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ABSTRACT. It is well-known that unstable zeros limit the achievable control performance.
This paper is concerned with the stability of sampling zeros of discrete-time models for
mass-damper-spring (MDS) systems with noncollocated sensors and actuators in the case
of the generalized sample hold function (GSHF). The asymptotic behaviors of the sam-
pling zeros, for a discrete-time model of a noncollocated MDS system with a GSHF, are
analyzed for a sufficiently small sampling period T and the linear approrimate expres-
sions are also obtained. In addition, the linear approximate expressions with respect to
the sampling period T lead to a sufficient condition for the sampling zeros of the discrete-
time model to lie inside the unit circle for a sufficiently small sampling period T. It has
been shown that the GSHF can locate the sampling zeros of discrete-time models for non-
collocated MDS systems inside the stable region and improve stability properties when
the zero-order hold (ZOH) cannot. Moreover, the examples are shown to demonstrate a
significant improvement of control performance compared with the use of a ZOH.
Keywords: Noncollocated mass-damper-spring, Sampling zeros, Stability, Generalized
sample hold function

1. Introduction. The sampling process is a key element while obtaining sampled-data
models to represent continuous-time control systems. The poles of sampled-data mod-
els are known to depend only on the sampling period and the poles of the underlying
continuous-time system. The transformations of zeros, however, are much more compli-
cated. For example, when a zero-order hold (ZOH) is used to generate the continuous-time
system input, the sampled-data models have sampling zeros, which converge to specific
locations as the sampling period tends to zero. Furthermore, it has been shown that, for
a continuous-time system with at least one of the relative degrees higher than two, the
resulting sampled-data models have the nonminimum phase (NMP) zeros for a sufficiently
small sampling period 7. These NMP zeros limit the control performance that can be
achieved, and many techniques based on zero cancellation for control system design are
hard to be applied [1, 2, 3].

Even in the case of a ZOH, the stability of zeros is not necessarily preserved in the
sampling process except in a very special case: T" — 0. Therefore, the limiting zeros, which
are the zeros of a discrete-time system in the limiting case when the sampling interval T’
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tends to zero, have attracted considerable attention, and the efforts have devoted to the
analysis of limiting zeros in the earlier research studies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Because such sampling zeros with ZOH may lie outside the unit circle for small sam-
pling periods, it is common to have NMP discrete-time models, even if the underlying
continuous-time system is minimum-phase (MP). These facts sparked interest in other
holds such as a first-order hold (FOH) and a fractional-order hold (FROH). Hagiwara et
al. [14] have carried out a comparative study and demonstrated that an FOH provides no
advantage over ZOH as far as the stability of zeros of the resulting discrete-time systems
is concerned. The FROH [15, 16, 17, 18, 19, 20, 21, 22] does yield better discretization
zeros, and these known results have definitely shown that the limiting zeros of FROH can
be placed inside the unit circle in some cases while ZOH fails to do so, but only within
a limited margin, mainly because it has just one tuning parameter, which does not allow
to place the discretization zeros as one wishes.

Though discrete system zeros with FROH have more advantage than those of ZOH from
the viewpoint of stability, the unstable discretized zeros may still appear in the discrete-
time models owing to the existence of sampling zeros of instability. For example, when
we sample continuous-time systems having relative degree greater than two, unstable
sampling zeros may be also generated by FROH even though the continuous-time system
is of MP. To avoid this unstable sampling zeros or improve their stability, further ideas
have been introduced such as multirate sampling control and digital control with the
generalized sampled-data hold function (GSHF) [23, 24, 25, 26, 27, 28, 29, 30, 31]. Though
some evils such as poor intersample behavior in the case of a GSHF cannot be avoided,
GSHF can be used to solve many more ambitious control problems for linear system as
long as it is formulated exclusively intersample terms. Moreover, in the linear systems,
it is well known that GSHF can be also used to shift the zeros of sampled-data models
for continuous-time systems because intersample ripples can be suppressed by using a
linear-quadratic optimization [24] or alleviated efficiently by minimizing the variation of
the control input [26].

Over the last three decades, zeros of mass-damper-spring (MDS) systems have been
analyzed by some researchers [32, 33, 34, 35, 36, 37]. It has shown that the zeros are
closely related to poles and always lie in the left-half plane in the case of the structure
with collocated sensors and actuators. In the very motivating work by Ishitobi and Liang
[37], the asymptotic properties of limiting zeros of discrete-time models for MDS systems
with collocated sensors and actuators have been presented in order to derive further a
stability condition of the limiting zeros for sufficiently small period. Moreover, their
results are successfully applied to test the stability of zeros for collocated matrix second-
order systems. However, the actual MDS systems usually have the noncollocated sensors
and actuators in many engineering applications [35]. So far, the asymptotic behaviors of
the limiting zeros of discrete-time models for MDS systems with noncollocated sensors
and actuators still remain blank, and it is still interesting to find out their asymptotic
properties though the impact of the stability of zeros in discrete-time models may not
have been strong in control engineering applications. Hence, it is natural to raise the
question of how the results of the MDS systems with collocated sensors and actuators can
be extended to the case of collocated sensors and actuators.

In this paper, we present a discrete-time model in the case of a GSHF for the MDS sys-
tems with noncollocated sensors and actuators, and further analyze the improved asymp-
totic properties of limiting zeros for MDS discrete-time models proposed. An insightful
interpretation of the obtained discrete-time model can be made in terms of sampling zeros,
which have no continuous-time counterpart. We also give an explicit characterization of
these sampling zeros and show that the approximate expressions of the limiting zeros for
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the noncollocated MDS discrete-time systems are derived as power series functions with
respect to a sampling period. Moreover, we obtain new stability criteria as applications.
Finally, two interesting examples are given to validate the main results.

2. Preliminaries. In general, consider an n-order, m-input and m-output system de-
scribed by a state-space form as

| @(t) = Az(t) + Bu(t)
So: { y(t) = Cu(t) (1)

where a state vector z(¢) € R", an input vector u(t) € R™ and an output vector y(t) € R™.
Next, an N-mode, m-input and m-output noncollocated multivariable MDS system is
expressed as

{ Mi(t) + Dg(t) + Kq(t) = Vu(t) 2)
y(t) = W'q(t)

where ¢ € R® is the vector of generalized coordinates, u € R™ that of applied actuator
inputs, y € R™ that of sensor outputs. Suppose that the mass, damping and stiffness
matrices of the system satisfy M = M? > O, D = D" > O and K = KT > O, respec-
tively, while the control influence matrices V and W are of full column rank. Further, we
assume that

rank[D,V] = rank[K,V] =X (3)
In the following, it is possible to rewrite the system description (2) to the state-space

form by taking the state variable as z(t) = [ ¢"(t) " (t) ]T and the form of (1). Namely,
it is possible that

A= —MO—IK —M[—lD]’ B:{MQIV} (4)
c=[wr" 0]

where n = 2R is the dimension of the state-space system (4). It is assumed in the rest of the
paper that the system (4) is completely controllable and completely observable. Further,
the transfer function G¢(s) of linear MDS multivariable systems (4) is represented as:

Geo(s)=C(sI — A 'B=WT(Ms*+ Ds + K) 'V (5)

We are interested in the discrete-time model for the continuous-time MDS multivariable
system (4) with GSHF. However, it is difficult to make a GSHF in practice because
it is generally composed of exponential and sinusoidal functions. Thus, we consider a
piecewise constant GSHF (PC GSHF) defined by piecewise constant impulse responses
[24, 25, 26, 27, 30|

( T
aaq, te [Oaﬁ)a
‘e T 2T)
g, FVEEENE R
Bt) =14 NN (6)
(N —1)T
e [T gy
\aN < N

Clearly, PC GSHF keeps a regular partition in time of sampling interval [0, 7") as in the
case of the ZOH (see Figure 1). When multiplicity output of PC GSHF showed in Figure
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A ZOH PC GSHF

FiGUuRrE 1. Pulse response of a ZOH and a PC GSHF

u(kT) .
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Ui (KT)
KT KT+A  KT+2A k+DT

FIGURE 2. Multiplicity output of a PC GSHF

2 is considered, each sampling period T is equally divided into N subperiods of length
T
A= N and the control input over the subinterval [kT, A] is described by

U-DT 5 IT (7)

w(kT + A) = u;(kT), TR N

From (6) and (7), it can be rewritten as
w;(kT) = oju(kT), j=1,..

where «; is a real constant.

LN (8)

Remark 2.1. PC GSHF can arbitrarily approzimate any GSHF by taking N large, and
can be readily implemented. The discrete-time system with ZOH, in general, may be
considered as a particular case of PC GSHF when N =1 or ay = -+ = ay.

Let Sp be an MDS discrete-time model of a series connection of a GSHF, the continuous-
time system with MDS and a sampler with a sampling period 7. We consider the rela-
tionship between limiting zeros of the MDS discrete-time multivariable model and that of
the origin MDS multivariable system (4) or (5), and the corresponding MDS discrete-time
multivariable model (9) with PC GSHF is described in the following.

Ja ((k+1)T) = ®2(kT) + Dau(kT) 9)
| y(kT) = Cx(kT)
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E=0,1,2,...
where
N 1-ihT
o=e'T, Tg=)» T, T;= / e Bdt

= (-7

j=12,...,N

Further, the pulse transfer function matrix Gp(z) for (9) is described by
GD(Z) = C(ZI — q))ilFG (10)

In addition, zeros of multivariable systems are defined in several ways. Multivariable
zeros can be termed system zeros, invariant zeros, transmission zeros and so on. In
spite of many differences and ambiguities, all those definitions of multivariable zeros
refer or claim to be extensions to those for single-input single-output (SISO) systems.
Then, the definition of invariant zeros, transmission zeros and system zeros for the system
all coincides and some of the properties of zeros in SISO systems are inherited in the
discretization process [38]. Thus, these zeros are simply called the zeros throughout this
article. These zeros are the complex roots, including multiplicities, of detI'(s), where I'(s)
denotes the pencil or the system matrix of So defined by

I(s) = {A_CSI" offn] (11)

Similarly, the zeros of Sp possess the same properties as S does for a sufficiently small
T [39], and are calculated using the system matrix detI'r(z) = 0 of Sp, where

=" o] (12

A zero of the continuous-time system is said to be stable or unstable if it has R.(s) < 0
or R.(s) > 0, and a zero of the discrete-time model is said to be stable or unstable if it
has |z] < 1 or |z| > 1.

In this paper, the word ‘an approximate zero of order M’ is used as follows. If it holds
for small sampling periods 7" that

2(T) =2(T) + O(TM*1) (13)

where z(T') denotes an exact value of a zero of a discrete-time model which depends on
T, then a function Z(7T) is called an approximate zero of order M for z(T).

3. Main Results. In this section, we first define the characterization of linear MDS
multivariable system, such as the degrees of infinite elementary divisors and the number
of continuous-time zeros. On the basis of the above analysis, we give the linear approx-
imate asymptotic expressions of limiting zeros in the case of a PC GSHF with respect
to the sampling period T for linear MDS multivariable discrete-time model. Finally,
the new stability criteria of sampling zeros can be obtained by analyzing the asymptotic
expansions.
From (4), we have straightforward by calculating

_ T i O _
cB = [ W O]_M—IV]_O
o) I o)
CAB = [W" O] )/ g —MlDHMIV}
_ ri] O
=low ]_M1V}
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= WrM~'v (14)

From Equation (14), the matrix M is positive definite, and the matrices V' and W
are both column full rank, so the following results hold: when it holds |CAB| # 0, the
degrees of infinite elementary divisors of linear MDS multivariable system (4) or (5) are
equal to three; when it holds |[CAB| = 0, the degrees of infinite elementary divisors of
linear MDS multivariable system (4) or (5) are greater than or equal to four. Without
loss of generality, we consider that the degrees of infinite elementary divisors are equal
to three in the proof of Theorem 3.1 in this section. In addition, it can be found in the
MDS discrete-time model with PC GSHF that the system Sp (9) has 2R — m zeros for
almost all sampling period while the continuous-time multivariable system (4) has 2R—2m
zeros. The zeros of Sp are classified into two categories, i.e., those that correspond to
the zeros of the continuous-time system, and those that do not have any continuous-time
counterparts. The former 28 — 2m called intrinsic zeros and the latter m zeros are called
sampling zeros.

Theorem 3.1. Let r; (i =1,--- 2R — 2m) be the zeros of the linear MDS multivariable

system (2). Then, the corresponding intrinsic zeros z; (i = 1, -+ ,2R—2m) are represented
as
2z =1+7r,T +O(T? (15)
and for the sampling zeros zon om+i (i = 1,---,m) generated in the sampling process,
there is a relation
2k (o
- (1 _ 2ol )> AT +0[(TY)] (16)
ey (@)

where \; (i = 1,--+ ,m) denote the eigenvalues of the matrix
and Ay, = (-WTM'DM='V)(WT MV~

. . . : Py Pro
Proof: First, there exist non-singular matrices P= and ()=
* & { O Py ] @ { Q21 Qa2 ]

which yield

I, B

" 17
Om} o

where Pi1, Pio, Py, (21, Q2o are matrices of dimension n X n, n X m, m X m, m X n,
m X m, respectively, and

P(s) = PI(s)Q = [ A =

. Om y Omx(n—?m) . Om
A= Om Om Omx(n—?m) ) B = I,
O(n—?m)xm O(n—2m)><m Af O(n—2m)><m
é = |: Im Om Omx(n—2m) ] (18)

The matrix manipulation by P and () does not change the values of the zeros and the
eigenvalues of Ay coincide with the zeros of Se.

For a discrete-time MDS system (9) in the case of a GSHF, there exist matrices P =
block — diag(Pi1, Pas) and Q = block — diag(P;', Qq2) which transform I'z(z) to

~ &)—AZIn fG :| (19)



STABILITY OF ZEROS FOR NONCOLLOCATED MDS SYSTEMS 1039

~ ~ ~ ~ N ~ ~ _j=1 ~ ~
where @ = AT, A = PyAP, Tg = Y oy, [ = f((ll_E)T eA"Bdr. Similarly, the
=1 ~

zeros of ['r(z) are not changed by the matrix manipulation with P and Q. Then we can
express the matrix A by use of block matrices such as

m m n—2m

A f 0] m

A= {121 Opm  Ass m (20)
[A:ﬂ 0] AfJ n —2m

where fli]- are some constant matrices.
Next, define the block matrices U = block — diag(V~"',U), V = block — diag(V,T'1I,,,),
V = block — diag(Ln_y, TIy, In_m), U = block — diag(I,,_y, T ;) and let

_ B [(T)—z[n fg]

Dr(z) = U0V = | 27 f (21)

_ N j—1 _
where ® = ¢4, A =V IAVT, ¢ = j;ajf‘j, L, = f((ll:J;TT)T e Bdr.

Obviously, the roots of I'z(2) = 0 coincide with the roots of I'y(z) = 0. Therefore,
the limiting zeros of the linear MDS discrete-time system (9) in the case of a GSHF are
obtained from Equation (21).

For a sufficiently small T, we consider the approximate expansion of A with respect to
T up to the first-order term, and the matrix A can be expressed as

- [AwT I, O
0 O AT

The product of (22) leads to

) [Om AnT @T} )
A2:L%n %m 8 J+O[(T2)], AP =0 [(T7)] (23)

Then, by simple straightforward calculation, we have

b = I+ A+ A+ O[(T)
I, + AnT I, + %1‘111T %15123T

=|  On I, AT | +O[(T7)] (24)
O O Ly_om + AfT
e = (chla)lu+ 3 (@A + gk (0)4%) B+ 0[(T?)
s (@)L, + %c?v(a)flnT
- o ro[(T)] (25)

On the basis of the above analysis, substituting (24) and (25) into (21), it immediately
obtains:

ITr(2)| = Qo@1Q2 (26)
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where (g is a constant, and ()1 and (), represent respectively the asymptotic properties
of sampling zeros and intrinsic zeros in the following:

(1 2he) Y, () — 26 (@)ek(a) ; ,
=1 ) Eep el @
Q= (1= )l + AT+ 0 [(T%) 23)

where A;; = (CA?B)(CAB)~'. Hence, (2X — 2m) zeros z for i = 1,---,28 — 2m
of Sp (9) can be expressed as z; = 1+ r,T + O(T?); furthermore, the remaining m

zeros (sampling zeros) zox omy; for i = 1,--- ,m of Sp (9) have the form of zox 9y =
2 1

(1 - CQN((C;)> - )\iT + O(T2) for 1 = 1,- e, Mm, where )\i (Z = 1,- . ,m) denote the
ey (a

(3¢k(0) = 2k (@)ck(e) ;

3[ck ()]
As a result, the proof is complete.

eigenvalues of the matrix

Remark 3.1. A proof of Theorem 3.1 is given for the case of the degrees of the infinite
elementary divisors being three for simplicity of description. Further, it is straightforward
to extend the proof to the general case such as the degrees of the infinite elementary divisors
being four or five ---.

Remark 3.2. It is found from Theorem 3.1 that the intrinsic zeros of the linear MDS
discrete-time system (9) converge to z = 1, and the sampling zeros are expressed approz-
imately by the parameters aq, as, az and eigenvalues of the matrices
(3R (@) — 2} ())en (@)
P All.

3ley (@)]?
Remark 3.3. In the proof of Theorem 3.1, for more details on this procedure, such as
the structure of the matrices Py and P', it can see the review by Suda [40] on limiting
zeros of linear time-invariant systems.

Remark 3.4. In Theorem 3.1, all of the zeros are stable, i.e., located strictly inside the
a1+ g + (0%}

Sa + 3 + a3
sampling period T'. Theorem 3.1 means that the limiting zeros of linear MDS' discrete-
time system (9) can be assigned inside the unit circle by choosing design parameters «; of
PC GSHF. Therefore, the PC GSHF with choosing the suitable parameters «; can produce
Gp(z) with all stable zeros for a wider class of continuous-time plant G¢(s) than ZOH.

unit circle when the equation s greater than 0 for a sufficiently small

4. Numerical Example. Consider a 3-mode, 2-input, 2-output MDS system as Figure
3 with noncollocated actuators and sensors described by (2), where

2 -2 0 4 —4 0 10 L1 o

D=|-2 5 3|,K=|-46 -2, Vv=]|01 ,WT:[O . 1]
0o -3 3 0 —2 2 11

M = diag(1,1,1) (29)

The system (2) with the parameters (29) has two zeros and the degrees of infinite
elementary divisors are all three since it has readily seen that CB = 0 and CAB =
WTM~'V is nonsingular. The values of the two zeros are —0.7085 and —11.2915 and
they are stable. Hence, the intrinsic zeros of the corresponding discrete-time system lie
inside the unit circle for a sufficiently small sampling period. From [37], in the case of
a ZOH, one of the sampling zeros is located inside the unit circle for a sufficiently small
sampling period and the other outside. Now we consider the stability of limiting zeros
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k> k;
mz; | — [ M2 | — | My
e " HEH
Co Cy
K q: qi

FiGURE 3. A 3-mode, 2-input, 2-output mass-damper-spring system
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Zeros magnitude
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FIiGURE 4. The magnitudes of zeros of the discrete-time system with PC
GSHF for T'= 0.001

for a discrete-time MDS system in the case of a GSHF. The magnitudes of zeros of the
corresponding discrete-time model with PC GSHF are shown in Figure 4 for the sampling
period T = 0.001. All the zeros stay inside the unit circle for the corresponding stability
condition in Remark 3.4. The improvement of stability can be achieved by means of a
suitable choice of the parameter o (j = 1,2,3). Same as to PC GSHF can make an
inverse stable discrete-time system when ZOH cannot.

The second MDS multivariable system with noncollocated actuators and sensors (2) is
assumed to have the matrices

cwr=lon) @0

Then in this case, one of the degrees of infinite elementary divisors is greater than or
equal to four since it holds that CB = 0 and |CAB| = [WTM~'V| = 0. Moreover, the
system (2) with the parameters (30) has a stable zero —0.6667. When the MDS system
(2) is discretized by a ZOH, the corresponding discrete-time system has one unstable
sampling zero —3.73 and another stable sampling zero —0.268 for 7= 0.001s [37]. Now,
we consider the limiting zeros of sampled-data models for the MDS multivariable systems
in the case of a PC GSHF. For system (2) with the parameters (30), loci of the absolute
values of limiting zeros of the corresponding discrete-time systems by using a PC GSHF
are shown in Figure 5. Furthermore, the good performance of the controlled system can
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Ficure 5. Loci of absolute values of limiting zeros of the discrete-time
system with PC GSHF

be achieved in the case of the PC GSHF because the stability of the zeros of discrete-time
system is significantly improved.

5. Conclusions. This paper investigates the asymptotic behavior of the limiting zeros of
MDS discrete-time multivariable systems with noncollocated sensors and actuators in the
case of a PC GSHF. In this case, the corresponding discrete-time multivariable systems
have m intrinsic zeros that approach the point 2 = 1 and 2X—2m sampling zeros which can
be expressed approximately by the parameters oy, as, az and eigenvalues of the matrices
(364 (@) — 2¢k (@) el (a) ;

P All.

3len (@))?

MDS multivariable systems for a sufficiently small sampling period is derived. As a result
of this study, it has been shown that the zeros of the MDS discrete-time multivariable
systems with PC GSHF can be located inside the stability region when the ZOH fails to
do so, by choosing the suitable value of the design parameter «;.

Moreover, the stability of the zeros of the discrete-time
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