition for
ranking aggregation consistency, and based on it, derive the consistent ranking algorithm
for Top-k ranking.
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