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Abstract. Multi-instance multi-label learning (Miml) is a powerful framework, which
deals with the problem that each example is represented as multiple instances and associ-
ated with multiple class labels. Previous works mostly focus on accuracy, while scalability
for large scale datasets has been rarely addressed. In this paper, we present a novel
framework – Multi-instance Multi-label Hashing (MimlH) to tackle both accuracy and
scalability issues of Miml tasks, which means that it can not only get good accuracy, but
also fast learning speed. MimlH leverages hashing technique. Specifically, it exploits the
hashing approach in two perspectives – bag-level hashing and instance-level hashing, which
replaces the dot-product kernel operator in the previous methods and effectively maps the
entire samples into hamming space, speeding up the process of learning tremendously.
Moreover, we also take the label information into account to enhance our framework.
We evaluate our approach on two popular data sets of Miml task, which were derived
from two real world applications – scene classification and text categorization. The ex-
perimental results show that the proposed framework performs better than previous works
on accuracy and efficiency in a balanced way.
Keywords: Multi-instance multi-label learning, Hashing, Scene classification, Text cat-
egorization

1. Introduction. Multi-instance multi-label learning (Miml) is a novel framework which
was initially derived from scene classification. In such a task, one image has multiple la-
bels owing to its complicated semantics; in addition, one image can be represented as
multiple instances because different image regions often provide different hints for the
labels [1]. Thus, in Miml, each example in the training set is associated with multiple in-
stances as well as multiple labels, which provides a natural formulation for those real-world
tasks involving ambiguous objects. Later, Miml was also applied to text categorization,
bioinformatics, image annotation, etc. [2, 3].

Recent years, many powerful approaches have been proposed for Miml problems, in-
cluding MimlBoost, MimlSvm, MimlSvmmi, MimlNN, M3Miml, D-Miml, InsDif,
SubCod, M3LDA, etc. [1-4]. Some of them solve the Miml problem in a degenerated
version, where Miml is transformed into single-instance multi-label learning (Siml) or
multi-instance single-label learning (Misl) first and then tackled by existing solutions.
Others resolve it in a direct way, where the problem is formalized into a regularization
one and then tackled directly. Moreover, Miml can also be used for Misl and Siml

problems by transforming examples into Miml representation and then addressing it by
the existing solutions.

From the above, we can find that Miml problems widely exist in our real world; some
algorithms in Miml framework have been proposed for such problems. However, most of

921



922 M. LIU AND X. XU

them only focus on accuracy, while the scalability for large scale data sets has been rarely
addressed. Thus, an Miml model will be much useful if it could consider both the accuracy
and scalability of such tasks. Motivated by this, in this paper, we present a novel approach
– Multi-instance Multi-label Hashing (MimlH) to tackle both accuracy and scalability
issues of Miml. MimlH exploits the hashing approach to solve the problem in two
perspectives – bag-level and instance-level, which replaces the dot-product kernel operator
in the previous methods and then effectively maps the entire samples into hamming
space, speeding up the process of learning tremendously. Moreover, we also take the label
information into account to enhance our framework. First, we use the original dataset to
get the predicted labels of the testing set. Then, we embed the original training labels
and predicted testing labels into the initial features to construct a new dataset. Finally,
we apply the new dataset to get the results. We evaluate our approach on two popular
data sets of Miml problems, which were derived from two real world applications – scene
classification and text categorization. The experimental results show that the proposed
framework performs better than some state-of-the-art works on accuracy and efficiency
in a balanced way.

The rest of this paper is organized as follows. Section 2 reviews the related works
including Miml and hashing approaches. Then, we propose our novel framework – the
Multi-instance Multi-label Hashing (MimlH) in Section 3. Section 4 reports the experi-
mental results on two popular data sets of Miml. Finally, Section 5 concludes this paper
and indicates several issues for future work.

2. Problem Statement and Preliminaries. Our work is closely related to multi-
instance multi-label learning and hashing approaches. Thus, in this section, we briefly
introduce some related works.

2.1. Multi-instance multi-label learning. In multi-instance multi-label learning, let-
ing X = R

d denote the input space of instances and Y = {1, 2, . . . , L} the set of class
labels, then the Miml training examples can be represented as {(Xi, Yi) | 1 ≤ i ≤ N},
where Xi ⊆ X is a bag of instances {xi

1, x
i
2, . . . , x

i
ni
} and Yi ⊆ Y is a set of labels

{yi
1, y

i
2, . . . , y

i
li
} associated with Xi. Here, ni is the number of instances in Xi and li the

number of labels in Yi. Miml aims to learn a function fMIML : 2X → 2Y from the train-
ing sets and study the ambiguity in both input space and output space. Apparently, the
framework of Miml is closely related to the learning framework of multi-instance learning
[5], multi-label learning [6, 7].

Multi-instance learning [5], or multi-instance single-label learning (Misl), was orig-
inated from drug activity prediction problem by Dietterich et al. The task of Misl

is to learn a function fMISL : 2X → {+1,−1} from a set of Misl training examples
{(Xi, yi) | 1 ≤ i ≤ N}, where Xi ⊆ X is a bag of instance {xi

1, x
i
2, . . . , x

i
ni
} and

yi ∈ {+1,−1} is the binary label of Xi. Multi-label learning [6, 7], or single-instance
multi-label learning (Siml), was derived from the investigation of text categorization
problems. The task of Miml is to learn a function fSIML : X → 2Y from a set of Miml

training examples {(xi, Yi) | 1 ≤ i ≤ N}, where xi ∈ X is an instance and Yi ⊆ Y is a
set of labels {yi

1, y
i
2, . . . , y

i
li
} associated with xi. Misl and Siml study the ambiguity in

the input space and output space, respectively. A number of Misl and Siml learning
algorithms have been proposed [8-16], and applied to many applications successfully, in-
cluding text and image categorization [6, 17-23]. More related works on Misl and Siml

can be found in [24, 25].
According to the above definitions, it can be seen that the traditional supervised learn-

ing (Sisl) is a degenerated version of either Misl or Siml. Moreover, Sisl, Misl, Siml
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can all be regarded as degenerated versions of Miml. Therefore, using Misl or Siml

as a bridge becomes an intuitive way to solve the Miml task [1, 4]. From this point
of view, many typical methods have been proposed including MimlBoost, MimlSvm,
MimlNN, MimlSvm-mi, etc. Later, considering the information loss of the degenerated
version reformulation, some direct ways have been put forward by explicitly exploiting
the connections between the instances and labels, including regularization framework
D-Miml, maximum-margin method M3Miml, probabilistic generative model DBA ap-
proach, RankingLoss approach, topic-model M3LDA, etc. [2-4, 26, 27]. Moreover, Miml

can also be used for multi-instance single-label learning and single-instance multi-label
learning by transforming the given data sets into Miml samples firstly and then address-
ing them by the existing solutions. However, most of the above methods only focus on
accuracy, while the scalability for large scale data sets has been rarely addressed.

2.2. Hashing approaches. Hashing is an effective technique for approximate nearest
neighbor search with rapid speed. In the recent years, many hashing methods have been
proposed, such as locality sensitive hashing (LSH) [28], spectral hashing (SpH) [29], and
self-taught hashing (STH) [30]. By mapping data points into hamming space, hashing
methods can obtain nearest neighbor search in sub-linear time. The critical factors for a
successful code include three aspects: (1) easily computing for a novel input; (2) requiring
a small number of bits to code the full dataset; (3) mapping similar items to similar binary
codewords.

The intuition behind LSH [28, 31] is that at least one of the hash functions can hash
nearby data points into a same bucket with high probability. Therefore, LSH uses a family
of locality sensitive hash functions composed of linear projection over random directions
in the feature space. It preserves the similarity of the items and could be easily computed.
However, the precision improves with the increasement of the number of bits, which ends
with very inefficient codes with long bits. Recently, for the possibility of performing real-
time search due to the quick similarity computation by using bit XOR operation in the
Hamming space, compact binary code approaches [32] such as spectral hashing (SH) [29],
self-taught hashing (STH) [30] were proposed. Thus, how to generate the compact binary
codes for the data points becomes the primary challenge. In the learning phase, spectral
hashing applies spectral graph partitioning to get the hash codes of training data, which
is similar to self-taught hashing. In addition, in order to calculate the binary codes for
a new data point, spectral hashing assumes that the data are uniformly distributed in a
hype-rectangle.

Rank correlation measures are known for their resilience to perturbations in numeric
values and are widely used in many evaluation metrics. Such ordinal measures have
been rarely applied in treatment of numeric features as a representational transformation.
In this paper, we use the Winner-Take-All Hashing (WTA) [33], which is a family of
algorithms where each WTA hash function defines an ordinal embedding and a related
rank-correlation similarity measure. In brief, WTA is well suited as a basis for locality-
sensitive hashing and offers a degree of invariance with respect to perturbations in numeric
values [33].

3. Multi-instance Multi-label Hashing.

3.1. The framework of MIMLH. Figure 1 illustrates the flowchart of MimlH, which
can be separated into two stages: training stage and testing stage. For each stage, we
describe it as two steps: without label step and with label step.

In summary, MimlH works in the following way.
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Figure 1. The framework of Multi-instance Multi-label Hashing

1. Each image/document is represented as a bag of instances with multi-labels. Leting
X = R

d denote the input space of instances and Y = {1, 2, . . . , L} the set of class
labels, then the Miml training examples can be represented as {(Xi, Yi) | 1 ≤ i ≤ N},
where Xi ⊆ X is a bag of instances {xi

1, x
i
2, . . . , x

i
ni
} and Yi ⊆ Y is a set of labels

{yi
1, y

i
2, . . . , y

i
li
} associated with Xi. Here ni is the number of instances in Xi and li

the number of labels in Yi.
2. In the training stage, we use the feature and labels of the training samples to learn

a hashing model (Hashing model-1). Here the hashing model can be implemented in
two perspectives, which will be illustrated in the next section, and now we denote it
as:

fMIMLH : 2X → 2Y (1)

3. In the testing stage, we use the learned hashing model to predict the test samples’
labels (Predicted labels-1).

4. In the training stage, we embed the original labels to the training feature, ending in a
reconstructed dateset with label information embedded in feature. The reconstructed
dataset can be represented as {(X ′

i, Yi) | 1 ≤ i ≤ N}, where X ′
i ⊆ X ′(X ′ = R

d+L)
is a bag of instances {(xi′

1 , Yi), (x
i′

2 , Yi), . . . , (x
i′

ni
, Yi)} and Yi ⊆ Y is a set of labels

{yi
1, y

i
2, . . . , y

i
li
} associated with X ′

i.
Then, we use the reconstructed dateset to learn a new hashing model (Hashing

model-2), denoted as:

f ′
MIMLH : 2X

′

→ 2Y (2)

5. In the testing stage, we use the new hashing model to predict the new test samples’
labels (Predicted labels-2).
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In the end, we can get the “Predicted labels-1” from the without label hashing step
and the “Predicted labels-2” from the with label hashing step. This means that we can
get a better accuracy by introducing the label hashing step, and a better efficiency by
using the hashing models.

Note that we use WTA [33] as the hashing method and the MimlSvm and MimlNN

as the Miml methods in the experiments; however, other hashing methods and Miml

methods can also be adapted to this framework.

3.2. Two perspectives of hashing. Here the hashing model can be implemented in
two perspectives: bag-level and instance-level.

3.2.1. Bag-level hashing. Inspired by the original solutions, we can tackle the Miml prob-
lem by identifying its equivalence in the traditional supervised learning framework, e.g.,
using multi-label learning as the bridge [1, 4]. In brief, we first transform the Miml prob-
lem into Siml problem, and then hash the whole bag into binary codes. Consequently,
we can solve it by a multi-label learning method. In this paper, we use the MlSvm and a
two-layer Neural Network. We call them as MimlHSvmB and MimlHNNB, respectively.

In detail, we first perform k -medoids on training data, and divide them into k par-
titions whose medoids are Mt(t = 1, 2, . . . , k), respectively. Then, we transform the
original multi-instance examples Xu into a k -dimensional numerical vector zu, where
the ith(i = 1, 2, . . . , k) component of zu is the distance between Xu and Mi, namely,
dH(Xu, Mi), where dH(A, B) is the Hausdorff distance between A and B: dH(A, B) =
max{maxa∈A minb∈B ‖a− b‖, maxb∈B mina∈A ‖b− a‖}. Thus, the original Miml examples
(Xu, Yu)(u = 1, 2, . . . , N) have been transformed into multi-label examples (zu, Yu)(u =
1, 2, . . . , N).

Then, we can use hashing approaches to map the instances into hamming space, repre-
senting the whole bag into binary codes. Here we exploit the WTA as the hashing method,
which is represented as fhash, and then we can obtain the hashed multi-label instances:

Bu = fhash(zu) u = 1, 2, . . . , N (3)

Then, given the data set, a multi-label learning function fMLL can be learned, which
can accomplish the desired Miml function. By using MlSvm and a two-layer Neural
Network (NN) to implement fMLL, we can get MimlHSvmB, MimlHNNB, separately.
More details about MlSvm, NN can be found in [21, 38]. Specifically, the function can
be written as:

fMIMLHB(Xu) = fMLL(Bu) = fMLL{fhash(zu)} (4)

3.2.2. Instance-level hashing. In this scheme, we first hash each instance into binary codes;
then, use the traditional methods to resolve the transformed multi-instance multi-label
problem by replacing the dot-product kernel operator in the traditional methods. By doing
this, we can effectively map the entire samples into hamming space, and speed up the pro-
cess of learning tremendously. Here, we use MimlSvm, MimlNN, as the the traditional
Miml methods, separately. We call the entire solution as MimlHSvmI, MimlHNNI.
We get the hashed multi-instance multi-label samples with following function:

Bi = {bi
1, b

i
2, . . . , b

i
ni
} = fhash({x

i
1, x

i
2, . . . , x

i
ni
}) (5)

where i = 1, 2, . . . , N . Then, the entire process can be written as:

fMIMLHI(Xi) = fMIML(fhash({x
i
1, x

i
2, . . . , x

i
ni
})) (6)

These schemes of hashing are shown in Figure 2.
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Figure 2. Two perspectives of hashing

3.3. The details of hashing. In this paper, we encode the original features as a high-
dimensional sparse binary descriptor using a Winner-Take-All Hash [33]. WTA is well
suited as a basis for locality-sensitive hashing, where the deterministic functions are non-
linear and produce sparse descriptors. It has been shown to yield significant improvements
on VOC 2010 using simple linear classifiers, which can be trained quickly. Besides, it is
intuitive that the information stored in a WTA hash allows one to reconstruct a partial
ordering of the coefficients in the hashed vector.

We use a subfamily of the hash functions derived in [33], where each WTA hash is
defined by a sequence of N permutations of the elements in the original feature space.
Each permutation consists of a list of indices of the vector; thus, we only need to retain the
first K indices for each of the N permutations to implement a WTA hash function. For
each (N*K )-length descriptor, it comprises N spans of length K. The term “winner take
all” means that, each span consists of all zeros except the kth entry, which is set to one to
encode the index of the maximum value in the first K entries of the permutation. Each
descriptor is compactly represented in N ∗⌈log2 K⌉ bits. Comparison is the only operation
involved in the entire process, so the hashing scheme can be implemented completely with
integer arithmetic. Moreover, it can be efficiently coded without branching and branch
prediction penalties. The algorithm is summarized in Algorithm 1.

For instance, suppose that N = 2 and K = 4, the original vector is [10, 5, 2, 6, 12, 3], and
the permutations [1, 4, 2, 5, 0, 3] and [4, 5, 2, 0, 1, 3], the resulting WTA descriptor is [0001]:
the first K indices of each permutation, [1, 4, 2, 5] and [4, 5, 2, 0], selecting [5, 12, 2, 3] and
[12, 3, 2, 10], whose maximum values have the indices 1 and 0 for leftmost in the binary
vector.

Each WTA hash function defines an ordinal embedding and a related rank-correlation
similarity measure, which offers a degree of invariance with respect to perturbations in nu-
meric values [33]. If the above vector transformed into [22, 12, 6, 14, 26, 6] or [11, 4, 3, 7, 13,
2], where the first is a scaled and offset version of the original vector while the last has
each element perturbed, which results in the same or a different ranking of the elements
but the same maximum of the first K elements, the results in the end are the same as
the original code.
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Algorithm 1 WTA-Hash

Input: A set of m permutations Θ; selected size K ; input vector X.
Output: Sparse vector of codes CX .

for each permutation θi in Θ do

Permute elements of X according to θi to get X’ ;
Initialize ith sparse code cxi

to 0;
set cxi

to the index of the maximum value in X ′(1 . . .K):
for j = 0 to K − 1 do

if X ′(j) > X ′(cxi
) then

cxi
= j

end if

end for

end for

CX = [cx0
, cx1

, . . . , cxm−1] , C contains m codes, each taking a value between 0 and
K − 1

4. Experiments. In this section, we demonstrate the effectiveness and efficiency of our
proposed MimlH methods by experiments on two publicly available data sets: “miml-
image-data” and “miml-text-data”, which were derived from two applications of real-world
Miml learning tasks [1, 2, 4], i.e., scene classification and text categorization problems.
Note that the proposed framework can also work on other Miml tasks.

4.1. Experimental setup. The “miml-image-data” was derived from scene classification
which was studied by Zhou and Zhang [1] in their investigation of the Miml framework.
The data set is made up of 2,000 natural scene images collected from the COREL image
collection and the Internet, belonging to the classes desert, mountains, sea, sunset, and
trees, which are manually assigned to each image. In the data set, more than 22% of the
data set belongs to more than one class, where the average number of labels per image
is 1.24 ± 0.44. By using the SBN image bag generator [19], each image is represented as
a bag of nine instances, where each instance is a 15-dimensional vector, corresponding to
an image patch.

Moreover, we have also tested MimlH on text categorization problems. Specifically,
the widely studied Reuters-21578 collection [34] is used in experiment, where the seven
most frequent categories are considered. After removing documents whose label sets or
main texts are empty and randomly removing documents with only one label, a text
categorization data set containing 2,000 documents is obtained. Documents belonging to
more than one class comprise over 15% of the data set and the average number of labels
per document is 1.15 ± 0.37. Each document is represented as a bag of instances using
the sliding window techniques [8], where each instance corresponds to a text segment
enclosed in one sliding window of size 50 (overlapped with 25 words). “Function words”
on the Smart stop-list [35] are removed from the vocabulary and the remaining words are
stemmed. Instances in the bags adopt the “Bag-of-Words” representation based on term
frequency [34, 36]. For the sake of effectiveness, dimensionality reduction is performed by
retaining the top 2% words with the highest document frequency [37]. Eventually, each
instance is represented as a 243-dimensional feature vector.

The characteristics of the above data sets are summarized in Table 1.
MimlH is compared with the original non-hash Miml methods on both accuracy and ef-

ficiency. We implement the bag-level solutions MimlHSvmB, MimlHNNB and instance-
level solutions MimlHSvmI, MimlHNNI, which are represented in two versions including
label information and without label information for each algorithms, compared with the
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Table 1. Characteristics of the data sets

Data set
Number Number Number

Instances Labels

of examples of classes of features
per bag per example (k)

min max mean±std k=1 k=2 k≥3
Scene 2,000 5 15 9 9 9.00±0.00 1,543 442 15

Reuters 2,000 7 243 2 26 3.56±2.71 1,701 290 9

original non-hash methods, MimlSvm, MimlNN, separately, all of which are set to take
the best parameters as reported in the primitive papers [1, 4]. Concretely, the Gaussian
kernel with γ = 0.22 is used to implement MimlSvm and the parameter k is set to be
20% of the number of training images, and the ratio and λ are set to be 0.4 and 0.5,
respectively in MimlNN.

Multi-instance multi-label learning algorithms make multi-label predictions, which can
be evaluated according to five popular multi-label metrics, i.e., hamming loss, one-error,
coverage, ranking loss and average precision. We also report the learning time of each
method. Therefore, the performance of each compared algorithm can be evaluated ac-
cording to the above six metrics. As for average precision, the bigger the value is, the
better the performance is. While for the other five metrics, the smaller the value is, the
better the performance is.

Use the same denotation as before, given test set T = {(X1, Y1), (X2, Y2), . . . , (Xt, Yt)},
the six criteria are defined as below. Here, h(Xi) returns a set of proper labels of Xi,
h(Xi, y) returns a real-value indicating the confidence for y to be a proper label of Xi,
and rankh(Xi, y) returns the rank of y derived from h(Xi, y). The detailed definitions of
these metrics are described as follows.

• The hamming loss evaluates how many times an object-label pair is misclassified,
i.e., a proper label is missed or a wrong label is predicted, which can be defined as:

hamming − lossT (h) =
1

t

t
∑

i=1

1

|Y|
|h(Xi)△Yi| (7)

where △ stands for the symmetric difference between two sets. The performance is
perfect when hamming− lossT (h) = 0; the smaller the value of hamming− lossT (h)
is, the better the performance of h is.

• The one-error evaluates how many times the top-ranked label is not a proper label
of the object, which can be defined as:

one − errorT (h) =
1

t

t
∑

i=1

‖[arg maxy∈Y h(Xi, y) 6∈ Yi]‖ (8)

The performance is perfect when one − errorT (h) = 0; the smaller the value of
one − errorT (h) is, the better the performance of h is.

• The coverage evaluates how far it is needed, on the coverage, to go down the list of
labels in order to cover all the proper labels of the object, which can be defined as:

coverageT (h) =
1

t

t
∑

i=1

maxy∈Yi
rankh(Xi, y) − 1 (9)

It is loosely associated with precision at the level of perfect recall. The smaller the
value of coverageT (h) is, the better the performance of h is.
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Figure 3. The performance of each method implemented by NN (on the
scene classification data) changes as the number of training examples in-
creases. In each subfigure, the lower the curve is, the better the performance
of the algorithm is.

• The ranking-loss evaluates the average fraction of label pairs that are disordered for
the object, which can be defined as:

ranking − lossT (h) =
1

t

t
∑

i=1

1

|Yi||Yi|
(|{(y1, y2) |h(Xi, y1)

≤ h(Xi, y2), (y1, y2) ∈ Yi × Yi}|
)

(10)

The performance is perfect when ranking − lossT (h) = 0. The smaller the value of
ranking − lossT (h) is, the better the performance of h is.

• The average-precision evaluates the average fraction of labels ranked above a partic-
ular label y ∈ Yi, which can be defined as:

average − precisionT (h)

=
1

t

t
∑

i=1

1

|Yi|

∑

y∈Yi

|{y′ | rankh(Xi, y
′) ≤ rankh(Xi, y), y′ ∈ Yi}|

rankh(Xi, y)

(11)

The performance is perfect when average− precisionT (h) = 1. The larger the value
of average − precisionT (h) is, the better the performance of h is.

• The time of each method is recorded to compare the efficiency of these approaches.

4.2. Evaluation and discussion. For both scene and Reuters data, we first randomly
choose 1000 samples from the original data set as the test set. The remaining examples
are then used to form the potential training set, where training set is created by randomly
picking up N examples from the potential training set. In this paper, N ranges from 200
to 800 with an interval of 100. For each value of N, twenty different training sets are
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(c) One error
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(e) 1-average precision
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(f) Time

Figure 4. The performance of each method implemented by SVM (on the
scene classification data) changes as the number of training examples in-
creases. In each subfigure, the lower the curve is, the better the performance
of the algorithm is.

created by repeating the pickup procedure. We report the average test performance of
each algorithm trained on the twenty training sets.

Figure 3 and Figure 4 illustrate the performance of each method implemented by NN
and SVM on the scene classification data. For each algorithm, when the training set size is
fixed, the average values of the twenty independent runs are depicted. It is obvious that as
the number of the training set increases, the performance turns better. Note that, for the
sake of convenience, we plot the 1-average precision instead of average precision. Thus,
in each subfigure, the lower the curve is, the better the performance of the algorithm
is. Accordingly, Figure 5 and Figure 6 report the experimental results on the Reuters
categorization data in the same way.

From these figures, we can see that the proposed framework performs in a similar
accuracy and a much better speed compared with the previous works:

• First, each algorithm with label information performs better or similarly to the
corresponding methods without label information on accuracy while with a nearly
double time. In detail, on both data set, the algorithm with label information
performs better than the original method with the bag-level hash and instance-level
hash approach, and performs similarly to the corresponding non-hashing methods.
We think it is due to that the label information is similar with the hash code and
supplementing effective information for the hashing methods, while it is dissimilar
with the original feature and ends in little improvement in performance.

• Second, hashing methods perform better than corresponding non-hash methods ap-
plying MimlSvm while performing worse or similarly employing MimlNN. It is
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Figure 5. The performance of each method implemented by NN (on the
Reuters data) changes as the number of training examples increases. In
each subfigure, the lower the curve is, the better the performance of the
algorithm is.

reasonable to have a worse accuracy with hashing method since it is an approximate
solution to the original problem.

• Third, instance-level hashing performs better than the bag-level hashing. Instance-
level hashing exploits more meticulous perspective than the bag-level one, resulting
in better performance.

• Fourth, for all the methods, hashing methods speed up in training phase tremen-
dously.

In conclusion, the experimental results show that the proposed framework gets similar
accuracy to those of previous methods; however, it is much better than those methods on
efficiency. Thus it performs better than those previous works on accuracy and efficiency
in a balanced way.

5. Conclusions. In this paper, we propose the Multi-instance Multi-label Hashing (Mim-

lH) to tackle both accuracy and scalability issues of Miml. MimlH exploits the hashing
approach in two perspectives – bag-level hashing and instance-level hashing, which re-
places the dot-product kernel operator in the previous methods, effectively maps the
entire samples into hamming space, and speeds up the process of learning tremendously.
Moreover, we also take the label information into account to enhance our framework.
We evaluate the proposed approach on two popular data sets of Miml – scene classifica-
tion and text categorization. The experimental results show that the proposed method
outperforms those previous methods on accuracy and efficiency in a balanced way.

Note that MimlH is a general learning framework, it can work on all Miml tasks,
e.g., text categorization, and image annotation. In addition, it is promising to achieve
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(c) One error
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(e) 1-average precision
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Figure 6. The performance of each method implemented by SVM (on the
Reuters data) changes as the number of training examples increases. In
each subfigure, the lower the curve is, the better the performance of the
algorithm is.

even higher effectiveness and efficiency if more powerful hashing approaches and Miml

methods can be employed.
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