International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 3, June 2015 pp. 1059-1073

HYBRID METHOD OF CHAOTIC GENETIC
ALGORITHM AND BOUNDARY SIMULATION
FOR CONSTRAINED OPTIMIZATION

JIE YanGg!, HoNG GA0o?* AND WEI Liu?

! Transportation Management College
2Department of Mathematics
Dalian Maritime University
No. 1, Linghai Road, Dalian 116026, P. R. China
*Corresponding author: gao_hong@qq.com; gaohong@dlmu.edu.cn

Received June 2014; revised November 2014

ABSTRACT. Many real-world problems are usually subject to some constraints and are
posed as constrained optimization problems. In this paper, we present a hybrid method
for constrained optimization problems, which combines the improved boundary simula-
tion method, chaotic initialization method and genetic algorithm (GA). A novel boundary
simulation method based on the backward binary search technique is proposed to get the
boundary of the feasible region. In order to maintain diversity among initial solutions, a
chaotic method is proposed to generate initial population from the boundary of the fea-
sible region. Some self-adaptive parameters are designed in crossover and mutation to
generate more valid feasible solutions, and a simple repair method is used to update in-
feasible solutions. The proposed hybrid method is tested on six benchmark functions and
three engineering design problems. The results compared with those of some optimization
algorithms show the competitive advantage of our algorithm.

Keywords: Constrained optimization, Genetic algorithm, Boundary simulation, Back-
ward binary search technique, Chaotic initialization

1. Introduction. The constrained optimization problem is a hot topic in the operations
research. In order to handle constraints, many techniques which contain penalty methods,
repair methods, multi-objective methods and hybrid methods have been proposed.

The penalty method is the most popular constraint-handling approach. Its main idea is
to add a penalty term to the objective function. Then the original problem can be handled
as an unconstrained problem. Joines and Houck [1] proposed a dynamic penalty scheme, in
which some time-dependent parameters were introduced to adjust the constraint violation
of the infeasible solution. Farmani et al. [2] assigned an infeasibility value to each solution
and penalized infeasible solutions depending on their feasibility values. Huang et al. [3]
designed a penalty function considering both the amount and the number of constraint
violations and evolved penalty factors by differential evolution (DE) method.

The main idea behind repair method is to replace an infeasible solution with a feasible
solution. Orvosh and Davis [4] concluded that the optimal result would be better when
5% original solutions were repaired. Chootinan and Chen [5] updated infeasible solutions
using the gradient information of constraints. Takahama and Sakai [6] repaired infeasible
solutions by gradient-based mutation with some probability and maintained infeasible
solutions which have minimum constraint violation. More repair methods were introduced
in [7].

1059

1060 J. YANG, H. GAO AND W. LIU

The multi-objective method treats the constraints as objective functions and optimizes
the constraints and objective simultaneously [8, 9]. Ray and Kang [10] ranked each solu-
tion and employed different mating strategies in terms of the constraint level to improve
non-dominance solutions. Coello and Montes [11] considered each constraint violation as
an objective. Venter and Haftka [12] constructed an additional objective function based
on all constraints and solved the unconstrained bi-objective optimization problem.

Hybrid method is also used for constraint handling. Perzina and Ramik [13] incorpo-
rated a self-learning GA and heuristic local search operators. Ghodrati and Lotfi [14]
applied a hybrid algorithm of cuckoo search and GA to the constrained optimization
problem. Oh et al. [15] presented a genetic programming based approximation approach
in combination with a multi-membered evolution strategy (GPA-ES).

In this paper, a hybrid GA is proposed to solve the constrained optimization problem.
The rest of the paper is organized as follows. Section 2 presents a boundary simulation
method based on our backward binary search technique. Using this method, the boundary
of the feasible region can be simulated. Section 3 combines our boundary simulation
method, chaos theory and GA to form a novel algorithm called boundary simulation
chaotic genetic algorithm (BSCGA). In Section 4, we apply BSCGA to six benchmark
functions. The results are compared with other methods. In Section 5, we apply BSCGA
to three engineering design problems and compare the results with those of some state-
of-the-art algorithms. Section 6 involves the conclusion.

2. A Novel Boundary Simulation Method. The constrained optimization problem
has four types of constraints, namely linear inequality, linear equality, nonlinear inequality
and nonlinear equality constraints. Since equality constraints can be easily converted into
inequality constraints, the constrained optimization problem can be described as follows.

min f(X)
(X)) <0 =1,2,---

5.t g”l()0, i=12,,m, (1)
%S%S«T;‘a 221,2,"',7’L,

where f(X) is the objective function subject to m inequality constraints, g;(X) is the
j-th inequality constraint function, X = (x, s, -+ ,x,) is n-dimensional decision vector,
xt and z¥ are the lower and upper bounds of the i-th decision variable.

i

2.1. The outline of our boundary simulation method. In order to describe our
method, the following basic definitions are introduced.

Definition 2.1. The feasible region F is

F = {X: (.1'1,1'2,"' ;xn)

Definition 2.2. The search space S is

S:{X:(xl,xQ,---,xn)x§<xi<x§‘, i=1,2, -,n}.
Definition 2.3. The outer space S’ is
SI:{X:(mlam%"'7xn)jfj§xi§'%’ga i:1727"'7n}7

where Tt < zt and ¥ > x%. The outer space S' envelops the search space S.

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1061

The outline of our boundary simulation method is as follows. Firstly, generate several
feasible points from the search space (see Section 2.2). Secondly, construct an outer
space which envelops the whole search space and generate some infeasible points from the
boundary of the outer space (see Section 2.3). Finally, search for boundary points of the
feasible region by the proposed backward binary search technique (see Section 2.4).

2.2. Generate feasible points with GA.

2.2.1. Initialization and evaluation. Randomly generate an initial population which con-
tains popsize individuals and use the fitness function (2) to evaluate individuals.

f(X) = SP X (Cmax - Cmin) + (Cmax - C(X)), (2)

where SP is a positive parameter for selection, and it reflects the selection pressure. ¢pay
and ¢y, are the maximum and minimum violation values among the current population.
¢(X) is the violation value of individual X, and it is computed by Equations (3) to (5).

o(¥) = (%), ©

() = L o
_) 9i(X), g (X) >0,
(%) = {0, i o

where ¢;(X) is violation value of individual X for the j-th constraint; ¢;"* and q;-“in are
the maximum and minimum violation values for the j-th constraint among the current

population.

2.2.2. Selection. In order to avoid the loss of the best individual, we select the individual
using combined well-known proportional selection and elitist strategy. The method sorts
all individuals in descending order according to their fitness values, and then selects the
first EN (the elitist number) individuals as parents. Other parents are selected by the
proportional selection operator. All the parents are stored in a mating pool in disorder.

2.2.3. Crossover. In the crossover, two self-adaptive parameters are used to make sure
the offspring are in the search space. The process can be described by three steps.
Step 1. Select two parents from the mating pool.
Step 2. Generate a random number 7 from the interval [0,1]. For a given crossover
probability p., if n > p., randomly duplicate a parent twice as new offspring; if n < p,
generate the new offspring according to Equation (6).

rh =l -) 0 = a2), (6)
where z] and z? are the i-th decision variables of the two offspring; 7 is the smaller
one of the i-th decision variable of the two parents, and z is the bigger one. 7} and
r? are crossover parameters, and their values are randomly generated from the following
intervals.

I ,.mi u __ .mi
= Ty — & Ty —Z;
i ma __ ,.mi’ ,.ma __ ,.mi

.2
7ri

mi ma’ ,.mi ma
mt __ el J Al —

l‘l 13 7 7

u ma l ma
c [mz — T Ty — T

Step 3. Replace the parents with their offspring and put them into the mating pool.

1062 J. YANG, H. GAO AND W. LIU

2.2.4. Mutation. In the mutation, we use a self-adaptive parameter to make sure the
mutated offspring are in the search space.

The process is to generate a random number 1 from the interval [0,1]. For a given
mutation probability p,,, if n > p,,, duplicate the original individual as new offspring; if
17 < pm, randomly select a decision variable x; and add a variable bias ¢§; to x;. The value
of 0; is calculated according to Equation (7).

6 = r(z¥ — 2!, (7)

3

where 7 is mutation parameter, and its value is randomly generated from the following

interval.
b —x; 2 —
u 17 u L]

[7

2.2.5. End condition. We check the individuals of each generation. If there exists a feasi-
ble point, pause the program and output all the feasible points. If the number of feasible
points is less than the pre-established value, continue the program; otherwise terminate.

2.3. Generate infeasible points from the boundary of the outer space. To gen-
erate infeasible points from the boundary of the outer space as defined by Definition 2.3,
the two steps are as follows.

Step 1. Find the boundary of the outer space. The bounds on the i-th dimension of the
outer space, 7t and ¥, are calculated according to Equation (8), which can make sure
the feasible region is in the center of the outer space as much as possible.

2= o — (af — al); 3 = 2P+ (o} —), ®)

where ;™" and z}*** are the minimum and maximum values of decision variable x; among

feasible points (generated in Section 2.2).

Step 2. Generate infeasible points. Firstly, select some points in the outer space ran-
domly. Secondly, project these points to the boundary. Fix one component and convert
others to corresponding upper or lower bounds.

2.4. Calculate boundary points of the feasible region with the backward binary
search technique. We present a backward binary search technique to find the boundary
point of the feasible region. The detailed steps are as follows.

Step 1. Choose a feasible point a and an infeasible point b.

Step 2. Calculate the midpoint ¢ of interval [a, b].

Step 2.1. If ¢ is feasible, let ¢ = a and go to Step 2.4; otherwise record the interval
[a, c] and calculate the midpoint d of interval [c, b].

Step 2.2. If d is feasible, clear the record [a, ¢], let d = a and go to Step 2.4; otherwise
go to Step 2.3.

Step 2.3. If the distance between d and b is less than &, let d = b and return to Step
2; otherwise let d = ¢ and return to Step 2.1.

Step 2.4. If the distance between a and b is less than ¢, output point a; otherwise
return to Step 2.

Perform these steps until the program terminates. Then we will get the feasible point
a on the boundary of the feasible region.

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1063

2.5. Examples. In order to test the effectiveness of our boundary simulation method, we
simulate the boundary of the feasible region for two optimization problems and compare
the results with those obtained by the binary search method presented in [16].

The parameters of the boundary simulation method are set as follows: FP = 10,
IFP =20, BP=FPxIFP =200, =0.001, where FP, [FFP and BP are the numbers
of feasible, infeasible and boundary points respectively, € represents the accuracy.

Example 2.1. The feasible region is simply connected. Let X = (x1,x5), and the con-
strained optimization problem is

min f(X)
x4 23 < A4,
s.t. T1 + To Z]_, (9)

nglaxZ §2

The results of boundary simulation for this example are shown in Figure 1. The left (a)
is by our backward binary search method, and the right (b) is by the binary search method.
We can see that, the boundaries simulated are similar. For the constrained optimization
problem with connected feasible region, the two search methods are comparative.

4 4
* # bl el
it : - | * Feasible paint
al # Feasible point |« | 3l | % Infeasible point| 1
Infeasible point | * | + Boundary point
+ Boundary point -
2 - 2M I -
: N be T
¥ % =~ -l " y
@ 1L = | P ' \.‘ o L N
* e : R
< *
\ i
o U . 0 i
1 w 1
* =
s % % % #
2 - i
-2 1 o 1 2 3 4 -2 1 0 1 2 3 4
X1 x(1)
(a) (b)

FIGURE 1. Boundary simulation results for Example 2.1: (a) by the back-
ward binary search, (b) by the binary search method

Example 2.2. The feasible region is multiply connected. Let X = (x1,z3), and the
constrained optimization problem is

min f(X)
af + x5 < 4,
> 1
R S (10)

(1 — 0.5)% + (22 — 1.5)2 > 0.09,
0 S L1, T2 S 2.
The results of boundary simulation for this example are shown in Figure 2. The left

(a) is by our backward binary search method, and the right (b) is by the binary search
method.

1064 J. YANG, H. GAO AND W. LIU

irs T T C—] 4 | w e = % |
ke # Feasible point + Feasible point |

sl % Infeasible point | 3l | # Infeasible point | * |
ke |+ Boundary point l + Boundary point

;| o
2 - 2 e
! . > o I \
: . o
8 4 i . 1 g e \ Fad AN
F s + \\ ™ ‘\
“ ; i]

al . fi] S -

13

% -3

M 1

B
ol * ¥ i1 al = ¥

2 1 0 1 2 3 4 -2 1 0 1 2 3 4

(1) u(1)
(a) (b)

FIGURE 2. Boundary simulation results for Example 2.2: (a) by the back-
ward binary search method, (b) by the binary search method

In this example, the feasible region is constructed by digging a round hole whose center is
at the point (0.5, 1.5) and radius is 0.3. Figure 2(b) shows not only the external boundary
but also the internal boundary of the feasible region. Figure 2(a) only shows the largest
boundary which is the boundary we need for initialing population (see Section 3.2).

The binary search method is based on a sorted array. So it is only suitable for the
connected feasible region. Our backward binary search method can simulate boundary
well not only for connected feasible region but also for multiply connected feasible region.

3. BSCGA. In this section, we present the boundary simulation chaotic genetic al-
gorithm (BSCGA) for constrained optimization problems. The new hybrid algorithm
combines the improved boundary simulation method, chaotic initialization and genetic
algorithm.

3.1. Simulation of the boundary of the feasible region. Using the novel boundary
simulation method (see Section 2), we can get BP boundary points of the feasible region.
BP is greater than popsize which is the population size.

3.2. Chaotic initialization. Chaotic search is characterized by randomness, ergodicity
and sensitive to initial conditions. Based on these characters, we propose a chaotic ini-
tialization method to generate the initial population from the boundary of the feasible
region.
The chaotic initialization method contains the following three steps.

Step 1. Generate n chaotic sequences {tL}, {t2}, -+, {t}} with different initial values
using the logistic mapping (11), where k& = 1,2,--- 1 + popsize, | is a large positive
integer, #% is the k-th iteration value of the i-th chaotic sequence.

ko1 = 45, (1 = 1) (11)
Step 2. Generate popsize chaotic mapping points with the mapping (12).
vt = Min; +ti,(Max; — Min;), (12)

where Min; and Max; are minimal and maximal values of the i-th decision variable among
the simulated boundary points of the feasible region. Thus, the popsize chaotic mapping
points X = (z}, 2%, - ,2%) (k=1+1,1+2,---,] + popsize) can be generated.

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1065

4 4
#* n * * #* n # n
Feasible point + Feasible point
3t # Infeasible point — 3t # |nfeasible point
* + Boundary point # + Boundary point
2 O Chaotic initial point L O Random initial point

x(2)
o
a® ":)i
b3
x(2)
g
de
&
b3

o
o

FIGURE 3. The initial populations: (a) by chaotic initialization method,
(b) by random initialization method

Step 3. Select the nearest point with the chaos mapping point from the boundary
point set. If Y, is the nearest point with Xj, then we can get the initial population
{}/24-17 Yi+2, e aYE-l—popsize}-

To test the validity of the method, we use our chaotic initialization method and random
generation method to initialize the population for Example 2.1. The results are shown in
Figure 3. The left (a) is by our chaotic initialization method and the right (b) is by the
random generation method.

From Figure 3, we can be see that the initial population generated by chaotic initial-
ization method is uniformly distributed on the boundary of the feasible region. We also
compute the radius of the standard deviational circle using Equation (13) to measure the
discreteness of the initial population.

= popzszze (1'1 — fl)Q + (ZUQ — f2)2 (13)
— popsize — 2 ’

where #; and 75 are the mean values of z; and x5 among the initial points X = (z1, x2).

We run each method 20 times. For initial populations generated by chaotic initialization
method, we get larger mean value and smaller standard deviation (st.dev.) of the radii of
standard deviational circles. It indicates that our chaotic initialization method can better
maintain the diversity of the initial population.

3.3. Genetic operators. In the genetic process, we use steady-state evolutionary model.

The best individual in the current generation is preserved for the next generation, and

the worst individual in the current generation is replaced by the best individual so far.
In the evaluation, the fitness value of individual X is computed as Equation (14).

f(X) = SP x (ymax - ymin) + (ymax - y(X)) (14)

where y(X) is the objective value of individual X, yyin and Ymax are the minimal and
maximal objective values among the current population.
In the selection, we use the selection operator (see Section 2.2.2).

1066 J. YANG, H. GAO AND W. LIU

In the crossover, we use the crossover operator (see Section 2.2.3). And the values of
crossover parameters (in Equation (6)) are generated from the following intervals.

" Min; — ™ Max; — x]™ 9 Max; — 2" Min; — x**
;€ ; TE € ,

_ . .
Fme — g " g — gt !

mie ma ’ me ma
i i i i L Ty — I

"I:Z) 7 7

where Min; and Max; are the minimal and maximal values of the i-th decision variable
among simulated boundary points of the feasible region.

In the mutation, we use the mutation operator (see Section 2.2.4). To narrow the search
area, we use Equation (15) to compute the variable bias d; instead of Equation (7).

6; = r(Mazx; — Min;), (15)
where r is mutation parameter and its value ranges in the following interval.

[Min; — x; Max; — x;]

Maz; — Min;’ Maz; — Min,;

To enhance the performance of genetic search and the quality of solutions, we propose
a simple binary repair method to repair infeasible solutions. The steps are as follows.
Step 1. Choose a feasible point a and an infeasible point b that needs to be repaired.
Step 2. Calculate the midpoint ¢ of interval [a, b].
Step 3. If ¢ is feasible, terminate; otherwise let b = ¢ and return to Step 2.
Step 4. Replace the infeasible point b with c.

4. Experiments for Benchmark Functions. The BSCGA is coded by Matlab M script
programming language and compiled with Matlab 7.8. In this section, we apply it to six
benchmark functions (see Section 4.1) which have been widely used in optimization re-
searches. All results are compared with some state-of-the-art algorithms.

4.1. Benchmark functions. The six benchmark functions are as follows.
g01.

min £(X) = sin3(2;rx1) sin(2mxs)
x3(z1 + x9)
72— 39 +1<0,
s.b. ¢ 1 —xy + (20 —4)2 <0,
0<z <10, i=1,2.

g02.
min f(X) = 5.35784723 + 0.8356891x 25 + 37.293239x, — 40792.141
0 < 85.334407 + 0.0056858z925 4+ 0.0006262z1 24 — 0.00220532375 < 92,
90 < 80.51249 + 0.0071317z325 + 0.0029955x 79 + 0.002181322 < 110,

20 <€ 9.300961 + 0.0047026z 325 + 0.0012547x125 + 0.0019085x374 < 25,
78 <z <102, 33 <o <45, 27 < x; <45, 1 =3,4,5.

S.t.

g03.
min f(X) = (2, — 10)® 4 (2 — 20)?
100 — (IL’1 — 5)2 — (IL’Q — 5)2 S 0,
s.t. 4 (1 — 6)? + (z — 5)% — 82.81 < 0,
13 <z <100, 0 < 2y <100.

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1067

g04.
4 4 13
min f(X) = 5in - 52:522 - sz
i=1 i=1 i=5
(22 + 225 + 219 + 211 — 10 < 0,
2z, + 223 + x19 + 212 — 10 <0,
2x9 + 223 + 11 + 212 — 10 <0,
—8xy +x19 <0,
=819 + 11 <0,
ot —8xz + x12 <0,
—2T4 — x5 + 210 < 0,
—2x —x7 + 11 <0,
—2x8 — X9 + T2 < 0,
0<zi<1,i=1,2---,9,
0< a2 <100, i =10,11,12,
(0 <23 <1
g05.
min f(X) = (21 — 10)* 4 5(zo — 12)® + 35 + 3(z4 — 11)* + 1022
+ 7x§ + x‘% — 4dxgry — 1026 — 827
(127 — 222 — 325 — 23 — 422 — 525 > 0,
282 — Txy — 319 — 10:5% —x4+x5 >0,
s.t. ¢ 196 — 23z — x3 — 622 + 8x7 > 0,
—4x? — 23 + 31179 — 222 — Hx6 + 11la7 > 0,
—10<2;, <10, i=1,2,---,7.
g06.

HllIlf(X) = +x9+ X3

(1 —0.0025(z4 + 26) > 0,

1 —0.0025(x5 + x7 — x4) > 0,

1 —0.01(xzg — x5) > 0,
7126 — 833.332527, — 1002, + 83333.333 > 0,
5.t { Zotr — 125025 — 294 + 125024 > 0,

2315 — w375 + 250025 — 1250000 > 0,

100 < 27 < 10000,

1000 < z; < 10000, i = 2,3,
(10 < 2; <1000, i =4,5,--,8.

These problems have various objective functions (i.e., quadratic, cubic, linear, nonlinear
and polynomial functions) and a wide range of feasible ratio from 0.001% to 52.123%.

4.2. Parameters selection. In the boundary simulation method of BSCGA, there are
three parameters involved, namely F'P, IF'P and ¢ (see Section 2.5). The three parame-
ters are experimentally set as follows: F'P =10, IFP = 100, £ = 0.001.

1068 J. YANG, H. GAO AND W. LIU

In the chaotic initialization method of BSCGA, in order to guarantee the diversity of
the initial population, the parameter [should be a large number. We set [= 1000.

Other parameters are conventional parameters of GA. They are set as follows: popu-
lation size popsize = 200, selection pressure SP = 1, elitist number EN = 40, crossover
probability p. = 0.8, mutation probability p,, = 0.2, and the maximum number of func-
tion evaluation M FE = 350,000 which is the terminal condition.

4.3. Results. We run BSCGA 25 times for each benchmark function. The best, mean,
worst results and the standard deviation of the optimum results are shown in Table 1.

TABLE 1. The results of BSCGA for six benchmark problems

g01 g02 g03 g04 g05 g06
best | -0.105279 | -30681.670 | -6961.891 | —15.000 | 680.631 | 7049.253
mean | —0.096940 | -30679.392 | -6961.882 | —15.000 | 680.631 | 7051.546
worst | —0.094283 | -30673.589 | -6961.880 | —15.000 | 680.636 | 7054.655
st.dev. | 1.01E-03 | 2.45E+00 | 3.42E-03 | 0.00E4-00 | 2.61E-03 | 3.29E+400

We also compare our results with some other algorithms, such as stochastic ranking
strategy (SR) [17], self-adaptive fitness representation (SFR) [2], gradient-based repair
method (GR) [5] and GPA-ES [15]. The comparisons of the “best” results and “mean”
results are shown in Table 2 and Table 3.

TABLE 2. Comparison of the best results for benchmark functions

g01 g02 g03 g04 g05 g06
BSCGA | -0.105279 | —30681.670 | —6961.891 | -15.000 | 680.631 | 7049.253
SR —0.095825 | -30665.539 | —6961.814 | -15.000 | 680.630 | 7054.316
SFR —0.095825 | -30665.500 | —6961.800 | —15.000 | 680.640 | 7049.340
GR —0.095825 | -30665.539 | —6961.814 | —-15.000 | 680.630 | 7049.261
GPA-ES | -0.095825 | —-30665.539 | —6961.814 |-15.000 | 680.630 | 7081.948

TABLE 3. Comparison of the mean results for benchmark functions

g01 g02 g03 g04 g05 g06
BSCGA | -0.096940 | —30679.392 | -6961.882 | —15.000 | 680.631 | 7051.546
SR —-0.095825 | -30665.539 | —6961.814 | -15.000 | 680.640 | 7372.613
SFR —-0.095825 | -30665.200 | —6961.800 | —15.000 | 680.720 | 7627.890
GR —0.095825 | -30665.534 | —6961.814 | ~15.000 | 680.638 | 7049.566
GPA-ES | -0.095825 | —30648.853 | —6961.814 | —15.000 | 680.648 | 7342.196

From Table 2, we can see that for problem g01, g02, g03, g06, our “best” results are
better than those of other algorithms. For problem g04, the “best” result is the same as
others. For problem g05, our “best” result is very close to the best solution.

From Table 3, we can see that for problem g01, g02, g03, g05, our “mean” results are
better than those of other algorithms. For problem g04, the “mean” result is the same as
others. For problem g06, our “mean” result is very close to that of GR which is the best
“mean” result.

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1069

5. Experiments for Engineering Design Problems. In this section, we apply BSCGA
to three engineering design problems, and each problem has been solved 25 times. The
parameter settings are the same as those in Section 4.2 except that M FE is set to
80,000. The results are compared with those of other optimization methods including
GA with a dominance-based selection scheme (DS-GA) [11], hybrid particle swarm opti-
mization (HPSO) [18], DE based on a co-evolution mechanism (CDE) [3], hybrid Nelder-
Mead simplex search method and PSO (NM-PSO) [19], hybrid PSO and a spreadsheet
“Solver” (PSOLOVER) [20] and improved constrained electromagnetism-like mechanism
(ICEM) [21].

5.1. The pressure vessel design problem. This problem aims to minimize the total
cost of material, forming and welding subject to four inequality constraints. It has four
variables: thickness of the shell (1), thickness of the head (x3), inner radius (z3) and
length of the cylindrical section of the vessel (x4). The formulated problem can be found
in [12].

In Table 4, the best, mean, worst results, the standard deviation of the optimum results
and NFE which is the number of function evaluation are compared with those of other
methods. The values of decision variables and constrained functions corresponding to the
“best” result are called the best solutions. The comparison of the best solutions with
those of other methods is shown in Table 5.

TABLE 4. Comparison of the results for pressure vessel design problem

best mean worst st.dev. NFE
BSCGA 5918.4422 | 5948.4601 | 6025.8620 | 3.44E+01 | 80,000
DS-GA 6059.9463 | 6177.2533 | 6469.3220 | 1.31E+02 | 80,000
HPSO 6059.7143 | 6099.9323 | 6288.6770 | 8.62E+01 | 81,000
CDE 6059.7340 | 6085.2303 | 6371.0455 | 4.30E401 | 204,800
NM-PSO | 5930.3137 | 5946.7901 | 5960.0557 | 9.16E+00 | 80,000

PSOLOVER | 6059.7143 | 6059.7143 | 6059.7143 | 4.63E—-12 310
ICEM 6059.7143 | 6059.7143 | 6059.7143 | 9.10E-13 | 80,000

TABLE 5. Comparison of the best solutions for pressure vessel design problem

fF(X)(best) Ty To T3 Ty
BSCGA 0918.4422 0.7970 0.3940 41.2953 | 186.8497
DS-GA 6059.9463 0.8125 0.4375 42.0974 | 176.6540
HPSO 6059.7143 0.8125 0.4375 42.0984 | 176.6366
CDE 6059.7340 0.8125 0.4375 42.0984 | 176.6377
NM-PSO 5930.3137 0.8036 0.3972 41.6392 | 182.4120
PSOLOVER | 6059.7143 0.8125 0.4375 42.0984 | 176.6366
ICEM 6059.7143 0.8125 0.4375 42.0984 | 176.6366
91(X) 92(X) 93(X) | 9a(X)
BSCGA ~7.10E-07 | -4.28E-05 | -3.68E-01 | —53.15
DS-GA -2.00E-05 | -3.59E-02 | -2.79E+01 | —63.35
HPSO -8.00E-11 | -3.59E-02 | -2.72E-04 | -23.36
CDE —6.68E-07 | -3.59E-02 | -3.68E400 | —63.36
NM-PSO 3.66E-05 | 3.80E-05 |-1.59E+00| —17.59
PSOLOVER | -8.00E-11 | -3.59E-02 | —2.72E-04 | —23.36
ICEM -8.00E-11 | -3.59E-02 | -2.72E-04 | —23.36

1070 J. YANG, H. GAO AND W. LIU

From Table 4, we can see that the “best” result obtained by BSCGA is clearly better
than those of other algorithms. And the best solution of BSCGA satisfies all constraints,
while the best solution of NM-PSO violates two constraints (see Table 5). BSCGA gets a
better “mean” result which is very close to the best “mean” result (obtained by NM-PSO),
and the standard deviation obtained by BSCGA is acceptable.

5.2. The tension/compression spring design problem. This problem aims to min-
imize the weight of a tension/compression spring subject to four inequality constraints
with three variables such as the wire diameter (x;), the mean coil diameter (x5) and the
number of active coils (x3). The details of this engineering design problem can be found
in [12].

The comparison of the results is shown in Table 6. The comparison of the best solutions
is shown in Table 7. From Table 6, we can see that the “best” result obtained by BSCGA
is the second smallest. The “best” result obtained by NM-PSO is the smallest, but
its decision vector corresponding to the “best” result is not feasible. The constraints
g1(X) and go(X) are violated, and the violation value 0.001 is the biggest in Table 7.
Although the best solutions obtained by DS-GA and CDE satisfy all the constraints,
their objective values are not very small. HPSO, PSOLOVER and ICEM get the same

TABLE 6. Comparison of the results for tension/compression spring design problem

best mean worst st.dev. NFE
BSCGA 0.0126640 | 0.0126819 | 0.0127213 | 2.43E-05 | 80,000
DS-GA 0.0126810 | 0.0127420 | 0.0129730 | 5.90E-05 | 80,000
HPSO 0.0126652 | 0.0127072 | 0.0127190 | 1.58E-05 | 81,000
CDE 0.0126702 | 0.0127030 | 0.0127900 | 2.70E-05 | 204,800
NM-PSO |0.0126302 | 0.0126314 | 0.0126330 | 8.74E-07 | 80,000

PSOLOVER | 0.0126652 | 0.0126652 | 0.0126652 | 2.46E-09 253
ICEM 0.0126652 | 0.0126653 | 0.0126653 | 3.67TE-08 | 80,000

TABLE 7. Comparison of the best solutions for tension/compression spring

design problem

f(X)(best) Ty T T3
BSCGA 0.0126640 | 0.051704 | 0.357070 | 11.267666
DS-GA 0.0126810 | 0.051989 | 0.363965 | 10.890522
HPSO 0.0126652 | 0.051706 | 0.357126 | 11.265083
CDE 0.0126702 | 0.051609 | 0.354714 | 11.410831
NM-PSO 0.0126302 | 0.051620 | 0.355498 | 11.333272
PSOLOVER | 0.0126652 | 0.051686 | 0.356650 | 11.292950
ICEM 0.0126652 | 0.051689 | 0.356718 | 11.288960
91(X) 92(X) | gs(X) | ga(X)
BSCGA 9.63E-05 | 6.23E-06 | —4.055 -0.727
DS-GA -1.30E-05 | -2.10E-02 | —4.061 -0.723
HPSO -3.07E-06 | 1.39E-06 | —4.055 —-0.727
CDE -3.86E-05 | -1.83E-04 | —4.048 -0.729
NM-PSO 1.00E-03 | 1.00E-03 | —4.061 -0.729
PSOLOVER | —2.00E-05 | 1.33E-05 | —4.054 -0.728
ICEM —6.41E-06 | 3.90E-06 | —4.054 -0.728

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1071

minimum objective value 0.0126652 at the cost of a minor violation of constraint go(X).
Our algorithm BSCGA achieves a balance between objective value and constraint violation
and gets a better “best” result than ICEM with acceptable violations of constraints g, (X)
and go(X).

5.3. The welded beam design problem. This problem aims to minimize the cost
subject to seven inequality constraints with four variables. The details of this engineering
design problem can be found in [12].

The comparison of the results is shown in Table 8. BSCGA gets the smallest “best”
result which is also obtained by NM-PSO and PSOLOVER. Compared with NM-PSO,
BSCGA obtains better “mean”, “worst” results and a smaller standard deviation.

TABLE 8. Comparison of the results for welded beam design problem

best mean worst st.dev. NFE

BSCGA 1.724717 | 1.724991 | 1.731462 | 1.07E-03 | 80,000
DS-GA 1.728226 | 1.792654 | 1.993408 | 7.47E-02 | 80,000
HPSO 1.724852 | 1.749040 | 1.814295 | 4.01E-02 | 81,000
CDE 1.733461 | 1.768158 | 1.824105 | 2.22E-02 | 204,800
NM-PSO | 1.724717 | 1.726373 | 1.733393 | 3.50E-03 | 80,000

PSOLOVER | 1.724717 | 1.724717 | 1.724717 | 1.62E-11 297
ICEM 1.724852 | 1.724852 | 1.724852 | 8.88E—-12 | 80,000

TABLE 9. Comparison of the best solutions for welded beam design problem

f(X)(best) | g1(X) 92(X) g3(X)

BSCGA | 1.724717 | -8.62E-04 | -1.04E+00 | 1.12E-04
DS-GA 1.728226 | ~7.41E-02 | ~2.66E-01 | —4.95E-04
HPSO 1.724852 | ~2.54E-02 | —5.31E-02 | 0.00E-+00
CDE 1.733461 | ~4.46E+01 | ~4.47E+01 | —3.04E-03
NM-PSO | 1.724717 | -2.53E-02 | -5.31E-02 | 1.00E-04
PSOLOVER | 1.724717 | —2.53E-02 | —5.31E-02 | 1.00E-04
ICEM 1.724852 | —2.54E-02 | —5.31E-02 | 0.00E+00
91(X) 95(X) 96(X) 97(X)

BSCGA ~3.4332 | 8.08E-02 | —0.2355 | —1.87E-02
DS-GA -3.4300 | -8.10E-02 | —0.2355 |-5.87E+01
HPSO -3.4330 | 8.07E-02 | -0.2355 | -3.16E-02
CDE -3.4237 | -7.81E-02 | —0.2356 |-3.80E+01
NM-PSO | -3.4332 | 8.08E-02 | —-0.2355 | -3.16E-02
PSOLOVER | -3.4332 | -8.08E-02 | —0.2355 | -3.16E-02
ICEM -3.4330 | 8.07E-02 | -0.2355 | -3.16E-02

The comparison of the best solutions is shown in Table 9. The optimum decision
vector obtained by BSCGA is X = (0.205841, 3.468028,9.036795, 0.205729). Its objective
function value is 1.724717 and the violation value of constraint g3(X), 1.12E-04, is almost
the same as those of NM-PSO and PSOLOVER.

6. Conclusion. In this paper, a new hybrid method (BSCGA) is proposed to solve
the constrained optimization problem. The algorithm mainly includes three processes:
boundary simulation, population initialization and genetic operation.

1072 J. YANG, H. GAO AND W. LIU

Firstly, the boundary simulation method based on the backward binary search technique
is presented to simulate the boundary of the feasible region. This method can perform
well not only for simply connected feasible region but also for multiple connected and
disconnected feasible region.

Secondly, chaotic initialization method is proposed to generate the initial population
from the simulated boundary of the feasible region. This method has better performance
on maintaining the diversity of the initial population.

Finally, BSCGA uses three genetic operators to search the optimal solution. And a
simple binary repair method is presented to repair infeasible individuals.

In this paper, six benchmark functions and three engineering design problems are solved
by BSCGA. The results are compared with those of other algorithms. And the compar-
isons show the competitive advantage of our algorithm.

Further work should be aimed at extending the BSCGA to solve the constrained multi-
objective optimization problem.

Acknowledgment. This work is partially supported by the Natural Science Foundation
of China (No. 61203283, No. 61203082) and Fundamental Research Funds for the Central
Universities (No. 3132014036, No. 3132014324). The authors also gratefully acknowl-
edge the helpful comments and suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] J. A. Joines and C. R. Houck, On the use of non-stationary penalty functions to solve nonlinear con-
strained optimization problems with gas, Proc. of the 1st IEEE Conf. on Evolutionary Computation,
Orlando, FL, pp.579-584, 1994.

[2] R. Farmani, J. A. Wright, D. A. Savic and G. A. Walters, Self-adaptive fitness formulation for
evolutionary constrained optimization of water systems, Journal of Computing in Civil Engineering,
vol.19, no.2, pp.212-216, 2005.

[3] F. Z. Huang, L. Wang and Q. He, An effective co-evolutionary differential evolution for constrained
optimization, Applied Mathematics and Computation, vol.186, no.1, pp.340-356, 2007.

[4] D. Orvosh and L. Davis, Using a genetic algorithm to optimize problems with feasibility constraints,
Proc. of the 1st IEEE Conf. on Evolutionary Computation, Orlando, FL, pp.548-553, 1994.

[5] P. Chootinan and A. Chen, Constraint handling in genetic algorithms using a gradient-based repair
method, Computers € Operations Research, vol.33, no.8, pp.2263-2281, 2006.

[6] T. Takahama and S. Sakai, Constrained optimization by the ¢ constrained differential evolution
with gradient-based mutation and feasible elites, IEEE Congress on FEvolutionary Computation,
Vancouver, British Columbia, pp.1-8, 2006.

[7] S. Salcedo-Sanz, A survey of repair methods used as constraint handling techniques in evolutionary
algorithms, Computer Science Review, vol.3, no.3, pp.175-192, 2009.

[8] Y. Guo, X, Cao and J. Zhang, Constraint handling based multiobjective evolutionary algorithm
for aircraft landing scheduling, International Journal of Innovative Computing, Information and
Control, vol.5, no.8, pp.2229-2238, 2009.

[9] Y. G. Woldesenbet, G. G. Yen and B. G. Tessema, Constraint handling in multiobjective evolutionary
optimization, IEEE Trans. Evolutionary Computation, vol.13, no.3, pp.514-525, 2009.

[10] T. Ray and T. Kang, An evolutionary algorithm with a multilevel pairing strategy for single and
multiobjective optimization, Foundations of Computing and Decision Sciences, vol.26, no.1, pp.75-
98, 2001.

[11] C. A. C. Coello and E. M. Montes, Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection, Advanced Engineering Informatics, vol.16, no.3, pp.193-203,
2002.

[12] G. Venter and R. T. Haftka, Constrained particle swarm optimization using a bi-objective formula-
tion, Structural and Multidisciplinary Optimization, vol.40, no.1-6, pp.65-76, 2010.

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

BSCGA: BOUNDARY SIMULATION CHAOTIC GENETIC ALGORITHM 1073

R. Perzina and J. Ramik, Self-learning genetic algorithm for a timetabling problem with fuzzy
constraints, International Journal of Innovative Computing, Information and Control, vol.9, no.11,
pp-4565-4582, 2013.

A. Ghodrati and S. Lotfi, A hybrid CS/GA algorithm for global optimization, Proc. of the Interna-
tional Conf. on Soft Computing for Problem Solving, Roorkee, India, pp.397-404, 2011.

S. Oh, Y. Jin and M. Jeon, Approximate models for constraint functions in evolutionary constrained
optimization, International Journal of Innovative Computing, Information and Control, vol.7, no.11,
pp.6585-6603, 2011.

X. Li and G. Du, Inequality constraint handling in genetic algorithms using a boundary simulation
method, Computers € Operations Research, vol.39, no.3, pp.521-540, 2012.

T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEFE
Trans. Evolutionary Computation, vol.4, no.3, pp.284-294, 2000.

Q. He and L. Wang, A hybrid particle swarm optimization with a feasibility-based rule for constrained
optimization, Applied Mathematics and Computation, vol.186, no.2, pp.1407-1422, 2007.

E. Zahara and Y. T. Kao, Hybrid Nelder-Mead simplex search and particle swarm optimization for
constrained engineering design problems, Expert Systems with Applications, vol.36, no.2, pp.3880-
3886, 2009.

A. H. Kayhan, H. Ceylan, M. T. Ayvaz and G. Gurarslan, PSOLVER: A new hybrid particle swarm
optimization algorithm for solving continuous optimization problems, Ezpert Systems with Applica-
tions, vol.37, no.10, pp.6798-6808, 2010.

C. Zhang, X. Li, L. Gao and Q. Wu, An improved electromagnetism-like mechanism algorithm for
constrained optimization, Expert Systems with Applications, vol.40, no.14, pp.5621-5634, 2013.

