International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 3, June 2015 pp. 973-983

LIVE MIGRATION OF VIRTUAL DISTRIBUTED
COMPUTING SYSTEMS

JAN FEsL'?, LuBoS PLcH!, MARIE DOLEZALOVA! AND FRANTISEK DRDAK!

nstitute of Applied Informatics
University of South Bohemia
Branisovské 31, Ceské Budéjovice, 370 01, Czech Republic
fesl@post.cz

2Department of Computer Science
Czech Technical University in Prague
Karlovo Namésti 13, Prague, 121 35, Czech Republic

Received April 2014; revised November 2014

ABSTRACT. The live migration technique is a very hot topic today in connection with the
virtualization technology, which is widely used in different computing environments from
the single processor computers to the large cloud solutions and data centers at present.
Live migration of the given virtual machines brings some aspects, which can cause trou-
bles in comparison to much easier offline migration of them. We have studied current
architectures used for live migration and their optimizations for more efficient migration
between various physical hosts. The specific part of our research involves studies regard-
ing the live migration of the group of virtual machines representing either cooperating
cluster nodes or distributed computing system. From the point of view of their complete
live migration they have similar behaviour. The basic aspects and principles of this type
of migration functionality are discussed in the following sections. This paper concludes
by the introduction of new live migration algorithm, which can be suitable for automated
live migration of various distributed architectures as a whole.

Keywords: Live migration, Virtualization, Memory compression, Distributed comput-
ing, Cluster, Grid

1. Live Migration of Virtual Machines.

1.1. Virtual machine components. The virtual machine is a concept, which divides
one physical computer into many virtual computers. Computing resources of this physical
computer are shared among all virtual machines. There are two basic concepts used for
virtualization [1] — hardware and software (sometimes called paravirtualization). The first
type is more powerful, but needs one physical computer dedicated to virtualization, and
the second is largely based on some part of operating system and allows larger system
utilization for various applications. Every virtual computer consists of three main parts
— virtual (emulated) computer hardware, virtual memory and virtual data storage (hard
disk). Virtual data storage is mostly located on shared network area storage device with
a network file system which simply allows its utilization by individual physical hosts.

1.2. Virtual machine migration — strategies and principles, current state. There
are two main strategies of a virtual machine migration — offline and online. First type
is much simpler, because the whole migration process consists only of three main steps.
Following diagram shows the migration of a virtual machine from physical host A to
another physical host B. More detailed information can be found in [2].

Three phases of an offline migration process are as follows.

973



974 J. FESL, L. PLCH, M. DOLEZALOVA AND F. DRDAK

1) Virtual machine (VM) pushing and stopping on physical host A.

2) Copying saved memory (M) and virtual hardware settings (H) of VM to physical
host B. Data storage (hard disk) at B is mostly only reloaded from a shared network
device.

3) Execution of VM (M, H) on physical host B.

This technology is today well known and widely used for virtual machine migration.
The main disadvantage is that some services provided by virtual machine are not available
during the migration process (lasting tens of seconds or more [3]). This solution cannot be
readily utilized for services such as DNS, SMTP, LDAP, RADIUS because these services
require high availability. Similar situation appears in distributed computing systems,
because it is not really possible to stop all the nodes at the same time.

A live virtual machine migration is a more complicated problem, because memory
content of the migrating machine is under permanent change all the time. There is another
limitation caused by different available data throughput into virtual machine memory in
the scope of the same physical environment and between different physical hosts connected
by means of the network. A maximal theoretical data throughput to the memory of a
virtual machine can be hundreds of gigabits per second [4] unlike throughput between
two networkconnected physical hosts, where it may be only tens of gigabits per second
— a typical value for infiniband, latest ethernet technology and fiber channel. Frequent
changes in memory pages and low network throughput can cause impossibility to finish
the migration process.

Live memory migration scheme is described in detail in [2,3]. The basic migration
scheme is as follows. A virtual machine VM is migrated from physical host A to physical
host B. Gustaffson’s work [22] tries to accelerate this phase using the ultrafast network
area storage.

There are six phases of live migration.

1) Pre-Migration. An active VM runs on physical host A. To speed up any future
migration, a target host may be preselected where the resources required to receive
migration will be guaranteed.

2) Reservation. A request is issued to migrate given VM from host A to host B. B
must confirm that it has the necessary resources and reserves a VM container of
appropriate size. Failure of resource reservation here means that the VM simply
continues to run on unaffected.

3) Iterative Pre-Copy. During the first iteration, all memory pages are transferred from
A to B. Subsequent iterations copy only those pages modified during the previous
transfer phase.

4) Stop-and-Copy. Suspend the running VM instance at A and redirect its network
traffic to B. CPU state and any remaining inconsistent memory pages are then
transferred. At the end of this stage there is a consistent suspended copy of the VM
at both A and B. The copy at A is still considered to be primary and is reactivated
in case of failure.

5) Commitment. Host B indicates to A that it has successfully received a consistent
VM image. Host A acknowledges this message as commitment of the migration
transaction: host A may now discard the original VM, and host B becomes the
primary host.

6) Activation. The migrated VM on B is now activated. Post-migration code runs to
reattach device drivers to the new machine and reuses the IP addresses.



LIVE MIGRATION OF VIRTUAL DISTRIBUTED COMPUTING SYSTEMS 975

tn T'| t: e T'n

- e e —
Memory image Round 1 2 3

Source host L N
transmitting modified pages

Round 1

]

Destination host

FIGURE 1. Live computer migration scheme

SOURCE Host DESTINATION Host
VM VM
Migration CBC _
Deamon Decompression g
/
7
/ VMM
Shadow
Page Table
HARDWARE HARDWARE

FiGURE 2. Compressed memory migration diagram

1.3. Memory compression for faster migration.

1.3.1. Memory compression mechanism. Memory compression is a technique, which al-
lows radical decreasing the amount of necessary data to be transferred. This solution is
described in detail in [5] and similar solution is actually used in Hyper-V Windows 2012
R2 [9] or VmWare Sphere 5.1 VMotion technology [10]. Solution described by Jin et al.
[5] deals with the analysis of memory pages data granularity and the choice of the com-
pression algorithm suitable for specific memory page. WKdm [6] and LZO [7] algorithms
were selected and tested for memory compression. The memory compression scheme and
migration process are depicted in Figure 2.

Additional work published by Gustafsson [8] discusses the use of the universal common
compression tools such as gzip, which is not suitable for this solution. Another more ad-
vanced approach to memory compression used a high-sophisticated adaptive compression
method [25].

1.3.2. The benefits of memory compression. Jin et al. [5] proved in practice that by using
an efficient compression mechanism, live migration time can be reduced by about 30% and
the amount of transmitted data can be reduced up to 60%. This time reduction contains
also the necessary compression time. Gustafsson’s work provides comparable results to
Jin’s.

2. Virtual Computer Cluster and Distributed Computing Model. Distributed
computing is the special science discipline dealing with processing complex computing
problems, which cannot be processed by a single standalone computer (for example pro-
cessing very large data sets). Message communication between cooperating nodes of the



976 J. FESL, L. PLCH, M. DOLEZALOVA AND F. DRDAK

distributed system is achieved mainly by message passing. State of a distributed comput-
ing system [11] is defined as a set of computer nodes with their own memory (containing
computing processes) and set of messages, which have been sent but still have not been
delivered. Messages from the communication channels directly affect the computing pro-
cesses with changes to the memory pages of the appropriate computer node. For the live
migration of given distributed system, it is necessary to guarantee also the delivery of
such communication messages.

2.1. Virtual distributed system architectures. Virtual distributed system architec-
tures are similar to the real distributed systems. Message passing between virtual commu-
nicating nodes is exactly the same as in the real distributed system. Messages (packets)
from the virtual source nodes are processed by the virtual machine and passed to the op-
erating system, which completes message transmission to another virtual member node.
There are three basic concepts of distributed system architecture [11]. The first is the
common client-server model, the second is peer to peer model (p2p) and the third is a
combination of the client-server and the p2p model.

2.1.1. Client server model live migration. The migration of the client server model needs
to ensure migration of one virtual server node and many virtual client nodes from their
physical hosts to other physical hosts. This computing model is often used in many par-
allel software architectures [12] such as in mpi, open mpi, mpich, lam/mpi and various
computing cluster solutions like MOSIX, openMosix, Kerrighed or OpenSSI. All previ-
ously mentioned architectures are able to be run in the virtualized environment and can
be used for distributed computing. The live migration of a server node is much more diffi-
cult in comparison to a client node because the server node’s memory content is modified
by messages from all client nodes. Migration of the client node is easier because only one
server node sends messages to this client meaning fewer messages modify client’s memory
content.

2.1.2. Peer to Peer model live migration. Peer to peer systems have the all individual com-
puting nodes equivalent. An average count of communication messages should be equal
on all nodes. A set of algorithms for group coordination exists in distributed computing,
which also works with p2p topology, but needs a coordinator [13]. Typical examples of
these algorithms are algorithms for entering into critical sections, leader election or repli-
cation. This fact means that some nodes can have a communication message count higher
in comparison to others.

2.1.3. Real solutions for virtual cluster/grid infrastructures. For remote management of
virtual machines, which are placed on various physical hosts and can create a virtual dis-
tributed system, the following tools such as Microsoft System Center (hypervisor Hyper-
V) [14], VMware VCenter (VMware) [15], OpenNebula (Xen, Kvm, VMware) [16], Open-
Stack (KVM, LXC, QEMU, UML, VMware, Xen, Hyper-V, Bare Meta) [17] or OpenQrm
[18] are commonly used. Some of them require using a specific hypervisor. More informa-
tion can be found in [19]. The live migration of only one virtual machine is supported by
Microsoft System Center, Vmware Vmotion technology and Citrix XenServer [20]. Till
now none of these solutions supports live migration of clusters or distributed systems.

2.2. Virtual distributed system live migration problems. In the following sections
we will discuss some problems which can have an impact on the migration process. Their
elimination is important for a safe migration process and creates basics of a scheme, which
will be introduced in the end of the article.



LIVE MIGRATION OF VIRTUAL DISTRIBUTED COMPUTING SYSTEMS 977

2.2.1. Free resources of physical hosts involved in migration. The virtual distributed com-
puting system is usually represented by tens, hundreds or thousands of virtual machines.
Complete migration of such given amount of virtual machines requires the successful allo-
cation of all needed resources at the destination computing environment. This allocation
is done during the pre-migration and reservation phase and must be done dynamically.
Some aspects of the migration suitability will be discussed.

2.2.2. Low throughput of the communication network. Network throughput between the
source and the destination physical node can be very low in comparison to the throughput
requirements for needed virtual machine memory updates. This can cause live migration
impossible, because the difference of memory content between the migrating and migrated
machine stays the same, or even gets larger. This must be detected in the pre-migration
phase. If it is not possible to allocate the necessary bandwidth, migration cannot be
executed.

2.2.3. Message loss during the migration phase. The current global state of a virtual
distributed system is defined as a set of virtual machine memory contents and contents
of all communications channels (messages, which have been sent, but have not been
delivered). If a message (packet) is lost during migration, the current global state is
corrupted. Some self-repairing protocols are resistant to these types of errors, but live
migration technique should not modify communication conditions and should be reliable
and transparent. None of currently used hypervisors contains techniques for message loss
correction.

2.2.4. Network bandwidth saturation during the migration phase. Given virtual distributed
system is represented by a set of virtual nodes. Virtual nodes can be migrated in parallel
or serially. Parallel migration is faster but still, a migration of a large number of virtual
nodes can easily cause network bandwidth saturation (typically gigabytes of memory con-
tent per one node are migrated). This leads to a lack of availability of some services on
the network and various other problems. More information can be found in [23].

3. Live Distributed Architecture Migration Scheme. A new migration scheme,
which is suitable for a very large data centres, proposed in this paper consists of three
main parts: network topology optimization, destination host selection, and finally the
live migration process. In this proposal we assume that the migration process is managed
only by one central coordinator.

3.1. Network bandwidth optimization. There are three types of network traffic in
the virtual distributed system. The first is communication traffic (CT) among all the
nodes of the distributed system typically produced by passing of messages. The second
type of traffic is generated by the migration of virtual machine’s memory content (VMCT)
from one physical host to another. The third type is generated by reading/writing from/to
virtual hard drive network area storage (NAST). CT and NAST are generated during the
whole lifetime cycle of the virtual distributed system. VMCT is generated only during
the migration process, but there is much more of it in comparison to CT or NAST.
VMCT can cause bandwidth saturation and has negative influence on other traffic. The
theoretical solution is to divide the network bandwidth into three sub-bandwidths. This
division can be accomplished through the usage of three separate (virtual or physical)
network circuits, where each circuit is dedicated only to a specific traffic type. Another
solution consists of the sharing of one band, which can be divided and allocated through
a particular attribute of service-providing protocols (such as RSVP [21]).



978 J. FESL, L. PLCH, M. DOLEZALOVA AND F. DRDAK

DESTINATION Host

T

NC3 < NC3

NC2 et NC2
NAST

NC1 NC1

NC - Network Controller

NC |
I —

F1GURE 3. Three sub-bands of network bandwidth

3.2. Selection of destination physical hosts. A typical distributed system can con-
tain hundreds or more of virtual computing nodes distributed among set of physical nodes.
The determination of the new distribution of the set of virtual machines among different
set, of physical nodes is very complicated task. Typical reason for the reallocation of the
set of virtual nodes is the need of releasing their concrete physical environment (changes
in the hardware equipment, etc.). The main idea of the following algorithm is to solve
this reallocation problem. The simplest solution is to migrate all given virtual machines
of the given computing system from their current physical host to the new one at once,
but this is usually not possible, since computing capacity of selected destination physical
node is not sufficient.

A formal definition of our migration algorithm is as follows, the central coordinator
C manages the migration process. The virtual distributed system uses message passing
for communication purposes. We assume that the probability p, of message being sent
between any two nodes is the same and is independent on their physical location. S; is
a set of source physical nodes; S, is a set of destination physical nodes. DS (V, Sy, ID)
is a distributed system with a set of virtual machines V, running on S; with a specific
identification (ID). All virtual machines are the members of the same computing system.
The ID is independent of the physical nodes.

S1; may have same common items with Sy. S is a set of all physical nodes. S = S; USs.

M (Si,S3) is an operation migration, which enables transfers of all virtual machines
running on S; to Sy, N (Sy) or N (S,) is the count of physical nodes contained in Sy or S.

For a distributed system, let us make M (S, S2) with minimal N (Sy). It is possible to
achieve minimal N (Ss) in the following three steps.

1) C sends a message A with an ID of the virtual distributed computing system to
all the nodes of Sy and obtains back a message B from each node. The message B
contains the count of free resources. If at node X, which has sent back a message B
to C, some virtual machines are running as a part of the distributed system with a
specific ID, the message B contains the count of free resources incremented by the
count of virtual machines with the same ID running on X.

2) C makes a list of resources from the incoming messages and sorts it in descending
order according to the number of free resources — nodes with the highest amount
of resources will be used first. Also list of requests of resources for the members of
S; is prepared and sorted in the same order. Then the verification relative to the
intended migration solution existence is performed from the point of view of the
resource mapping possibility between the two lists.



LIVE MIGRATION OF VIRTUAL DISTRIBUTED COMPUTING SYSTEMS 979

SOURCE Host

-
[
1
1
.
1
1
1
1
1
1
.
.
1

a

)

e mm———————

FIGURE 4. Destination nodes for migration discovery

3) If the solution exists it is produced by C recursive selections from the lists comparing
the needed amount of resources until all items of S; are mapped onto S,.

The algorithm finds (if existing) the nodecount optimal solution, which will be a part
of the premigration and reservation phase. (If the solution does not exist the set Sy must
be modified.)

3.3. Distributed virtual system live migration process. In previous section we
mentioned the resource allocation algorithm, which serves as the input for the next phase.
DS (V,S;,ID) is the current distributed system, which is running on nodes from the set
Sy and DS (V,S,,ID) is a new distributed system, which will be relocated from S; to S.

3.3.1. Virtual remote network message buffer. During the Stop and Copy phase the cur-
rent migrating virtual machine can obtain one or more communication messages from
other nodes. The virtual buffer stores these messages into queue on a node from S; and
delivers them to the similar buffer assigned to the node from S;. The main function of
this buffer is to save the messages, which could be lost during migration and to enable
the delivery of these messages to the destination node.

3.3.2. Algorithm for migration of whole distributed system. If there is the need to migrate
the whole distributed system part by part we can use following method. V is a set of all
virtual machines of some virtual distributed system. S; is a set of source physical nodes;
Ss is a set of destination physical nodes.

1) Select k virtual machines from V, which are currently running on nodes from S;,
0 < k < N(V), create a new empty set Vi, insert all selected virtual machines from
V into V; and remove these virtual machines from V.

2) For all items in Vy, start the pre-copy phase.

3) Before starting the migration process, create virtual network buffers on all nodes
from Sy, where selected virtual machines are currently running. Message capturing
on all nodes is disabled.

4) Create virtual network buffers on all corresponding nodes from S, for the virtual
machines being migrated and interconnect this buffer to buffers created in stage 3.

5) Activate message capturing into virtual network buffers on all source nodes from S;
and transmit this message to virtual network buffers at destination nodes from S,.

6) For all items in Vy, start the post-copy phase.

7) For all nodes in Vy, start the commit phase.



980 J. FESL, L. PLCH, M. DOLEZALOVA AND F. DRDAK

SOURCE Host DESTINATION Host

—{ Bufter 1 14 VMI » VMI [«— Buffer | j¢—

Buffer 2 4 VM2 » VM2 [«— Buffer 2 <4—

NC

F 3
h 4

NC

A 4

FI1GURE 5. Distributed system migration algorithm

8) Start all virtual machines that have been migrated and deliver messages from their
corresponding network message buffers.
9) Stop all virtual network buffers.
10) If V is empty, stop the migration process, else continue with the stage 1.

4. Proposed Algorithm Simulation Results. For the algorithm from previous section
we had upgraded the standard open source Xen hypervisor. The real simulation was done
via the university multiprocessor cluster, which consists of four computing nodes, one
network area storage and one management node. All of these nodes were interconnected
via the 10 Gb/s ethernet network. Every computing node contained two physical ten
core Intel Xeon processors and 128 GB operating memory. On every physical node were
started ten dual-core virtual nodes with Linux Debian operating system including the
Xen (upgraded Xen) hypervisor.

4.1. System transparency testing. The first simulation was done for the verification
that the migration process of the distributed system is really transparent. The simula-
tion was as follows. The same computing process (tasks including communication over
BSD sockets) on all virtual nodes was executed. All executed processes communicated
via UDP communication protocol. UDP protocol was selected, because it contains no
means for packets loss correction. The graph in Figure 6 shows, that our implementation
significantly improved packet loss during the migration phase. We tested the migration
process for the minimal and the maximal ethernet MTU size to eliminate the network
media influence.

4.2. System downtime measurement. The next simulation depicted in Figure 7 shows
the average downtime for the migrating virtual nodes during the migration phase. Our
solution was in this case a bit slower in comparison to the standard Xen solution due to
the overhead of the virtual network message buffers.

4.3. Migration time of whole distributed system. The time of migration of the
distributed system, which was in this case measured, depends mainly on the migrating
nodes count and their operating memory size. For the migration of the larger amount
of virtual nodes is possible to achieve the network bandwidth saturation. The various
colours of lines in the graph depicted in Figure 8 show various memory sizes of migrated
virtual nodes.



LIVE MIGRATION OF VIRTUAL DISTRIBUTED COMPUTING SYSTEMS 981

35

30 ¢

Number of Losts Packets

25
20 ¢
15}

10 F

FIGURE 6.

640

620 +

600
580
560
540

Downlime[ms]

520
500
480
460

5 10 15 20 25 30

Data Packet Rate [Packets/s|

| — Standard Xen

(1500B)

| — Upgraded Xen

(1500B)

] —-— Standard Xen

(64B)

] - Upgraded Xen

(64B)

Message packet loss, measurements for 1500 and 64 bytes MTU

5 10 15 20 25 30

Data Packet Rate [Packets/s|

—— Standard Xen
(15008)

—— Upgraded Xen
(1500B)

—-— Standard Xen
(64B)

----- Upgraded Xen
(64B)

FIGURE 7. System downtime measurement for 1500 and 64 bytes MTU
shows that proposed solution is only a bit slower than standard solution

100

80

60

40

Time(s|

20

. 128 MB
~~. 256 MB
.. 512MB
~. 1024 MB

Count of Virtual Maschine

FiGureE 8. Time to migration of various counts of virtual machines de-
pending on their operating memory sizes



982 J. FESL, L. PLCH, M. DOLEZALOVA AND F. DRDAK

50

40 +

30 ¢

20 ¢

Packets

. Buffer in

~~._ Buffer out

Timefs]
Ficure 9. Virtual network buffers saturation during the migration phase

4.4. Virtual network buffers saturation. The full transparent migration process of
distributed system is realized by means of the virtual network buffers. Figure 9 shows
the saturation process of the in/out buffer between the source and the destination node
depending on the time. This graph is made as the average of values measured in Section
4.1 and shows a gradual change.

5. Conclusion. We focused in our paper on the detail analysis of currently used tech-
niques for live migration, their optimization and we also looked at basic aspects of mi-
gration of distributed systems. We proposed a scheme for their live migration, worked
out prototype implementation and made some evaluations. The new migration scheme
seems to be useful, i.e., at large data centers, which are running many virtual machines
interconnected into virtual distributed systems.

REFERENCES

[1] D. Ruest and N. Ruest, Virtualization, McGraw Hill Press, 2010.

[2] C. Clark, K. Fraser, S. Hand et al., Live migration of virtual machines, Proc. of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp.273-286,
2005.

[3] J. Jeong, S.-H. Kim, H. Kim, J. Lee and E. Seo, Analysis of virtual machine live-migration as a
method for power-capping, Journal of Supercomputing, vol.66, no.3, pp.1629-1655, 2013.

[4] J. Oberheide, E. Cooke and F. Jahanian, Empirical Ezploitation of Live Virtual Machine Migration,
2010.

[5] H. Jin, L. Deng, S. Wu, X. Shi and X. Pan, Live virtual machine migration with adaptive memory
compression, CLUSTER 09, pp.1-10, 2009.

[6] LZO Real-Time Data Compression Library, http://www.oberhumer.com/opensource/lzo/.

[7] P. R. Wilson, S. F. Kaplan and Y. Smaragdakis, The case for compressed caching in virtual memory
systems, Proc. of the USENIX Annual Technical Conference (USENIX’99), pp.101-116, 1999.

[8] Gustafsson, Optimizing Total Migration Time in Virtual Machine Live Migration, Master Thesis,
University of Uppsala, 2013.

[9] VMuware Sphere 5, www.vmware.com/en/products/vsphere/features-vmotion.

[10] Microsoft, Hyper-V, Configure Live Migration and Migrating Virtual Machines without Failover
Clustering, http://technet.microsoft.com/en-us/library/jj134199.aspx.

[11] G. Colouris, J. Dollimore, T. Kindberg and G. Blair, Distributed Systems Concept and Design, 5th
Edition, Addision-Wesley, 2012.

[12] R. S. Morrison, Architectures, Operating Systems, Parallel Processing € Programming Languages,
2004.



[13]

[14]

LIVE MIGRATION OF VIRTUAL DISTRIBUTED COMPUTING SYSTEMS 983

A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles, Algorithms and Systems,
Cambridge University Press, 2011.

Microsoft, System Center 2012 R2, http://www.microsoft.com/en-us/server-cloud/products/system
-center-2012-r2/.

VMware, Veenter, http://www.vmware.com/products/vcenter-server/.

OpenNebula Community, OpenNebula, http://opennebula.org/.

OpenStack Foundation, OpenStack, http://www.openstack.org/.

OpenQRM Community /openQRM enterprise, Open@Qrm, http://www.openqrm-enterprise.com.

J. Peng, Comparison of Several Cloud Computing Platforms, Information Science and Engineering,
2009.

Citrix, Citriz Xen Server, http://www.citrix.com/products/xenserver/.

Network Working Group, Resource Reservation Protocol Specification v, http://tools.ietf.org/html
/rfc2205.html.

C. Jo, E. Gustafsson, J. Son and B. Egger, Efficient live migration of virtual machines using shared
storage, ACM Sigplan Notices, vol.48, no.7, pp.41-50, 2013.

U. Deshpande, B. Schlinker, E. Adler and K. Gopalan, Migration of virtual machines using cluster-
wide deduplication, Proc. of the 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (Cegrid 2013), pp.394-401, 2013.

P. Riteau, C. Morin and T. Priol, Shrinker: Efficient live migration of virtual clusters over wide
area networks, concurrency and computation-practice & experience, Concurrency and Computation:
Practice and Ezperience, vol.25, no.4, pp.541-555, 2013.

H. Jin, L. Deng, S. Wu, X. Shi, H. Chen and X. Pan, MECOM: Live migration of virtual machines
by adaptively compressing memory pages, Future Generation Computer Systems, pp.23-35, 2014.



