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ABSTRACT. For network environment, scheduling policy based on model prediction error
and accomplished by the switch matriz is presented for networked control systems (NCS),
in which the characters of NCS are considered, such as limited network bandwidth, limited
node energy and high collision probability. Data is transmitted and computed only if the
absolute value of prediction error is larger than the threshold value. And the model of
NCS based on prediction error scheduling with uncertain parameters and network-induced
delay is established. To make the model closer to real system, a constant time-delay model
is also introduced in the NCS model. The H, controller of such NCS is designed by using
a Lyapunov-Krasovskii function and inequality theory. Finally, simulations are included
to demonstrate the theoretical results.

Keywords: Networked control systems, Model prediction error, Scheduling, Uncertain,
Time delay, H,, controller

1. Introduction. Feedback control systems wherein the control loops are closed through
a real-time network are called networked control systems [1]. Due to their suitable and
flexible structure, NCS is frequently encountered in practice for such fields as informa-
tion technology, life science and aeronautical and space technologies. Meanwhile, the
characteristics of NCS, such as authorization of the spectrum, dynamic mobile, limited
channels and broadcast transmission, make itself inevitably have transmission delay and
data packet loss, which could cause adverse effect to system, and even lead to instabil-
ity. How to reduce the negative influence on the system control performance and energy
consumption of nodes has been becoming one of the popular issues in the control field.
Literature in the aspects of NCS has gotten plenty of achievements on stability anal-
ysis and controller design with considering uncertain parameters, time delay and other
factors [2-6,12-14,16], in which the scheduling problem is not included. However, when a
large number of data share the limited bandwidth, it is difficult to improve the control
performance of system effectively only by relying on the controller design. Reasonable
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network scheduling strategies to reduce the conflict and the energy consumption of con-
troller nodes are introduced in [7-11]. The relation between dead-zone threshold and
control performance is analyzed in literature [7]. Transmission dead-zone and state es-
timator are set at the sensors side in [8], and the state of system is transmitted if and
only if the absolute value of the difference between state value and its estimated value
is larger than the dead-zone threshold. The stability of NCS with dead-zone scheduling
strategy is analyzed in [8], but it has not referred to network-induced delay. Y. B. Zhao
et al. [9] proposed a predictive control and scheduling co-design approach to deal with the
controller and scheduler design for a set of networked control systems which are connected
to a shared communication network. In [10], the scheduling of sensor information towards
the controller is ruled by the classical Round-Robin protocol and the induced Ls-gain of
NCS is analyzed, but it does not consider the effect of outside disturbance.

With the rapid development of computer technology, sampling frequency is being im-
proved continually. Network conflict is becoming more and more serious at sensors and
actuators nodes because of the limited channels of network during the transmission of
information. So, it is important to explore a reasonable scheduling policy to reduce the
network conflict at nodes and to avoid the loss of important information. This motivates
us to conduct the research work.

In this paper, scheduling strategy based on predicted error is proposed to reduce the
energy consumption for a class of time continuous NCS with uncertain parameters and
outside disturbance. A certain model is set at the sensors side to predict the state of
system, and a transmission threshold is set at the sensor node. Sampling data is trans-
mitted and calculated if and only if the absolute value of prediction error is larger than the
threshold value. By using Lyapunov-Krasovskii functional and linear matrix inequality
method, H,, controller is designed to render the NCS with scheduling strategy based on
predicted error asymptotically stable.

Notation: R™ denotes the n-dimensional Euclidean space. The superscript ‘T stands
for matrix transposition. The notation X > 0 means that the matrix X is a real positive

i ) ) i i i ) ) . X 7
definite matrix. [ is the identity matrix of appropriate dimensions. [ . v ] denotes a
symmetric matrix, where * denotes the entries implied by symmetry.
2. Modeling for NCS with Scheduling Strategy Based on Predicted Error. The

structure of NCS with scheduling strategy based on predicted error is shown as Figure
1. x(igh), T(ixh), (ixh) separately represent the sampling data, predicted value and
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predicted error at time ixh, where h is sampling period, i) is sampling sequence, and
i =1,2,3---.
Uncertain linear time continuous networked control system can be described as follows.

i(t) = Ax(t) + Dz(t — d) + BKT (x(ixh)) + Huw(t)
y(t) = Ca(t) (1)
t e [Zkh + Tk, ik+1h + Tk+1]

where x € R", v € R™, y € R" and w € RP represent state value, input, output and
outside disturbance separately; 7, is the total time that data reaches actuator from sensor;
A=A+ AA, B=B+ AB, D=D+ AD; A, B, D, H are matrices with appropriate
dimensions; d is the constant delay; AA, AB, AD are matrices with uncertain time-
varying parameters, satisfying [AA AD AB| = ©OF(t)[E1 E, Es]; F(t) is an unknown
matrix function with Legesgue measurable properties, satisfying FTF < I; ©, E,, E,, F;
are constant matrices with appropriate dimensions.

To facilitate discussion, some assumptions are employed as follows.

A1l. Sensor is time driven while the controller and actuator are event driven.

A2. Before the first controlled input reaches the actuator, controlled input always main-
tain u(t) = 0, and zero-order holder is used at actuator node.

2.1. The description about prediction error. The k" sampling data is used to pre-
dict the state value at next time. After comparing with the real value at next time, the
predicted error can be obtained. And then the state value is updated spontaneously. The
prediction model can be described as follows.

#(iph) = A'z(igh) + Bu(izh) 2)

where A’ = e B' = e B.
The predicted error produced by the model is shown as follows.

Z(ixh) = x(igh) — 2 (ixh) (3)

2.2. The description about scheduling strategy. Considering the restrained condi-
tion of transmission as: |Z;(ixh)| < r; (r; transmission threshold, j = [1,2,---,n]), when
the restrained condition of transmission meets, state z;(ixh) will not be transmitted and
keeps x(ixh) = 0.

According to the description above, piecewise function is introduced as follows.

)0 z(ih)| <7y
= { U3 (h)] > 1) 4)

when [; = 1, state x;(ixh) will be transmitted to controller and calculated; when [; = 0,
the data z;(ixh) will be discarded. We define the switch matrix as L = diag(ly,l2, -+, ).

et = { L0 2 | 5

Based on Equation (5), we know the first sampling data cannot be discarded. We
assume the state of NCS is completely measurable, and state feedback can be introduced
as follows.

u(t) = KT(z(ixh)) (6)
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2.3. The whole NCS model. Submitting (6) into (1), closed loop model of NCS can
be obtained

#(t) = (A + AA)z(t) + (D + AD)a(t — d) + (B + AB)KT(x(ixh)) + Huw(t)
T(2(ixh)) = La(ixh)

7
y(t) = Ca(t) @)
t e [Zkh + Tk, ik+1h + Tk:—i—l]
We define
(tkt1 — i) + Ty <7 (8)

where 7 is the maximum value of delay affected by transmission delay and data packets
dropouts.

3. H,, Controller Design for NCS with Scheduling Strategy Based on Pre-
dicted Error.

Definition 3.1. [14]. It is called that system (7) is asymptotically stable with Hy norm
bound v, if it satisfies that

(1) The closed loop system is asymptotically stable when w(t) = 0.

(2) In any zero initial condition, given v > 0, for any nonzero vector w(t) € Ly[0, 00),
the output y(k) satisfies ||y(t)||, < v ||w(t)|l,. It is called that system (7) is asymptotically
stable with Hy, norm bound .

Lemma 3.1 (Newton-Leibniz). For any variable vector x € R", the following equation
holds.

t
z(t) — xz(igh) — / (0)dy =0 9)
irh
Lemma 3.2. [4]. For any matrices N, L with appropriate dimensions, as well as variable
vectors £(t), ©(t) and constants a, b, the following equation exists.

J TN + &7 (o) LI [NT e(t) + Li(v )]d

(b—a) T(t)NL 'NTe(t) + 2e"(t)N [} @ (v)d, + [} &7 (v)Li(v)d, (10)

Corollary 3.1. Given a symmetric positive definite matriz L and a set of constants a,

b satisfying b > a, for any matriz N with appropriate dimension, the following inequality
is established.

—2¢T N/ < (b—a)e"(t)NLT'NT=(t) +/bx'T(v)Lx'(v)dv (11)

Proof: Because L > 0, we have L= > 0.
We have

[ ETON + )DL N () + La(o)
- / INT(t) + La(0)" L [NT(t) + Li:(v)] > 0
Based on Equation (10) in Lemma 3.2, we have

(b—a)e"())NLT'NTe(t) + 27 N/ d+/b T(v)Li(v)d, >0

This is equivalent to inequality (11).
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Lemma 3.3. [15]. For any matrices W, M, N, F(t) with F'F < I, and any scalar
e > 0, the inequality holds as

W4+ MFt)N+N'F'(t)M" <W +eMM” +<7'N'N (12)
3.1. Stability analysis.

Theorem 3.1. Given a set of constants v > 0, d > 0, n > 0, if there exist matrices M;,
Ni, G; (1=1,2,3,4,5,6), K and symmetric matrices P >0, T; > 0, R; >0 (j =1,2),
as well as a constant € > 0, satisfying

o oF E
x —el 0 <0 (13)
* x  —e 1]
where
T Qe Qs Qs Qs Qe ]
Q AN 77M * QQQ 923 924 925 926
o _ ~ * * Qa3 934 935 936
. . T ’ * * x gy 945 946 ’
UEY) % * * x Qss Q56
L * * * * * Q66 A

Qu=T+R +M +M'+N +N +C"C+G A+ A"GT,

Qo= M) + Ny — N, + A"GY + G| D

Qus = MI — My + NI + ATGT, Q= M + NT + ATGT + G| BK,

Qs =P+ M +NI' -G+ ATGE, Qg = MT + NI + G H + ATGY,

Qo = —Ry — Ny — NJ +GyD + D'GY, Qo3 = —M, — NI + D' GY,

Qo = =N + D'GT + G2BK, Q5 = —NJ — Gy + D' G},
Qo6 = —N& + GoH + DTGE, Q3 = —T) — My — MT, Q34 = —MI + G3BK,
Qz5 = —MI — G, Q36 = —M{ +G3H, Quy = G,BK + K'BTGY,
Qus = G4+ K"B"GY, Qu¢ = GuH + K"B"GY, Q55 = 0Ty + dRy — G5 — GE,
Q56 = GsH — Gy, Qos = GeH + H'G§ —~+°1, M" = [M], My, My, M, My, M ],
N" = [N],NJ,N{ N[ NI N{|, E = [E\, B, 0, E3K,0,0,0,0]"
0 =[eTcT, e’'GcY,eTGE, TGt e’GT, e'GY, 0,07,

then the system (7) is asymptotically stable with Hy, norm bound 7.

Proof: We consider the Lyapunov-Krasovskii function as follows.
t

Vi) = WPat) + | o @ Tato)dat [ o5 R

/ / Tgl‘ d9d5—|—/ / RQI‘ d +dy, (14)
t—n t—d

Calculating the derivative of Lyapunov-Krasovskii function, we have
V(t) = 22" (t)Pi(t) + 2" (t)(Ty + Ry)x(t) — " (ixh) Ty (ih)
—2T(t — d)Ryx(t — d) + i’ () Toi(t) + di” (t) Ryi(t)

_[_ﬂ@ﬂﬂ&%jﬁfﬂm&ﬂ@% (15)
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Using weighted technology based on Lemma 3.1 and model (7), we have
V(t) = 22T () Pa(t) + 27 (¢)(Ty + Ry)x(t) — 2 (ixh)Tyx(ixh)

—2T(t — d)Ryx(t — d) + i’ () Toi(t) + di” (t) Rydr(t) — / t 7 (8)Tha (6)ds

_ /ttdi;T(w)RQ:b(w)dw +267 ()M [m(t) — (ih) - /

— / h:‘c(ﬁ)dﬁ + 26T ()N [x(t) —z(t —d) — /t_d:'c()\)dA}
+26"(1)G[(A+ AA)x(t) + (D + AD)x(t — d)
+(B + AB)KT (z(igh)) + Hw(t) — &(t)] (16)

where

g (t) = [o" (1), 2" (t — d), 2" (igh), T" (a(ixh)), & (t), w" ()] ,
M" =M, M), My, M, M, M ],

NT = [N[ NJ,N] N[, NI N{],

G" = [G],G},GY, Gy, GE L GY ]

Based on (8), we have

- [ oo < - [ oo (1)

Based on Corollary 3.1, we have

—267( M/ < (t —ixh)e ()MTZ_IMTe(t)+/th:tT(B)T2x'(ﬁ)d5
SneoM%”WHﬂ+/ﬁﬂmEﬂm% (18)
and . .
—26T(t)N .h:'c(ﬁ)dg < dsT(t)NR;'NTe(t) +/h:'cT(5)R2:t(ﬁ)d5 (19)

Submitting (17)-(19) to (16), we have
V(t) < 227 (1) Pa(t) + 27 (t)(T) + Ry)x(t) — 27 (ixgh) Ty (igh) — 27 (t — d)Ryx(t — d)
+na" () Tod (t) + di” () Rod (t) + n€" ()MTy " MTE(t) + dET () NRy ' NTE(2)
26T ()M [z (t) — z(ixh)] + 26T () N[z (t) — z(t — d)] + 267 (H)G[(A + AA)x(t)
+(D + AD)z(t — d) + (B + AB)KT (z(irh)) + Huw(t) — i(t)] (20)
Inequality (20) can be rewritten as
V(t) < 2" () Pi(t) + 7 () PTa(t)] + 2T () (Th + Ri)a(t) — a7 (ixh)Tyx(ixh)
—aT(t — d)Ryx(t — d) +ni” () Toi(t) + di’ (t)Roi(t) + n€X () MT, *MTE(t)
+dET()NRYINTE(t) + € () Ma(t) — w(iph)] + [2(t) — w(ixh)]" MTE()
+ET (N[ (t) — ot — d)] [2(t) —a(t — )" NTE®) + € ()G[(A+ Ad)a(t
+(D+ AD)x(t — d) + (B + AB)KT (z(ixh)) + Hw(t) — @(t)] + [(A + AA)x(t)
+(D+ AD)z(t — d) + (B + AB)KT(z(ixh)) + Hw(t) — #(t)]"GT£(¢) (21)
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Plus y” (t)y(t) — v*w” (t)w(t) in (21) at both sides, it can be obtained
V(t) +y (6)y() — yu’ (w(t)
< [T () Pi(t) + 2" ()P x(t)] + 27 (¢)(T) + Ry)x(t) — 2 (ixh) Ty (igh)
—2T(t — d)Ryx(t — d) + ni” () Toi () + di” (1) Roi (t) + n€X () MT, *MTE(t)
+dg" (NRy NTE(E) + € () M (t) — x(ixh)] + [2(t) — 2(ixh)]" MTE(D)
+ (ON[2(t) — 2t — d)] + [2(t) — 2t — )" NTE(H) + & ()G[(A + Ad)x(t)
+(D+ AD)z(t — d) + (B + AB)KT(x(ixh)) + Hw(t) — (t)]
+[(A+ AA)x(t) + (D+AD)x(t — d) + (B + AB)KT (z(ixh))
+Hw(t) —2(t)]"GTE®) + 27 (1)CT Cx(t)
= ng" (OMT, ' MTE(H) +dg" (YN Ry 'NTE(t) + €7 (H)QE(1) (22)
where
Q1 Qi Qs Qg s Qs ]
* Sy Qo3 Qo oy (o
* Q3 Q34 Qg5 Qs
k0 Qg Qs (g |7

*
* * * 955 Q56
* * * x  Qgp

* ¥ X ¥

Qu=Ty+ R+ M +M'+ N + N + G (A+2A4)+ (A+A40TGT +O7C,
Qo = M + NI — Ny + (A+ AATGY + Gi(D + AD),

Quz = My — My + N + (A+ AA)"GY,

Qu =Ml + NI+ (A+AATGT + G(B + AB)K,

Qs =P+ M + N -G+ (AT + AA)TGY,

Qs = M + Ny + G H + (AT + AA)TGE,

Qgy = —R; — Ny — NJ + Go(D + AD) + (D + AD)*GY,

Qg3 = —Ms — NJ + (D + AD)"GY,

Qo = —N{ + (D + AD)'GY + Go(B + AB)K,

Qos = =Ny + (D +AD)'GE — G,

Qg = —N¢ + (D + AD)'GY + GoH, Qq3 = —T, — My — MY,

Qs = —MT + G3(B+ AB)K, Qa5 = —MT — Gy, Q36 = —MF + G5H
Qu = K'(B+ AB)TGY + G4(B + AB)K, Qs = K'(B + AB)"GF — G4,
Qus = KT'(B+AB)'GY + G4H, Q55 = 1Ty +dRy — G5 — GE,

Qs = GsH — GE, Qg = GeH + H'Gf —

Now we consider

nMT;"M" +dNR;'NT +Q <0 (23)
From (23), we know

V(1) +y" (t)y(t) — 7w’ (Huw(t) <0 (24)
1) If w(t) = 0, we have V(o0) > 0, V(t) < 0;
2) For (24), we have V(c0) — V/( to —|— ftoo T Jy(v)d, — tzo w’ (v)w(v)d, < 0.
If V(to) = 0, we must have [ y"(v)y(v)d, < 72 > wT (v ) (v)d,. Therefore, [|y(t)], <

v |Jw(t)]|,. From Definition 3.1, we know the system (7) is asymptotically stable with H,
norm bound 7.
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Applying Schur complement to (23), pre- and post-multiplying with diag (I, dI) at both
sides, we have

—1 /T
[nMﬂzy +Q_j%2]<0 (25)
Inequality (25) can be rewritten as
T
R
Applying Schur complement again, we have
Q dN M
« —dRy 0 | <0 (26)

* * —nT5
Because [AA AD AB] = OF(t)[E; E> Ej3], inequality (26) can be rewritten as
®+OFE+E"FTOT <0 (27)
Based on Lemma 3.3, the uncertain matrix F' can be eliminated and a sufficient condi-
tion of (27) is obtained. - o
d+:c'0TO +cEET <0 (28)
Based on Schur complement, we know inequality (28) is equivalent to inequality (13).
Therefore, this completes the proof.

Remark 3.1. Because the items such as GyBK exist in inequality (13), it is not a linear
matrix inequality, which cannot be solved by using the LMI Tool-box. It will be reformulated
into LMI via a change of variables in our next work.

3.2. Controller design for NCS.
Theorem 3.2. Given a set of constants p; (i = 1,2,3,4,5), d > 0, n > 0, if there
exist matrices Y, M; and N; (i =1,2,3,4,5,6), invertible matriz X, symmetric matrices

P>0,T;>0,R; >0 (j=1,2), as well as a set of constants ¢ > 0, o > 0 satisfying the
following LMIs.

X-I1>0 (29)
v 0 0 0 ]
* H1 H2 H3
* x —el 0 <0 (30)
* % * —cl
where
A d]([ nM
v =[-1,C,0,0,0,0], II; = x —dRs 0_ ,
* * —n1s
F A A Ay Ay Ay Agg ]
* Aoy Aoz Aoy Ags Agg
A — * *  Agzs Agy Ags Asg
* * ES A44 A45 A46 ’
ES * * * A55 A56
| x * * * x Ngg

Ay =T+ R+ M + M+ N, + N +AX"T + XA,
A =M] + Ny — Ny + uXA" + DX", Ajg = My — My + Ny + 1 XA,
Ay =M+ NI+ s XAT + BY, Ajs = P+ M + NT — XT + i, X AT,
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Ag=M] + Ny + HX" + pus X A", Aoy = =Ry — Ny — N + uuDX" + 1y XD7,
Ags = —My — NI + 1, X DT, Ayy = =N + ps X DT + 1, BY,

Ags = =N — in X" + 1y XDV, Agg = —=N{ + i HX" + ps X D7,

Agg = =Ty — M3 — My, Agy = —M] + 112BY, A5 = —M; — ju X7,

Agg = =My + poHX", Ay = p3BY + pi3Y" BT, Az = —pis X" + p3Y " BT,

Ays = psHXT + p1sY BT, Ass = Ty + dRy — s X7 — 11X, Asg = ua HXT — ps X,
Aos = usHX" + s XH" — o, M" = [M], M), M, M}, M}, M{],

NT = [N, Ny, N{, N[, NS, N¢'T,

I, = [07, 1O, 107, 4307, 1,07, 11507, 0,0]7,

My = [E,XT, B,XT,0, E3Y,0,0,0,0] ",

then the system (7) is asymptotically stable with Ho, norm bound v = \/o, and the gain
matriz is K =YX T,

Proof: The proof is based on a suitable congruence transformation and a change of
variables allowing us to obtain inequality (13) in Theorem 3.1. Based on Schur comple-
ment, inequality (13) is equivalent to

v 0 0 0
x @ OT E
x  x  —cl 0 <0 (31)
* * —e I
where
QO dN  gM
v =[-1,C,0,0,0,0], &' = | * —dRy 0 ,
* * —nT5

n Qi Q3 Qo Qs Qe T
k(g Q23 Doy Qo5 Qo

e * * (g3 5_234 5_235 936
* * * 944 Q45 Q46 ’
* * * * 955 Q56
* * * * x  Qes

Q) =Ty + Ry + My + M] + Ny + NT + G A + ATGT.

We define X = G7' Gy = Gy (i = 2,3,4,5,6); T, = XT,X"; Ry = XR; X7
(i = 1,2); P = XPXT; M; = XM;XT; N; = XN XT (i = 1,2,3,4,5,6); Y =
KXT. Pre-multiplying with diag(I, X, X, X, X, X, X, X, X, I,eI) and post-multiplying
diag(I, X7, X7 XT XT XT XT XT XT I eI), we have

v 0 0 0

* Hll H2 H3

x x —cl 0 <0 (32)
% % O
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where

T A A Az Ay Ay Agg T
Ago Aoz Aoy Ags Agg
Agz Azy Ags Agg
0 Ay Ay Ayg |
ES * A55 A56

!
* * x  Agg

A" dN  nM
Hll = ES —dR2 0 , AI —
* * —nTy

*
*
*
*
*

* K Kk ¥

A = psHX" + us XH" — X X7
From (29), we have X X7 — I > 0. It can be obtained that Ays = us HXT + pus X HT —
VX XT < Ags. With the definition ¢ = 72, we know (30) is a sufficient condition of

inequality (32). Based on Y = KXT, we have K = Y X T. Therefore, this completes the
proof.

Remark 3.2. Obviously, inequality (29) and inequality (30) are linear matriz inequalities.
So we can find the control parameters by solving the feasibilities with the help of LMI Tool-
boz.

Qg = —N{ + (D + AD)'GE + GoH, Qg3 = —Ty — My — MY,
O34 = —M] + G3(B+ AB)K, Qg5 = — M — G, Qs5 = —M + G3H.

4. Simulations. Consider the parameters of an inverted pendulum model with delays
as follows.

A:[ 0.07 _0'023},32{_0'4 0 },D:[M —0.5],@:{1 0],

—0.15 0.2 —0.5 1.08 0.15 0.45 11
¢= { _3'2 —0(')4.1;5 ] i = { _09539 0%8 ] , Ad= { _0'03 e —0.0102 sint ] ’
AB = { _0.08 . —0.0(isint ] , AD = { _0'1()Sint —0.0gsint ] ’
= {0 S

We consider F' = {—0.10$int —0.10sint ]; therefore, £, = [0(')3 022 ], E, =
{(1) 0(.)3 Eh 065 094]'

With the development of computer technology, the calculating speed of computer is in-
creasingly developed. Here we select the sampling period h = 1x 10 3s. Other parameters
are assumed as

1 = —0.029, o = —2.27, 3 = —0.1, g = 2.51, s = —0.007, n = 0.004, d = 0.002.

By taking advantage of LMI tool-box and submitting these parameters above into
inequalities (29) and (30), it can obtained

K=YX "= fiof§§4 :;i’ggi with 7 = v/1.6013 x 106 = 1.2654 x 10°.

We consider the transmission threshold as r = [ 0.02 0.12 ], namely, if the predicted
error produced by model (2) satisfies

1) |Z1(ixh)| < 0.02, sensor will not send the data x;(ixh) to the controller;

2) |Z2(ixh)| < 0.12, sensor will not send the data z3(ixh) to the controller.
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We assume the initial state as z(0) = [ 22 ], z(t) = [ 8 ] (t € [-n,0]). When the

uncertain delay exists and satisfies (ixy1 — ix)h + 71 < 1, the response of state and
the prediction error curve are separately shown in Figure 2 and Figure 3. And the data
packets dropouts in the whole control loops are shown in Figure 4. From Figure 2 and
Figure 3, it is clear that the NCS with scheduling strategy based on predicted error is
asymptotically stable. After the system reaches the steady state, the data transmission
stops. Due to the outside disturbance, the predicted error could exceed the transmission
threshold, which should force the senor to transmit the data again. In order to facilitate
comparison, the number of data packets dropouts at time i, h is obtained by stacking
number of data packets dropouts nearby 20 data. Obviously, number of data packets
dropouts is rare. As time goes on, data transmission gradually stops. After calculated,
the average rate of data packets dropouts in the whole simulation is 66.33%.

In addition, we apply the method proposed by S. Longo et al. [17] into the same problem.
The average data dropout rate of NCS is just 5.62%. And the design of controller fails
with K = 9(}0592%)28 8;522 , and the response of system state is shown as Figure 5.
Thus, it sufficiently demonstrates the effectiveness and feasibility of this paper.

Stable X

P |
= oo

0 50 100 150
Time/ms

FIGURE 2. The state response curve of NCS

Predicted error

0 50 100 150
Time/ms

FIGURE 3. The curve of prediction error in NCS
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The number of data dropouts

0 y L -
0 50 100 150

Time/ms

FIGURE 4. The curve of data packets dropouts in NCS

8
x 10

0 50 100 150
Time/ms

FIGURE 5. The state response curve of NCS

5. Conclusions. For network environment, scheduling policy based on model prediction
error and accomplished by the switch matrix is presented for networked control systems
(NCS). Data is transmitted and computed only if the absolute value of prediction error
is larger than the threshold value. And the model of NCS based on prediction error
scheduling is established with uncertain parameters and network-induced delay consid-
ered. By using Lyapunov-Krasovskii functional and linear matrix inequality method, the
H, controller is designed to render the NCS with scheduling strategy based on predicted
error asymptotically stable. And the result shows this method can effectively decrease
the transmissions of data, which can reduce the network conflict and energy consumption
of nodes. Our next research task will be choosing more reasonable values of parameters
pi (i =1,2,3,4,5) to reduce the conservatism.
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