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ABSTRACT. When a control system is stabilized by a stable controller, the controller is
said to be a strongly stabilizing controller. Using strongly stabilizing controllers, when an
uncertainty in the plant or a step disturbance exists, the output of the control system can-
not follow the step reference input without steady state error. From a practical point of
view, it is better to stabilize plants by using controllers that have a pole at the origin and
other poles in the open left-half plane. Those controllers are called semistrongly stabilizing
controllers. From the literature, a semistrongly stabilizing controller does not necessarily
ezist for a plant. Hoshikawa et al. clarified the parameterization of all semistrongly sta-
bilizable plants. However, the parameterization of all semistrongly stabilizing controllers
has not previously been considered. In this paper, we clarify the parameterization of all
semistrongly stabilizing controllers.
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1. Introduction. In the parameterization problem, all stabilizing controllers for a plant
1, 2,3,4,5,6,7,8,9, 10] and all plants that can be stabilized [11] are sought. Because
this parameterization can successfully search for all proper stabilizing controllers, it is
used as a tool for many control problems.

For an unstable plant, the parameterization of all stabilizing controllers was solved by
Youla et al. [1, 2]. The structure of the parameterization of all stabilizing controllers
for unstable plants requires full-order state feedback, including a full-order observer [7].
Glaria and Goodwin [6] gave a simple parameterization for single-input/single-output
minimum-phase systems. However, in their parameterization, two difficulties remain. One
is that the parameterization of all stabilizing controllers given by Glaria and Goodwin
generally includes improper controllers, whereas in practical applications, the controller
is required to be proper. The other is that they do not give the parameterization of
all internally stabilizing controllers. Yamada overcame these problems and proposed the
parameterization of all proper internally stabilizing controllers for single-input/single-
output minimum-phase systems [8].

For a stable plant, the parameterization of all stabilizing controllers has a structure
identical to that of Internal Model Control. Two advantages of this are that closed-loop
stability is assured simply by choosing a stable Internal Model Controller parameter,
and closed-loop performance characteristics are related directly to controller parameters,
which makes online tuning of the Internal Model Controller very convenient [5]. However,
the question remains whether or not stabilizing controllers for unstable plants can be rep-
resented by the Internal Model Control structure. For this question, Morari and Zafiriou
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[5] examined the parameterization of all stabilizing Internal Model Controllers for unsta-
ble plants. However, their parameterization has difficulties. First, their internal model
is not necessarily proper. In addition, their parameterization includes improper Internal
Model Controllers. To overcome these problems, Chen et al. proposed the simple parame-
terization of all proper stabilizing Internal Model Controllers for minimum-phase unstable
plants [12]. Mai et al. [13] expanded the result in [12] and proposed a parameterization
for nonminimum-phase unstable plants. Zhang et al. [9] proposed a new parameteriza-
tion, which is a coprime factorization and has a similar form to the parameterization in
[1, 2, 4]. In this way, the parameterization of all stabilizing controllers has been shown.

However, little attention has been paid to the stability of stabilizing controllers. In
the case of an unstable stabilizing controller, its unstable poles make the closed-loop
transfer function have zeros in the right-half plane. This makes the closed-loop system very
sensitive to disturbances and reduces the performance when tracking reference inputs [4,
17]. In addition, if the feedback loop of the feedback control system is cut by breakdown,
that is, if it becomes a feed-forward control system, the unstable poles of the stabilizing
controller become unstable poles of the control system. Thus, the control system becomes
unstable even if the plant is stable. For these reasons, it is desirable in practice that
the control system is stabilized by a stable stabilizing controller [17]. Therefore, several
methods for designing a stable stabilizing controller, which is called a strongly stabilizing
controller, have been considered [4, 14, 15, 16, 17, 18].

Youla et al. clarified the necessary and sufficient condition for a plant to be stabilized by
stable controllers [4, 14]. This condition is called the parity interlacing property (p.i.p.)
and is used as a tool to confirm whether or not a plant is strongly stabilizable. In
addition, Youla et al. proposed a method to find strongly stabilizing controllers using
Nevanlinna-Pick interpolation [4, 14]. However, there is a problem that the resulting
controller may become high-order with irrational functions [15, 19]. To design controllers
and tune parameters easily, it is desirable that stabilizing controllers are low order and
have rational functions. To overcome this problem, Dorato et al. [15], Ganesh and Pearson
[20], and Tto et al. [16] proposed methods to find low-order, rational, strongly stabilizing
controllers for single-input/single-output systems using Nevanlinna-Pick interpolation. In
addition, Saif et al. proposed a method for multiple-input/multiple-output systems, also
using Nevanlinna-Pick interpolation [21].

Using stable stabilizing controllers, when an uncertainty in the plant or a step dis-
turbance exists, the output of the control system cannot follow the step reference input
without steady state error. In many cases, the output is required to follow the step refer-
ence input without steady state error, even if there is a step disturbance or an uncertainty
in the plant. To realize this requirement, controllers must have a pole at the origin. That
is, it is better to stabilize plants by using controllers that have a pole at the origin and
other poles in the open left-half plane. We call those controllers semistrongly stabilizing
controllers. Because plants that are unstabilizable by strongly stabilizing controllers exist
[14], it is expected that plants that are unstabilizable by a semistrongly stabilizing con-
troller also exist. From this viewpoint, Hoshikawa et al. clarified the parameterization of
all semistrongly stabilizable plants [22].

In this paper, we propose the parameterization of all semistrongly stabilizing controllers
for the semistrongly stabilizable plants clarified in [22]. The control characteristics of the
control system using the parameterization of all semistrongly stabilizing controllers are
described. A design procedure for semistrongly stabilizing controllers is presented. A
numerical example is presented to illustrate the effectiveness of the proposed method.
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Notation
The set of real numbers.
R(s) The set of real rational functions with s.
RH,, The set of stable proper real rational functions.
U The set of unimodular functions on RH,,. That is, U(s) € U implies both
U(s) € RHy, and U™'(s) € RH.

2. Problem Formulation. Consider the control system:

{ 410 = Gloputs) + 0
u(s) = C(s) (r(s) —y(s))

where G(s) € R(s) is the plant, C(s) € R(s) is the controller, y(s) € R is the output,
u(s) € R is the control input, d(s) € R is the disturbance, and r(s) € R is the reference
input.

Using stable stabilizing controllers, when an uncertainty in the plant G(s) or a step
disturbance d(s) exists, the output y(s) of the control system in (1) cannot follow the
step reference input without steady state error. If the output y(s) must follow the step
reference input r(s) without steady state error even if an uncertainty in the plant or a
step disturbance exists, the controller must have a pole at the origin. From a practical
point of view, it is better to stabilize plants by using controllers that have a pole at the
origin and other poles in the open left-half plane. From this viewpoint, Hoshikawa et al.
proposed the concept of semistrongly stabilizing controllers as follows.

Definition 2.1. (Semistrongly stabilizing controllers) [22]

We call the controller C(s) in (1) a “semistrongly stabilizing controller” if the stabilizing
controller has only one pole at the origin and other poles in the open left-half plane. That
is, if C(s) in (1) is written:

s+«
C(s) = Q1(s), (2)

S

then we call C(s) in (1) a semistrongly stabilizing controller, where o € R is any positive
real number and Q1(s) € RHy, is any function satisfying Q1(0) # 0.

Definition 2.2. (Semistrongly stabilizable plant) [22]
We call G(s) in (1) a “semistrongly stabilizable plant” if G(s) in (1) can be stabilized
by a semistrongly stabilizing controller C(s) in (2).

Because plants unstabilizable by strongly stabilizing controllers exist [14], it is expected

that plants unstabilizable by semistrongly stabilizing controllers also exist. According to
[22], the parameterization of all semistrongly stabilizable plants is written:

SQQ(S) + 5

Gls) = (s +a) (1+Qs(s) — Qi(s)Q2(s))’

(3)

where 5 € R is given by:

b= a0y (4)
Qs(s) € RH,, satisfies:

Qs(s) = : (5)

and Q1 (s) € RHy, and (QQ2(s) € RH, are any functions satisfying (1 (0) # 0.
In this paper, we clarify the parameterization of all semistrongly stabilizing controllers
for the plant G(s) in (3).

a — BQ(s)
S
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Remark 2.1. Semistrongly stabilizable plants in (3) have five parameters, and so appear
complicated. However, the problem that G(s) is semistrongly stabilizable is equivalent to
the problem that (s + «)G(s)/s is strongly stabilizable. Therefore, while Equation (3)
seems complicated, its meaning is simple.

3. The Parameterization of All Semistrongly Stabilizing Controllers for Semi-
strongly Stabilizable Plants. In this section, we propose the parameterization of all
semistrongly stabilizing controllers C(s) for the semistrongly stabilizable plant G(s) in

(3).

This parameterization is summarized in the following theorem:.

Theorem 3.1. The controller C(s) is a semistrongly stabilizing controller for the semi-
strongly stabilizable plant G(s) in (3) if and only if C(s) is given by:

_ Qi) + (1 +Qs3(5) — Q1(5)Q@2(5)) P(S),
i ( G 8Q2(3)> P(s)

s+a_ s+« s+«

C(s) (6)

where P(s) is given by:

P(s) = Q). )
Q(s) € RHy, is given by:
Q(S) = B - QS(S) ) (8)
s+a+ s+aQ2(8)

Q(s) € U is any function that makes Q(s) in (8) proper and satisfies:

(ST];)ml (1 — Q(S))

s; (1 =1,...,n) are unstable zeros of B+ sQx(s), and the multiplicities of s; (i =1,...,n)
are denoted by m; (i =1,...,n).

=0 (Vi=1,...,n), (9)

§=8;

Proof: From [4], the parameterization of all stabilizing controllers for G(s), which are
not necessarily semistrongly stabilizing controllers, is given by:

X(s)+ D(s)P(s)

C(s) = 10
(5) Y(s) — N(s)P(s)’ (10)
where N(s) € RH,, and D(s) € RH,, are coprime factors of G(s) on RH,, satisfying:
_ N()
G(S) - D(S), (11)
X(s) € RHy, and Y (s) € RH,, are any functions satisfying:
N(s)X(s)+ D(s)Y(s) =1 (12)

and P(s) € RHy, is any function. Because the semistrongly stabilizable plant G(s) takes
the form of (3), G(s) in (3) is factorized by (11), where:

B 5 0us) (13)

N(s) =
(8) s+« s+«

and

D(s) =1+ Qs(s) — Q1(s)Q2(s). (14)
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From (13) and (14), a pair of X (s) and Y'(s) satisfying (12) is given by:

X(s) = Qi(s) (15)
and
Y@):Sia. (16)

Substituting (13), (14), (15), and (16) for (10), we have (6), where P(s) € RH, is any
function.

We now show that C'(s) in (6) is a semistrongly stabilizing controller if and only if P(s)
in (6) is given by (7), Q(s) in (7) is given by (8), and Q(s) in (8) satisfies Q(s) € U and
9).
( )To prove necessity, we show that if C'(s) in (6) is a semistrongly stabilizing controller,
then P(s) in (6) is given by (7), Q(s) in (6) is given by (8), and Q(s) in (8) satisfies
Q(s) € Y and (9). From the assumption that C(s) in (6) is a semistrongly stabilizing
controller and (6):

S 15} S
— P =0 17
o (et raem) re)| (17)
is satisfied. This equation yields:
P(0) = 0. (18)

This equation implies that P(s) is given by (7), where Q(s) € RH4. Substituting (7)
and (5) for (10), (10) is rewritten as:

Cl5) =22 Qi) + ——— 2 (19)
= (s +a * s+ aQ2(8)> Q)
From the assumption that C'(s) in (6) is a semistrongly stabilizing controller,
O(s) = - j —C(s)
— Qi(s) + 7 Q(z) (20)
- (s + a + s+ aQ2(8)> Q)

must be included in RH,,. Because Q1(s) € RH, and Q(s) € RH, the condition of

C(s) € RHy, in (20) is equivalent to:

1— <Sfa+ Sj_an(s)> Q(s) € U. (21)
Using Q(s) € U, let
1— (Sfa +- j aQ2(5)> Q(s) = O(s). (22)

Equation (22) corresponds to (8). Because s; (1 = 1,...,n) are unstable zeros of f+sQ2(s)
and the multiplicities of s; (i = 1,...,n) are denoted by m; (i =1,...,n),

L (e ee)e| —o sl @

(S - Si)miil sta sta s=8;

holds true. From (22) and (23), (9) is satisfied. Thus, the necessity has been shown.
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Next, to prove sufficiency, we show that if Q(s) in (6) is given by (8) and Q(s) in
(8) satisfies Q(s) € U and (9), then C(s) in (6) is a semistrongly stabilizing controller.
Substituting (8) for (6), we have:

~

s+« 1—Q(s)
C(S) = Ql(S) +
S o] S A
(s +« + s+ aQ2(S)> Q(s)
st . Q(s)
- — {Q1( )+ Q(s)}' (24)

Because Q(s) € U and Q1 (s) € RHy,, if Q(s) € RHy,, then C(s) in (24) has a pole at the
origin and other poles in the open left-half plane. Therefore, we show that Q(s) € RH.
From Q(s) € U, if Q(s) in (8) is unstable, unstable poles of Q(s) are equal to unstable zeros
si (i =1,...,n) of f+5Qs(s). Because Q(s) satisfies (9), unstable zeros s; (i = 1,...,n) of
[+ sQa(s) are not equal to unstable poles of Q(s). Therefore, Q(s) is stable. In addition,
Q(s) is selected to make Q(s) in (8) proper, and Q(s) in (8) satisfies Q(s) € RH,,. Thus,
C(s) in (24) has a pole at the origin and other poles in the open left-half plane.

Next, we show that C(s) in (24) makes the control system in (1) stable. By simple
manipulation, we have:

G(s)C(s) _ s
1+G()C(s) s+ aQ(S) (1+Qs(s) = Qu(5)Qa(5)) (25)
G(s)  _ s(B+5(s)) 5,

T OECE  (rap O (26)

C(s) .
1+ G(s)C(s) = (1+Qs3(s) — Qi(5)Q2(s)) (Ql(s)Q(s) + Q(s)) (27)

and

1 _ s (1 + Qs (S) - (S)QZ(s)) Q(S) (28)

1+G(s)C(s) s+«

Because o > 0, Q1(s) € RHy, Qu(s) € RH,,, Qs(s) € RHy, Q(s) € U, and Q(s) €
RH,,, the transfer functions in (25), (26), (27), and (28) are stable. This implies that the
control system in (1) is stable.

We have thus proved Theorem 3.1. O

Next, we explain the control characteristics of the control system in (1) using the
parameterization of all semistrongly stabilizing controllers in (1).

The transfer functions from the reference input r(s) to the output y(s) and from the
disturbance d(s) to the output y(s) of the control system in (1) are written as:

@ —1-—2 0Os s) — s S
r(3) 1 s+aQ( ) (14 Qs(s) — Q1(5)Q2(s)) (29)
and
y(s) s )
d(s) T sta (1 + Q3(8) - QI(S)QZ(S)) Q(S), (30)

respectively. Therefore, using a semistrongly stabilizing controller C'(s) in (6), the output
y(s) follows the step reference input r(s) = 1/s without steady state error and the step
disturbance d(s) = 1/s is attenuated effectively.
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4. Design Method for Q(s) From Theorem 3.1, to design a semistrongly stabilizing
controller C'(s), Q(s) in (8) must be designed to be Q(s) € U to satisfy (9) and to make
Q(s) in (8) proper. In this section, we present a design method to ensure that Q(s) € U
has these characteristics.

The design method is summarized as follows.

1) We factorize:

- 5 s
Q(S) - S+« + s+aQ2(s)
as
8 s - A
et - Qu(s) = Qi(5)Q(5), (31)

where Q;(s) € RH,, is an inner function satisfying Q;(0) = 1 and Q,(s) € RH,, is
an outer function.

2) Using Q,(s), we make Q(s) € RHy:

Qs) = =, (32)

where:
k
q(s) = m,
7 € R is an arbitrary positive number, m is an arbitrary positive integer to make
Q(s) proper, and k € R is a real number satisfying 0 < &k < 1.
3) Using Q(s), Q(s) € U is designed as:

Q=1 (o ) @), (34)

_|_
s+a s+«

Next, we show that Q(s) in (34) satisfies Q(s) € U and (9), and makes Q(s) in (8)

proper. First, we show that Q)(s) in (34) satisfies Q(s) € U and (9). Substituting (32) for

~

(34), Q(s) in (34) is rewritten as:
Qs) = 1= Qils)a(s). (35)

Because Q;(s) is an inner function, Q;(s) is biproper. That is, Q;(s)q(s) is strictly proper.
In addition, from (33) and 0 < k < 1,

HQZ-(S)q(s)HOO <1 (36)

(33)

This implies that Q(s) € U.

Next, we show that (9) holds true. Because s; (i = 1,...,n) are unstable zeros of
B+ 5Qa(s), m; (i =1,...,n) denotes the multiplicities of s; (i = 1,...,n), and Q;(s) is
an inner function of 5/(s + a) + sQa(s)/(s + ),

1

————Qi(s) =0 (Vi=1,...,n) (37)
(S - Si) ' 5=8;
holds true. From this equation and (33),
1 N
——Qi(5)q(s) =0 (Vi=1,...,n) (38)
(s —s)™
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are also satisfied. From (35) and (38), Q(s) in (34) satisfies (9). Next, we show that Q(s)
in (34) makes Q(s) proper. Substituting (35) for (8), Q(s) in (8) is rewritten as:

Q(s) = Q(s). (39)
Because Q(s) € RH,, Q(s) is proper. Therefore, Q(s) in (34) makes QQ(s) proper. Thus,

A

we have shown that, using the method described above, we can design Q(s) € U to satisfy
(9) and make Q(s) in (8) proper.

5. Numerical Example. In this section, we present a numerical example to show the
effectiveness of the proposed parameterization of all semistrongly stabilizing controllers
for semistrongly stabilizable plants.

Consider the problem of designing a semistrongly stabilizing controller C'(s) for the
angular velocity control of the two-inertia system in Figure 1. Here, 7, is the torque of
the motor, .Jy; is the moment of inertia of the motor, Dy, is the coefficient of friction
of the motor, .J;, is the moment of inertia of the load, Dy, is the coefficient of friction of
the load, K is the torsional spring constant, and wy, is the angular velocity of the load.
For our example, we use the values Jy; = 2.0-107%, Dy, = 0.8-1073, J, = 2.2- 1072,
Dy =1.8-1073, and K = 0.4. This plant is then given by:

90.9 - 10
(5 +0.117)(s* + 3.975 + 2.02 - 10%)

First, we show that the plant G(s) in (40) can be rewritten in the form of (3). o € R is
set to:

G(s) =

(40)

a=1 (41)
and Q1 (s) € RHy is set to:
Q1(s) =0.26 - 1072 (42)
Substituting (41) and (42) for (4) and (5), 8 € R is given by:
B =3.85-10 (43)
and Q3(s) € RHy, is given by:
Q3(s) = 0. (44)

Therefore, (Q2(s) € RHy, is given by:

3.85-10%(s* + 4.085 + 1.78 - 10%)
Q2(s) = — 2 3\
(s 4+ 0.234s5 + 0.117) (s> 4 3.855 + 2.02 - 10°)

Using (41), (42), (43), (45), and (44), the plant G(s) in (40) is rewritten in the form of
(3). That is, G(s) in (40) is semistrongly stabilizable.

™ wr,
(4 (4
Dy Dy,

FIGURE 1. Two-inertia system

(45)
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For the plant G(s) in (40), we design a semistrongly stabilizing controller. Q(s) € U
in (8) must satisfy (9) and make @Q(s) in (8) proper. Using the method in Section 4, we
design Q(s). Q(s) in (31) is factorized by (31), where:

Qi(s) =1 (46)
and
~ 90.9 - 10%(s + 1)
0 = s 47
() (52 +0.2345 + 0.117)(s* + 3.855 + 2.02 - 10?) (47)
respectively. Q(s) is made (32), where ¢(s) is given by (33),
7 =0.02, (48)
m =3, (49)
and
k= 0.99, (50)
respectively. Using this Q(s), Q(s) is set to (34). In summary, Q(s) € U becomes:
- 0.99(s” + 0.234s + 0.117)(s* + 3.855 + 2.02 - 10
Q(s) = 2 A ). 61

90.9(s +1)(0.2s + 1)*

We find that the designed Q(s) is a unimodular function. Substituting (51) and (8) for
(6), we have a semistrongly stabilizing controller for the semistrongly stabilizable plant
G(s) in (40):

_ 1.36(s* 4 0.241s + 0.118)(s* + 4.12s + 2.03 - 10%)

C
(5) s(s+0.167)(s* + 1.50 - 10%s + 7.48 - 10%)

(52)

It is obvious that C'(s) in (52) has a pole at the origin and other poles in the open left-half
plane, that is, C'(s) in (52) is a semistrongly stabilizing controller for G(s) if C'(s) in (52)
stabilizes G(s) in (40).

Using this semistrongly stabilizing controller C'(s) in (52), the response of the output
y(t) of the control system in (1) for the step reference input r(¢) = 1 is shown in Figure
2. Figure 2 shows that the control system in (1) is stable and the output y(¢) follows the
step reference input r(t) = 1 without steady state error.

We have thus confirmed that the controller designed using the method in Section 4
is a semistrongly stabilizing controller. In addition, we have also confirmed that we
can design semistrongly stabilizing controllers systematically by considering the angular
velocity control of our two-inertia system, which is a real application.

6. Conclusions. In this paper, we have clarified the parameterization of all semistrongly
stabilizing controllers for semistrongly stabilizable plants. The control characteristic using
semistrongly stabilizable plants is presented. A design method for Q(s) € U that satisfies
(9) and makes Q(s) proper is also presented. In addition, we have presented a numerical

example and illustrated the effectiveness of the proposed method.
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FIGURE 2. Response of the output y(¢) of the control system in (1) for the
step reference input r(t) = 1
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