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ABSTRACT. This paper presents the filter design to estimate the state of polynomial
discrete-time systems. The problem of designing filter for polynomial discrete-time sys-
tems is difficult because it is generally a nonconvexr problem. More precisely, it is a
nonconvez problem due to the fact that the relationship between the Lyapunov function
and the filter gain is not jointly convex. The problem is related to the issue of bilinear
matriz inequalities in linear systems, where the decision variables are not jointly convez,
that is, there is a cross product of the decision variable. Hence, the problem cannot be
solved by a semidefinite programming (SDP). Therefore, in this paper an integrator is
proposed to be incorporated into the filter structure. By doing this, a convex solution
can be guaranteed. The filter gains are then computed using SOS-SDP techniques. The
solution has been established without any assumptions about nonlinear terms of the error
dynamics.
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1. Introduction. Nonlinear systems play a vital role in the control systems engineering
point of view due to the fact that in practice all plants are nonlinear in nature. The non-
linear systems have received a great deal of attention and many contributions have been
made to this literature [1, 2, 3, 4]. However, the proposed approaches remain restrictive
to particular classes of nonlinear models, and there is no general method for the analysis
or synthesis of general nonlinear systems. That is the reason why nonlinear systems must
be continued in research. Specifically, in this paper, we consider the polynomial system
because this system constitutes an important class of nonlinear systems which has the
advantage to describe the dynamical behavior of a large set of processes and its ability
to approach any model of nonlinear systems by using polynomial expansion. That is why
the polynomial systems attract considerable attention from control researchers to involve
themselves in this area, especially on the stability analysis and controller synthesis of
polynomial systems [5, 6, 7, 8, 9, 10, 11].

The filter design theory for linear system is first developed by Luenberger [12], who
suggests a comprehensive and complete answer to the problem. The author showed how
the available system inputs and outputs can be used to construct an estimation of the
system state vector. Since then, a lot of works have been done in the framework of filter
design for linear systems, see [13, 14, 15, 16, 17, 18].
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However, filter design problem in nonlinear systems is much more challenging than its
counterpart. Although it is hard to design a filter for nonlinear systems, some useful results
can still be found in [19, 20, 21, 22]. In [19], new observer design methods were proposed
for nonlinear systems with discrete measurements in the context of solving simultaneous
nonlinear equation. The methods are continuous Newton method and Broyden’s method.
Meanwhile, in [20], the authors proposed a solution in terms of the Hamilton Jacobi
Inequalities (HJIs) to solve the problem. However, it is well known that to solve HJIs
is very difficult because there is no existing computational tool available to solve them.
Moreover, in [21] an observer system is presented where the feedback interconnection of
a linear system and a time-varying multivariable sector nonlinearity can be solved by
linear matrix inequalities (LMIs). In [22], the paper presents a nonlinear observer design
technique based on Lyapunov second method which produces an observer gain matrix that
stabilizes the error dynamics for a class of nonlinear systems. The S-procedure method
has been considered to solve this observer design problem.

In regard to the filter design for polynomial continuous-time systems, the result can be
found in [23, 24, 25]. The authors in [23] addressed the filter design by using Lyapunov-
type stochastic stability. Meanwhile, in [24, 25] H,, filter design for a class of continuous-
time systems with sector-bounded nonlinearities had been presented. The S-procedure
approach has been used to solve the sector-bounded nonlinearities and the convex op-
timization algorithm was utilized to obtain the solution. The sum of squares (SOS)
decomposition method is utilized in both papers. The SOS decomposition method is first
established by Parillo, see [5]. By using this method, the algorithmic analysis of nonlinear
systems using Lyapunov method can be performed effectively because the conversion from
SOS decomposition to the semidefinite programming (SDP) can be done in MATLAB us-
ing SOSTOOLS [26]. However, when talking about polynomial discrete-time systems,
only few results are available, see [27, 28]. In [27, 28] the papers computed the filter
and observer gains, the invariant sets, matrix sum of squares relaxation and semidefinite
programming for discrete-time systems had been applied.

In this paper, the integrator method is proposed to ensure that a convex solution to the
problem of filter design can be obtained. The filter design has been derived in terms of
polynomial matrix inequalities (PMIs), which are formulated as SOS constraints. Then,
to compute the filter gains, SOS techniques have been used to reduce the problems to
semidefinite programming (SDP). The integrator method has been proposed in [29, 30,
31, 32] in the framework of controller design for polynomial discrete-time systems. Based
on the results, this method is valuable to convexify the nonconvex filter design problem
for polynomial discrete-time systems.

The contribution of this paper can be summarised as follows:

e A convex solution to the filter design problem is obtained in a less conservative way
than the available approaches by introducing an integrator into the filter structure.

e In comparison to the work done in [27, 28], our proposed method yields a global
solution to the filter design problem in polynomial discrete-time systems.

The paper is organized as follows. Section 2 provides system description and prelimi-
naries. The main results are highlighted in Section 3. The next section gives a numerical
example. Conclusions are given out in Section 5.

2. System Description and Preliminaries. Consider the following unforced polyno-
mial discrete-time system:

z(k+1) = A(z(k))z(k)
y = Cla(k))x(k) (1)
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where z(k) € R™*! is the state vector, and y € RP*! is the measurement output. Mean-
while, A(x(k)) € R"*" and C'(z(k)) € RP*" are known polynomial matrices with appro-
priate dimension.

A filter to estimate the state z(k) from y is selected to be of the following form:

ik +1) = A2 (k)2 (k) + L(2(k)) (y — 9)

g =C(2(k))(k) (2)
where Z(k) € R™*! is the state vector, and § € RP*! is the measurement output. Mean-
while, A(z(k)) € R, L(z(k)) € R™P and C(z(k)) € RP*™ are known polynomial
matrices with appropriate dimension. To study the convergence performance of the fil-

ter described in (2), we will look at the dynamics of the estimation error defined by
e = #(k) — xz(k). The error dynamic is then given as follows:

e(k+1)=2(k+1)—x(k+1)
= A(2) + L(2)(C(2)z — C(z)z) — Az)z
= [A(2) + L(2)C(2)]e
+ [A(2) — A(z) + L(2)C(2) — L(2)C(z)]x (3)
Now, let é = [e, z]T € R?"*!; therefore, the system in (3) can be re-written as follows:
é(k+1) = ¢(z,2)é (4)

where,

where the dimension of ¢(x, ) € ¥,

Theorem 2.1. Consider the system (1), the error dynamic shown in (4) is asymptotically
stable if there exist polynomial matrices L(z) € R™? and P(e) € R*"*?" such that the
following conditions are satisfied:

P@E) >0 (6)
P(?) ¢ (w, ) PT(e(k +1)] _ (7)
P(e(k+1)p(z,3)  P(e(k+1))

Proof: Let the Lyapunov function be selected as follows:
V(e)= (&) P(e)e (8)
The difference between V(é(k + 1)) and V(e(k)) along (4) with (2) is given below:
A(V(e)) =V(e(k+1)) - V(e)
=el(k+1)P(E(k +1))é(k +1) — T P(é)é
=¢"[¢" (z,2)P(e(k +1))¢(x,2) — P(e)]e (9)

Suppose (7) is feasible, then multiplying it to the left by diag[l, P(é(k+1))] and to the
right by diag[I, P"(é(k + 1))] and by applying the Schur complement, we have

¢ (z,2)P(é(k +1))o(x,2) — P(€) <0 (10)

Knowing that (10) holds, then AV(é) < 0, which implies that the error dynamic (4)
with the filter (2) is globally asymptotically stable.
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Remark 2.1. Theorem 2.1 provides a sufficient condition for the existence of filter gains
and given in terms of solutions to a set of parameterised PMIs. However, notice that
the P(é(k + 1)) appears in the PMIs; therefore, the inequalities are not jointly conver.
This is because the cross products between the decision variables of P(e) and the decision
of L(x) exist. If P(€) is fized then (9) is convexr in L(x) and if L(x) is fized then (9)
is convez in P(€). However, (9) is not jointly convexr in P(e) and L(x). This issue is
related to the issue of bilinear matriz inequalities in linear systems, where the decision
variables are not jointly convex, that is, there is a cross product of the decision variables.
One might think to select the Lyapunov matriz to be of P(e) instead of P(€). However,
such a selection does mot help the solution to be convexr because the problem remains
persistent. Hence, to directly solve the Theorem 2.1 is hard because the PMIs need to be
checked for all combination of P(€) and L(Z), which results in solving an infinite number
of PMIs. In light of the aforementioned problem, in our work, an integrator is proposed to
be incorporated into the filter dynamics. In doing so, a convex solution to the filter design
problem in polynomial discrete-time systems can be rendered efficiently. The most detail
of this integrator method is illustrated in the following section.

3. Main Results. In this section, the significance of incorporating an integrator into the
filter dynamics will be illustrated.
A following nonlinear filter is proposed:

Tk +1) = A2)z + zy
zy(k+1) = zp + L(2)(C(2)2 — C(z)x) (11)

where, € R™! and x; € R"*! is an augmented state.
Now, error is defined as follows:

-f- £
€9 Tf
where the dimension of e; € R™*!, ey € R™*! and e € R2*1L

The error dynamics is then given by

e (k+1) 2k +1) —a(k+1)
ea(k + 1)] [ zr(k+1) ]
_ [ A(f)fi‘ g — Ax)z }
2y + L(2)(C(2)E — C(z)z)
- A(Z)ey + es + ((A(fv) — A(z))z ]

r(k+1)=

(13)

Next, let define ¢ = [e), x,e5]7 € R33! and hence, the error dynamics described in
(13) can be re-written as follows:

é(k +1) = ¢a(x, 2)é (14)
where,
A(z) A(z) — A(x) 1
Go(w,2) = | L(2)C(2) L(2)C(2) — L(z)C(x) 1 (15)
0 A(x) 0

The dimension of ¢,(z,z) € 33"
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Theorem 3.1. Consider the system (1), the error dynamics shown in (14) is asymptot-
ically stable if there exists a symmetric polynomial matriz P(e;) € N33 polynomial
matrices L(%) € R"? and G(&) € N33 such that the following conditions are satisfied:

P(e;) >0 (16)
P(er) 2 (,2)GT(2)
G(#)da(r,) GT(2)+G(F) = Ples(k+1))] ~° (17)
where,
[g11(2)  g12(2) g13(2) g1a(2) 915(2)  g16(2)]
921(%)  g22(%) 923(%) 924(%) g25(%) g26(2)
Gi) = 931(2)  952(2) g13(2) 914(2) 935(2) g36(2)
941(A) 942(A) 923(3%) 924(3%) 945(3%) 946(3%)
951(A) 952(A) 913@) 914@) 955@) 956@)
_gﬁl(A) 962(A) 923@) 924@) 965@) 966@)_
and let Go(i) = BZE; gigg] | (18)
The filter is given by
Tk +1)=A@)z +
z(k+1) =xp+ L(2)(C(2)z — C(z)z) (19)
where,
L(2) = K(2)Gy (%) (20)
Proof: Let the Lyapunov function be selected as follows:
V(e) =" Pley)é (21)

Then, the difference between V(é(k+1)) and V (é(k)) along (14) with (11) is given below:
AV(e)) =V(e(k+1)) = V()
=Tk +1)P(ey(k+1))é(k +1) — ' P(e;)é
=" [¢] (z, 2)Per(k + 1)) o(x, 2) — P(€)]€ (22)

Suppose (17) is feasible, thus G* (&) + G(z) > P(e;(k+1)) > 0. This implies that G(Z)
is nonsingular. Since P(el(k + 1)) is positive definite, the inequality

(P(er(k +1))=G(2)) P~ (e (k + 1)) x (P(es(k+1)) — G(#))" >0 (23)
holds. Therefore, establish
G(z(k))P e (k+1))GT(2) > G(2) + GT(2) — P(er(k + 1)) (24)
This immediately gives
P(e1) ¢ (v,2)GT (2)
Glrina) TN + 6] >© (25)

Next, by multiplying (25) on the right by diag[l,G*(2(k))]T and on the left by
diag[I,G~(z(k))], we get

Pler)  oF(wd
[¢>2(Ev,%) Pl(el((kﬁn)] >0 (26)

Then, by applying the Schur complement into (26), we have
¢s (z,2)P(ey(k +1))ga(z,2) — Pley) <0 (27)
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Knowing that (27) holds, then AV (é) < 0, which implies that the error dynamic (14)
with the filter (11) is globally asymptotically stable.

Remark 3.1. One might think how the term L(2) = K(2)G,'(2) can suddenly appear
in Theorem 3.1. The fact is that a change-of-variable technique has been applied in the
above proof, where K(&) = L(2)Ga(&). This is explicitly applied in Theorem 3.1. It is
also important to note here that to allow the same value of L(Z) can be obtained, the
polynomial matriz G(%) must be enforced to be of a certain structure: see Equation (18).
Although, the G(%) must be of a certain form, the results are still not too conservative
because it is independent from the Lyapunov matrix.

Remark 3.2. The inequality (17) of Theorem 8.1 is convex. This is true because the
terms in P(ei(k + 1)) are jointly convex. For clarity, refer to the following expansion
version of P(ei(k + 1)),

Plei(k+1)) = P[A(2)% + 25 — A(z)z] (28)

From (28), the x s is an augmented state, hence the P(e (k+1)). Therefore, the Theorem
3.1 can be possibly solved via SDP.

Unfortunately, to solve Theorem 3.1 is hard because we need to solve an infinite set
of state-dependent PMIs. To relax these conditions, we utilise a SOS decomposition
approach [5] and therefore the conditions given in Theorem 3.1 can be converted into
SOS conditions and they are given by the following corollary:

Corollary 3.1. Consider the system (1), the error dynamics shown in (14) is asymptoti-
cally stable if there exists a symmetric polynomial matriz P(e1), polynomial matrices L(Z)
and G(Z), and positive constant €, and €y such that the following conditions are satisfied:

vl [P(er) — 11 is a SOS (29)

7| Pler) — el o3 (z, 2)GT(Z)

2 G(#)do(2,2) GT(E) + G(E) — Pler(k +1)) — eI | is a SOS  (30)

where, vy and vy are free vectors with appropriate dimensions,

(911 (%) g12(2)  g13(2) 614(2)  15(2)  g16(2)]
921(%)  g22(2)  923(%) g2a() g25(%) gas(2)
G(2) = 931(2)  g52(2) g13(2) 914(2) 935(2) g36(2)
ga1 (@") 942( :) 923 (@") 924 (@") 945 (f?) 46 (f?)
951(35) 952( ) 913(«T) 914(«T) 955(30) 956(30)
L J61 (f) 962( A) 923 (f) 924 (f) 65 (f) Je6 (f)_
A) 914(A)
923 Goa(Z) | (31)

and let  Go(z) = gl?’EA)
Note that the dimension of g11(Z) to ges(Z) is n X n and Gy(Z) is 2n x 2n. Therefore,

the filter is given by

z(k+1) = x5+ L(2)(C(2)2 — C(z)x) (32)

where,

L(t) = K(2)Gy ' (1) (33)
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4. Numerical Example. The following polynomial system is considered:
B 1 —0.01 | |=y
T+ D= 10,01 4 0.0102, 1- 0.01] LJ
y = [21;7,] (34)
Then, by applying Corollary 3.1 where the P(e;) is set to be of degree of 2, polynomial
matrix G(Z) is in degree of 4, and polynomial matrix L(Z) is set to be degree of 6, a
feasible solution is obtained. The results of the error between the estimation state and
the actual state can be seen in Figures 1 and 2. The initial condition of the actual state

1] and the estimation state is 2(0) = [0.5 0.5].

is 2(0) = [1
0.3 p ; .
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FIGURE 2. Trajectory of the Ty — x5
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Remark 4.1. It should be mentioned here that the error between the actual state and the
estimation state is quite large. This is due to the fact that the degree of the polynomial
matrices P(e1), G(z), and K(Z) cannot be increased further because of the limitation of
the memory space of our machine. This significantly affects the feasibility of the solution
because with the current set-up, the feasibility of the solution is very low which s 0.15.
We believe that a better solution might be obtained by increasing the polynomial degree of
the mentioned parameters, and consequently yields a better estimation.

Remark 4.2. The values of the polynomial matrices P(e;), G(&), and K (&) are omitted
here due to large in size.

5. Conclusions. The filter design of polynomial discrete-time systems has been studied
in this paper. The non-convex issue of filter design has been encountered by incorporating
an integrator into the filter structure. The existence of our proposed filter is given in terms
of the solvability of the PMIs, which is formulated as SOS constraints and can be solved by
any SOS solver. In this work, SOSTOOLS has been used to solve the SOS-PMIs. The SOS
decomposition approach is utilized to solve the polynomial matrix inequalities and convert
the nonconvex problem to the convex problem. Unlike the work performed in [27], our
proposed methodology provides a solution to the global filter design. However, a current
limitation of the proposed approach is the large computational cost. The future work
that is important to be considered is to include the H., performance and the uncertainty
to the problem.
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