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ABSTRACT. This paper proposes a novel adaptive controller designed method for global
asymptotical synchronization of master-slave systems. The new method is based on input-
to-state stability and small-gain theorem. The proposed approach gives the flexibility to
construct two adaptive control laws. Compared with existing works, the merit of the
adaptive controller with few parameters is that synchronization errors can reach zero
field at fast speed. Finally, numerical simulation results are given to validate the design
and analysis.
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1. Introduction. The research on the synchronization of various complex dynamical
systems and chaos systems has advanced significantly in the past two decades [1-5]. For
the master-slave systems, the synchronization objective is that the slave system mimics
the motion of the master system [6]. Up to now, many works on the synchronization of
the master-slave systems have been presented. For example, a discrete-time sliding mode
control scheme is a proposed scheme for a class of chaotic synchronization systems in [7].
In [8], the sampled-data controller is designed for master-slave synchronization of Chaotic
Lur’e systems with time delays by linear matrix inequality approach. The authors in [9]
have designed quantized sampled-data controllers to guarantee global exponential asymp-
totical synchronization of master-slave systems. For robust exponential synchronization
problem of a class of uncertain delay master-slave systems, adaptive method is given in
[10]. Linear feedback controllers are designed for master-slave synchronization of Yassen’s
chaotic system in [11]. Besides, more results on the synchronization of master-slave sys-
tems can be found in [12,13].

In these papers, linear and nonlinear feedback control methods to synchronize the
master-slave systems are presented. It is concluded that linear feedback control method
is an effective method for synchronizing chaotic systems based on synchronization cost
and error. It is well known that the synchronization cost is an important quality index
in judging control method for the synchronization of master-slave systems. To the best
of our knowledge, chaotic systems can be strongly sensitive to initial conditions [14], and
synchronization cost can be affected greatly by different initial conditions. The above
observation shows the open problem to be worth researching that how to find a design
control method such that the synchronization cost and errors can be reduced. The idea
of ISS (input-to-state stability) is proposed in [15], and the research about input-states
stability gained many researchers favor and come up with achievements for this problem
[16-20]. From these research works, we know that the states of system must be bounded

803



804 Y. FAN, W. WANG AND Y. LIU

with small input without considering initial states. In order to reduce synchronization
cost and error, so we take measures of ISS control design idea to control the synchroniza-
tion of master-slave systems. Our contributions are as follows. Firstly, the structure of
controller is simplified by adopting state feedback. Secondly, our method could eliminate
the synchronization cost and error of the master-slave systems. Finally, the parameters
in adaptive controller are too less such that they can be implemented in engineering
applications.

The paper is organized as follows. In Section 2, some definitions and problem statement
are given. In Section 3, the methodology of synchronization for master-slave systems by
adaptive control method is developed. Simulation example is used to demonstrate the
effectiveness of proposed schemes in Section 4. Section 5 gives the conclusions of this

paper.

2. Problem Statement and Preliminaries. Consider the nonlinear dynamical system
described as follows:

&= g(z,u) (1)

where state vector x € R", u € R™ denote input vector, and u : [0, 00) — R™ is piecewise
continuous bounded function. ||u(-)||,, = sup ||u(t)||, in which, L7 is a set of all input
>0

vector. ¢(0,0) =0, and g(z,u) is locally Lipschitz on R" x R™.

Definition 2.1. [21] System (1) is said to be input-to-state stable if there exists a class
KL function B(-,-) and a class K function (-), which is called a gain function, such that,
for any input u(-) € L™ and any 2° € R", the response xz(t) of system (1) in the initial
state (0) = x° for all t > 0 satisfies

lz@)[] < max {B([[=°[, 1), 7([[u(-) 1)} (2)

Definition 2.2. [21] For system (1), and function V(-) € C', x € R", if there exist class
Ko functions af-), a(-), a(), and a class K function x(-) such that

al[z]]) < V() < a(|l=()) (3a)

oV
Izl 2 x(lull) = Z—-9(z, ) < —a(|lz]) (3b)
the function V (+) is called an ISS-Lyapunov function for system (1).

Theorem 2.1. [21] System (1) is input-to-state stable if and only if there exist two class
K functions v(-) and ~v(-) such that, for any input u(-) € L™ and any 2° € R", the
response x(t) in the initial state (0) = 2° satisfies

7l < max {0(][2°[), 7(u()l])} (1a)
Jim sup ()] < 5 ( Jim sup [u(®)]] (1)

Remark 2.1. By the above analysis, if system (1) is 1SS stable, then there erist Ky
functions a(-), a(-), al(-), and K function x(-), which can guarantee Theorem 2.2 hold,
gain function v(-) can be defined as follows:

Y(r) =a todaox(r) (5)

Theorem 2.2. [21] (Small-gain Theorem): If vi(v2(r)) < r for all r > 0, system (1),
viewed as a system with state x = (x1,z2) and input u, is input-to-state stable.
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Master system is considered in this paper as follows:

l.'l = ar1 — T2T3
i‘Q = —bl'Q + 123 (6)
l.'3 = —CT3 + T129

where, a > 0, b > 0, ¢ > 0 are control parameters, |x1| < My, |zo| < My, |z3| < M3, and
My, My, Ms are three known constants states bounded of (6).
Slave system is chosen as:

Y1 = ayi — Y23 + uq
Yo = —bys + y1y3 + Uy (7)
Yz = —cyz + Y1Y2 + u3

If we define synchronization errors as e; = y; — ¥y, €a = Yo — T9, €3 = y3 — x3, from
master system (6) and slave system (7), the synchronization errors dynamical system are
obtained:

él = ae; — T3y — T9€3 — €9€3 + Uy
ég = T3€éq —b62+$163+6163+U2 (8)
ég = X9€1 + T 162 — Cc€3 + €169 + U3

we denote e = (e, €9, e3)”, the controller u = (uy, uz, uz)” in system (8) will be designed
by the following control objective.

Control objective: The main goal in this paper is to construct the adaptive controller
u = (uy,uz,uz)” such that the synchronization error vector e = (ey, 3, e3)7 is tllglo e(t) =
0.

Assumption 2.1. Assume that function f(e) = ejeq satisfies Lipschitz condition on a
bounded set V', that is, there exists a positive constant L (maybe unknown) such that
1f(e") — f(e?)| < L|let —e?|| for e, e € V.

3. Main Results. In this section, the following adaptive controller (9)-(11) will be used
to guarantee the master system (6) and slave (7) to be synchronization.

0,0,07, el > ol =
— 9
u { (ur, 2y 13), lell < |l = ®)

_e1e2
2
p2

where u; = kiey, uy = koeo, uz =
Updated laws:

parameters ki, ko are to be designed.

2
_ [ w2l el ke 20 e e el el > o=
_M;FZL |p - 1| |63|7 ||6|| S |p|w
i 0, lel| > [p| =
T 11
{ £ o —1llesl, el < lpl= (11)

in which, 1, ps, and w are given positive constants.

Theorem 3.1. If Assumption 2.1 holds, the parameters ki, ko of control gain satisfy
ki < —a — M, ky < b — M, system (8) is global asymptotical stable by
employing controller (9) with updated laws (10)-(11) if there exists a small scalar o > 0
satisfying inequality ¢y = c— 20, +2c— 2 <2, e +2c—c? <2,2c—2—c% > 0.

Proof: We give the two cases controller design according to control objective.
Case (1): [le]| > |p[ =
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We adopt open-loop control and consider s = s(e, p, L) = |le||” — p*w® + 0.56 7' L2. Tt
is obviously shown that s > 0. Consider the positive function V = %82, the derivative of
V' about ¢ along (8) is obtained:

0 = 53 < s{2 el al + o + I + 2] + ]
42 [, +ler) es] - eo] — 2pp? + 51 L1] )

From Theorem 3.1, we can get
V< —\s (12)

From the result of [22], (12) implies that the error state of the (8) can reach on the
sliding surface s = 0 in finite times.
Case (2): [le]| < |p|=

If Assumption 2.1 holds, the controller (u1, us, u3)T is employed in this case, then system
(8) can be written as:

él = (CL + k1)61 — T3€9 — T9€3 — €2€3
ég = Tr3e| — (b — k2)62 + x1e3 + ere3 (]_3)

é3 = To€1 + T1€9 — Ce3 + €162 — 6;32

System (13) can be seen as two sub-systems, in which é; and é; are the first sub-system,
é3 is the second sub-system. Now, the first sub-system is considered:

él = (Cl + k1)61 — X3€g — T2€3 — €9€3 (14)
é2 = T3€1 — (b — kg)eg + x1e3 + ere3
where, e; and ey are to be seen as states, e3 to be seen as input, taking the following
Lyapunov function candidate:
1
Vi(er,e) = 5(6% +é3) (15)

then the time derivative of Vi (eq, e3) about ¢ along (14), we can get

Viler, e2) = (a+ ki)ef + (ks — b)es + les| (|z1] - [ea] + |22 |en])

(16)
<(a-+ki)el + (ky —b)es + (M, |ea| + Maler]) |es)

Let x1(r) = 1\401;21('/!27“’ when ||(e1,e2)|| = v/e? + €3 > x1(Jes]) holds, then we can get the

following inequality:

M, + M.
(M |e2| + Mo [eq]) |es] < %\/ ef + e5(M lea| + Mo |eq])

20
M, + M.
g%\/efjwa% <M1\/6%+€%+M2\/6%+€%> (17)
My + M,
:ﬁ(eereg)

From (16) and (17), we obtain

. My + M.
Viler, e2) < (a+ ko)ed + (k= b)es + —— (e} + 3)
18)
My + M,)? My + Ms)? (
_ (s py 4 QO F M) el + by QO M) e
c— 20 c— 20
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Assume that k& < —a — % ke < b— %, then we can find a small scalar

o > 0, and a constant 1 > 0, which satisfies as following inequality:

M, + M,)? M, + M,)?
a+k1+M<—n, —b+k2+( 1+ M) (19)
c— 20 c— 20
We arrive at _
Vi(er, e2) < —nlef + e3) (20)

We know that K, function can be chosen as a(r) = a(r) = 3%, a(r) = nr?, and
function Vi (e, e2) is defined as Definition 2.2, then V; (eq, e3) is called as an ISS-Lyaounov
function of (14), such that sub-system (14) is stable.

Now, the second sub-system is considered:

er€e
€3 = Xo€] + T1ey — Cce3 + €16y — % (21)
in which, es is viewed as state, e; and ey are viewed as input, and we choose the following

function:
1 1 s
9 SHy L (22)

L +
/hp 9

‘/Z(e?npa f’) 92

63 +
Its time derivative is

. ~ €1 X
Vao(es, p, L) =e3 |:.ZU261 + x169 — ce3 + e1e9 — p—} + py pp + Ly 'L

< — cei + es|

wl
My |ex| + My |€2|+W|P—1|] (23)

i pp+ iy LL - T—/)IL o= 1]+ es|
From undated laws (10) and (11), the following inequality is obtained
Va(es, p, L) < —ce5 + leg| (Mo [er] + M |es) (24)
Because of inequality |e;| < \/e] +e3, |ea] < /€2 + €3, let xa(r) = Ajlf]‘\} r, since
]\;2;2;\’/[1 \/€2 4+ p? + L2 > \/e? + €3 implies the following inequalities hold:
1| < 55221 /€3 + p? + L

lea] < sifm /3 + 02+ L2 (25)

les| < y/€3 + p? + L2
From (25), we know that

— 20 ~
les| (M |er| + M |es]) < es| ———— M v, e+ p? + L?(Msy + M)

(26)
= les| \/ €5 + p? + L2 (c — 20)
From (24) and (26) such that
Va(es, p, L) < —ce3 + lea] \/ €3 + o + L*(c — 20) (27)
we denote ¢ = ¢ — 20, because of
— =22 2 242 72 1 1)e2 212
lesl e§+p2+L2§ce3+e3+p+ (@ +Des+p° + (28)

2 N 2
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then, we can obtain

“/2(637p7 f/) S - (20_ 1- é2)‘/2(637p7 f’)
1 =2\, —17 2 1 9y —11 12 (29)
+§[1+(2c—1—0)u1 1p +§[1+(26—1—C),u2 | L

According to the condition of Theorem 3.1, 1, + 2¢ — & < 2, jig + 2¢ — & < 2, then we
get the following inequality:

‘./2(63;p7 i) S _(20_2—52)‘/2(63;% i) (30)
If we take class Ko, functions as a(r) = a(r) = 372, a(r) = (2¢ — 2 — 2%)r?, (30) implies
that function Vi (es, p, L) satisfies the condition of Theorem 3.1, so Vy(es, p, L) is an ISS-
Lyaounov function for sub-system (21), and we know the conclusion that system (21) is

input-to-output stable.
According to (5), the gain function can be given as:

Y1(72(r)) =

Therefore, in view of Theorem 2.2, the system (8) is globally asymptotically stable. We
have proved Theorem 3.1.

c— 20

< 31
penp N (31)

4. Simulation Example. In this section, we use adaptive controllers (9)-(11) to reveal
the adaptive control conformance, the initial values of undated laws as p(0) = 1, L(0) =
0.7, and the parameters in (9)- (11) are selected as w = 20, A = 200, 1y = 0.05, /Lg =0. 001
The initial values of the master system (6) are chosen as z;(0) = 1 29(0) =1, 23(0) =
and initial values of the slave system (7) are chosen as y;(0) = —10, yg( ) =
y3(0) = 15. Figure 1 shows the simulation results.

Case (a): If the parameters in master-slave system (6) and (7) are chosen as a = 0.4,
b = 12, ¢ = 5, the simulation results of master system (6) without any controller are
shown as Figure 1 and Figure 2.

—17

50 . . . . . ‘
- ol
- 0 W
50 1 1 1 1 1 L
0 5 10 15 20 25 30 35
time(sec)
(@)
20 . . . . . ‘
K(\.I 0 ]L \(. ).1 1[\
20 1 1 1 1 1 I
0 5 10 15 20 25 30 35
time(sec)
(b)
50 .
N 0 N M A
50 I 1 1 1 L 1
0 5 10 15 20 25 30 35
time(sec)
()

FIGURE 1. State trajectories of master system (6)



SYNCHRONIZATION FOR A CLASS OF CHAOTIC SYSTEMS 809
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FIGURE 2. Error trajectories of master-slave system (6) and (7) without control
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FIGURE 3. Error trajectories of master-slave system with controller in [11]

Figure 1 shows the state trajectories of the master-slave system without control input,
and we know that |z;| < 50, |z2] < 20, |x3] < 50. We used the first feedback controller
which is proposed in [11], and the response curves of error system (8) are shown in Figure
3.

Now, the adaptive control conformance of the proposed controller (9)-(11) is employed.
In view of Theorem 3.1, control gain can be chosen as k; = —2500, k; = —2300. The
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FIGURE 4. The state error trajectories of master-slave system under the
action of controller (9)-(11)
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FIGURE 5. State trajectories of the updated laws in the adaptive controller

(9)-(11)

synchronization errors response is shown as Figure 4. Figure 5 shows the state trajectories
of the updated laws p and L in the adaptive controller, which are bounded.

As can be seen from Figure 3 and Figure 4, controller (9)-(11) can force the synchro-
nization error of system (8) to reach zero at least time compared with the feedback control
method in [11] under the same initial state conditions.
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FIGURE 6. State trajectories of master system (6)
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FIGURE 7. Error trajectories of master-slave system (8) without control

Case (b): In this case, we choose other parameters as a = 4.5, b = 12, ¢ = 5. The
simulation results of master system (6) without any controller are shown as Figure 6 and
Figure 7.
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FIGURE 8. Error trajectories of master-slave system with controller in [11]

10
0
&
-10F 4
_20 L I L I 1 1
0 5 10 15 20 25 30 35
time(sec)
(@
10 T T : T T
0
o
10+ 4
-20 1 | 1 i 1 1
0 5 10 15 20 25 30 35
time(sec)
)
20
10+ E
SN
oF
-10 L I L L 1 1
0 5 10 15 20 25 30 35
time(sec)

©)

FIGURE 9. The state error trajectories of master-slave system under the
action of controller (9)-(11)

The proposed feedback controller in [11] is employed at first, and Figure 3 shows the
simulation results. From it we can find that the synchronization error is tending to zero
at time t = 20.
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FIGURE 10. State trajectories of the updated laws in the adaptive con-
troller (9)-(11)

From Figure 6, we know that |z1| < 100, |z2| < 50, |z3]| < 100, using adaptive controller
(9)-(11) with control gain k; = —5000, ky = —4800 in this paper, the synchronization
errors response are given in Figure 9, and Figure 10 shows the state trajectories of the
updated laws p and L in the adaptive controller, which are also bounded.

From Figure 8 and Figure 9, the synchronization error of system (8) with controller in
[11] can tend to zero at ¢ = 20, but the synchronization error of system (8) with controller
(9)-(11) reach zero at fast speed in this paper, which means that the control performance
is apparently improved after incorporating adaptive control method.

5. Conclusions. The synchronization control problem has been considered for a class of
master-slave systems. We have discussed that the system possesses two kinds parameters,
and used ISS stable with small-gain approach; we have proposed an adaptive control
algorithm which can guarantee the master-slave system to synchronize at fast speed. The
advantage of the design method in this paper lies in that the controller can reduce the
synchronization cost of the master-slave systems.
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