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ABSTRACT. This paper introduces a new dynamic method for unsupervised learning, aim-
ing at discovering and representing structures of homogeneous clusters within unlabeled
training data, where the number of clusters is algorithmically estimated with no assump-
tion about the compactness and the separation of clusters. Assuming that the training
data are originated from at least two different clusters, and that a minimum average
degree of similarity exists between objects of each cluster, the learning process is initiated
by creating two clusters around the least similar objects according to a given measure of
inter-points similarities. The remaining objects are sequentially explored by analyzing
their similarities with the mean points or centers that represent previously discovered
clusters. For each of these objects a new learning rule is used for (1) creating a new
cluster around this object, or (2) using the information carried by the object for updat-
ing representative points of existing clusters, or (3) deferring consideration of this object
until either of the two previous decisions can be made with enough confidence. The
method is dynamic in that the decision rule depends upon the number of clusters, which
varies during the learning process. The effectiveness of this method is assessed on four
real benchmark datasets in comparison to four other methods that require the number of
clusters as an input, namely k-means, iterative self-organizing data analysis technique
(ISODATA), fuzzy c-means (FCM), possibilistic c-means (PCM), and an unsupervised
fuzzy learning method (UFL) that tries to automatically determine the number of clus-
ters, and whose the proposed method constitutes an improved version (IUFL).
Keywords: Cluster analysis, Unsupervised learning, Fuzzy clustering, Similarity mea-
sure

1. Introduction. Being recognized as a fundamental unsupervised mode of learning,
clustering has been widely utilized in several different application fields [1,2]. The aim of
data clustering is mainly to find structure in data by grouping objects into homogeneous
clusters such that the objects of each cluster should be more similar to each other com-
pared to objects belonging to distinct clusters. Clustering is found in the literature under
different appellations, such as unsupervised learning in pattern recognition, numerical
taxonomy in biology and typology in social science [3].

As a corollary, several algorithms have been intensively researched in the literature
[4] among which stands the k-means [5], or hard c-means clustering, as a very popular
clustering algorithm. This algorithm assigns each point of data set to a unique cluster
with a degree of membership equal to one [6]. As a result, clusters are disjointed and have
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well-defined boundaries. However, boundaries between clusters are not always definite in
real world data sets [3]. The fuzzy c-means (FCM) algorithm was proposed to model
uncertainty of belonging [7,8]. Indeed, based on fuzzy set theory, FCM is able to assign
each data point to every cluster with different degrees of membership. As such, this
algorithm is more efficient than the k-means where the boundaries of clusters remain
overlapping and not well defined. However, this algorithm is sensitive to initialization
and needs that the number of clusters be user specified in advance. Therefore, if the
number of clusters is not known, k-means and FCM cannot be used [9]. To deal with this
problem, an unsupervised learning technique (UFL) for automatic detection of the number
of clusters with their prototypes was proposed [3]. UFL does not require initialization
of prototypes as the learning procedure explores sequentially the learning base. Using a
learning rule, UFL exploits the information carried by each current object to determine
the prototypes even if this information is small. This may cause fuzziness in the final
partition.

This paper proposes a new learning rule based on a measure of inter-points similarities.
It consists in leaving uninformative objects that cannot be “easily” recognized by the
existing prototypes. We estimate that these objects do not carry enough information to
make a decision. These objects are reported for a subsequent re-examination until other
newly encountered objects are examined and their fuzziness is dispelled.

The remainder of the paper proceeds as follows. We present related work in Section 2
whilst, in Section 3, we introduce the proposed algorithm. Section 4 details and discusses
test results. We present our conclusions in Section 5.

2. Related Work. As explained in the previous section, the aim of data clustering is
to find structure in dataset according to measured or perceived intrinsic characteristics
or similarity. This method is recognized as an unsupervised learning process in that the
nature of the clusters is not known a priori. That is to say, the method does not use any
prior class identifiers.

Clustering can be classified as hard or fuzzy. Fuzzy clustering is a generalization of hard
clustering that has the potential of dealing with overlapping clusters and with data points
on ill-defined boundaries among clusters [8]. This generalization was introduced by the
concept of membership degree u;, which is interpreted as the degree to which the object ¢
belongs to the k™ cluster (1 < k < cand 1 <i < n) [8,10]. Hence, in fuzzy clustering, as
boundaries among clusters are usually not well-defined, each data point can be assigned to
any cluster with different membership degrees [3]. Conversely, in case of hard clustering
each data point has to belong exclusively to one cluster with a membership degree that is
equal to one. Consequently, clusters are disjointed and their boundaries are well-defined.

In mathematical terms, clustering or partitioning a learning base X = {xy,2s,...,2,} C
R? into ¢ fuzzy clusters can be defined by c¢ fuzzy sets Fi, ..., E. and a membership
function [11] assuming values in the interval [0, 1] such as:

By = {p(r;)/ v; € X, 1 <i<n} (1)

. X —[0,1]
Vi, k : ’ 2
i { Ti = k(i) = wik 2)

Therefore, a (¢ x n) fuzzy membership matrix U = [u;;] can be used to represent the
partition result of a cluster analysis of X. The k'" row of this matrix contains values
of the k" membership function sy, of the subset Ej. Elements u;, satisfy the following
condition:

0<uxp<1l; 1<k<¢ 1<i<n (3)
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O<Zuik<n 1<k<c¢ (4)
i=1
As unsupervised methods, clustering algorithms do not require prior class tags. The
learning procedure is determined solely from data set without additional knowledge. The
most widely used clustering algorithms are k-means [5], FCM [8], ISODATA [12] and
PCM [13]. These are highlighted in what follows.

2.1. K-means algorithm. The k-means is recognized as a very popular hard clustering
technique which aims to partition a data set X on n objects into k£ separated clusters.
The method begins by randomly choosing & objects of X as initial cluster centers. Each
object is assigned only to the nearest cluster and the mean for each cluster is recomputed.
Then, objects can move from one cluster to another. The process stops when the centers
of the clusters stop changing.

Mathematically, k-means algorithm minimizes an objective function that represents the
sum of squared distances between all points and the cluster center:

Te(X) =) d(ai¢)) (5)

Jj=11€C;j

where z; is a vector object representing the i*" object, ¢; is the centre of the cluster Cj,
d(z;,c;j) is the distance between the j™ centre and the i*" vector object.
The process of k-means consists of the following steps.

Input:
unlabeled Dataset X = {xy,7o,...,2,} C R?;
The number of cluster k;
Output
k clusters with centres.

Steps:
1 — Initialize K centres.
2 — Repeat

— Assign each z; to its nearest centre.
— Re-compute the centre of each cluster using the following equation:
G=5 1< <k (6)

nj

// n; represents the number of objects in the j* cluster
Untal the centres do not change.

FIGURE 1. K-means algorithm

However, the k-means algorithm is not adequate for application on real world data sets
in which cluster boundaries are not well-defined. To overcome this challenge, FCM was
proposed.

2.2. Fuzzy c-means algorithm. Originally proposed by Bezdek, FCM is a generaliza-
tion of the hard clustering k-means algorithm. K-means assigns each vector object x; to
a unique cluster with a degree of membership equal to one. As a consequence, in case of
k-means clusters are disjointed and have well-defined boundaries. Conversely, in case of
FCM each data point is assigned to every cluster with different degrees of membership and
the boundaries between the generated clusters are likely to be not well-defined. FCM is
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more efficient compared to the crisp clustering in which clusters may remain overlapping
and be not well separated.

A partition of X = {x, z5,...,2,} C R? into ¢ fuzzy clusters can be defined by a fuzzy
membership matrix U = [u;] satisfying in more of Equations (3) and (4) the following
condition:

Zuikzl; 1<k<n (7)

where u;; is the degree to which the pattern z; belongs to the i*" cluster (1<i<cand
1 <k <n).

The first constraint reflects the generalization of the characteristic function which as-
sumes values in {0, 1}. For a given vector object, a value close to 1 indicates a high grade
of belonging to the cluster. Inversely, a value close to 0 indicates a low grade of belonging
to the cluster. The second constraint guaranties that no cluster is empty or totally equal
to X. The last constraint assures that the membership of each object is distributed over
all the ¢ clusters.

FCM is an iterative procedure that optimizes an objective function .J,,. This objective
function depends on the distances of the data to the cluster centres weighted by the
membership degrees. By varying the distance function, different forms of cluster in data
sets can be detected.

The objective function .J,, is defined by:

n c

Tn(U,ViX) =)0 (ug) " d* (, v3) (8)

k=1 i=1

where m (1 < m < 00) is a weighting exponent used to control the relative contribution
of each object vector x; and the fuzziness degree of the final partition. V' = (v, v, ..., v.)
represents a c-tuple of prototypes, and each prototype characterizes one of the ¢ clusters.

d(zy, v;) is the distance between the i prototype and the k' data point.
Bezdek proved that FCM converges to an approximate solution under two conditions

[3]:
c 2/m—17"1
d(zy, v;)

Ui = — ; 1<i<e¢g 1<k<n 9
ik [Z (d(xk,vj) ) >t = b = = ( )

z ()"
z ()™

The pseudo-code of FCM algorithm is given in Figure 2.

In FCM algorithm, the membership degrees are relative (Equation (7)). According to
Zadeh [11], the membership degrees should only belong to the interval [0, 1]. To overcome
this constraint, PCM was proposed.

’Ui:

2.3. Possibilistic c-means. Krishnapuram and Keller proposed the possibilistic c-means
(PCM) clustering [13] to remedy the drawbacks of FCM. PCM relaxes the objective func-
tion (Equation (8)) by dropping the sum to 1 (Equation (7)) and introduces a possibilistic
type of membership function to describe the degree of belonging [14]. Thereby, degrees
of membership became independent.
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Store unlabeled Dataset X = {x,7o,...,2,} C R?;
Choose

ol <c<m

om > 1;

e lnax (iteration limit);

e the ¢ (tolerance bound);

e norm for clustering criterion J,;

e norm for termination error Ey = ||V, — Vi_1||err;
Initialize

e prototypes Vo = (v10, V20, - .., Vo) € NP

e t = 0; (iteration index)
do {t++;

e Calculate U; using V;_; and (Equation (9));

e Calculate V; using U; and (Equation (10));
} while (||V; = Vicillerr > €) and (t < tmax));
Ur=U, V=V
Use U* and/or V*;

Ficure 2. FCM algorithm

PCM optimizes the objective function .J,,, defined as:

Jn(U,V; X) ZZ win) " d? (2, vi +Zmz 1 — ug)™ (11)

k=1 =1 =1

where 7; (1 < < ¢) is the scale parameter defined as

n

> (uik)™d? (zx, vi)

=K== . K>0 (12)

> (ug)™

k=1
and wu; is defined as:
~1
d2 ) 1/m—1
Ui = 1+<M> ; 1<i<eg 1<k<n (13)
U

These algorithms need to specify the number of clusters. ISODATA was proposed as a
method of clustering that does not require the number of clusters.

2.4. Fuzzy ISODATA. This algorithm is based on the k-means algorithm. To improve
the clustering process, the algorithm employs three processes or operations: eliminating,
splitting, and merging [12].

The algorithm starts with Kj,;; centres, where K;,;; is a user-given initial number of
clusters that eliminates clusters by distance or by size. As in FCM, ISODATA assigns the
first K;,; object vector to cluster centers. The other objects vectors are assigned to the
clusters by a minimum distance principle and all clusters are considered in eliminating,
splitting or merging clusters. In the eliminating phase, clusters that have less than the
minimum cluster size nnyi, objects are deleted and their object vectors are reassigned.
In the splitting phase, a cluster is divided into more clusters if its standard deviation
is greater than a threshold value (for example, the variance). In the merging phase,
two or more clusters are merged if the distances among these clusters are less than a
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threshold value (minimum distance between centers ¢). Then, the number of clusters “¢”
is ultimately determined.
The pseudo-code of ISODATA algorithm is given in Figure 3.

Store unlabeled Dataset X = {zy, 2s,...,2,} C R?;
Choose
® Kinit; 1 <c<my
® lnax (iteration limit);
® N,in: Minimum objects in clusters;
e 0: minimum distance between the centres;
e V.x: maximum variance in a cluster;
Initialize
o c = K _init;
e prototypes Vo = (21,29, ..., x.) € RP
e ¢ = 0; (iteration index)
Repeat {t++;
e For each centre ¢, do
{ S = {we/d(x1, cop 1) < d(wir i)} Vi # K
tf (Card (Sk) < Nmin) Then Delete(cy)
of (3cjz/d(ck, c;) < 0) Then {Merge(cy,cj); c=c—1}
if (var(Sk) > Vinax) Then {Split (c¢x); c =c+ 1}
Calculate V;

}until (3k € [1,¢] [eps # cri—1 and (¢ < tmax));
V=V

FicUure 3. ISODATA algorithm

However, ISODATA needs four threshold values for parameters Kj,;;, Nmin, minimum
distance between centers, and maximum variance authorized in a cluster. Other ap-
proaches have been proposed to automatically determine the optimal number of clusters.
UFL is one of these approaches.

2.5. UFL algorithm. This algorithm attempts to combine advantages from both hierar-
chical and partitional clustering techniques [3]. It sequentially explores all the “n” objects
of the learning base X and analyzes their similarities using the similarity measure given
by Equation (16). It starts by generating a first cluster whose prototype is initialized with
the first object. Afterwards, the other objects are successively and iteratively examined.

A threshold € is used to detect when a new coming object is not recognized and, thereby,
dissimilar to all existing prototypes. In this case a new cluster is created and its prototype
is initialized with the current object. This threshold represents the minimum of similarity
that each object should have with its nearest prototype.

UFL uses the similarity measure Sim and its associated threshold £ to construct classes.
Two cases are considered:

a- Maz(Sim(i,k)) < & (14)

1<k<c

It means that the current element x; does not meet any similarity criterion recognized
in the previously detected prototypes [3] and will hence be defined to represent a new
cluster. Thus, we put ¢ =c+ 1 and v, = x;.

b - Maz(Sim(i, k)) > & (15)

1<k<c
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x; is considered having the required minimum similarity to the previously detected clus-
ters. So we do not need to create a new cluster.
Sitm is defined by:

2
Sim(z;,x) =1 — M (16)
p
where A is the positive definite p x p matrix defined by:
L (Tj)_Za j:t
Aje = { 0, otherwise (17)

r; represents the range of all possible values for the j™ feature associated with objects of
X (1 <j<p). It is defined by:

= o} — mi i 1<5< 1
rj = max {z;;} — min {r;}, 1<j<p (18)
The algorithm makes no assumptions about the number of clusters ¢. The choice of
¢ depends automatically on the choice of the threshold & since the creation of a new
class depends on its value. So the quality of the detected clusters depends mainly on

this threshold [3]. By varying £ between two values Min(Sim(i, j)) and Max(Sim(i, 7)),
1<i,j<n 1<i,j<n
7] 7]
different sets of ¢ prototypes can be detected.
Prototypes of the previously created clusters are then updated according to the learning

scheme:
M[ﬁi—vk(i—l)] l<k<c c22 (19)
nk(l)

where v, (i), vi(i — 1) are respectively the prototype of the k™! class before and after
processing ;.
ni(k) denotes the fuzzy cardinality of the k' cluster after processing x;, defined by:

k
ni(k) = ZSim(wi,vk) 1<k<e¢ i<n (20)
j=1

The pseudo-code of UFL algorithm is given in Figure 4.

Store unlabeled Dataset X = {xy,7o,...,2,} C R?;
1-Choose
e similarity measure, Sim [Equation (16)];
2-Initialize
ec—=1
e prototype v; = 1,
3-Fori=2ton {
if ({\gﬁ{(Sim(i,j)) <&fA{c=c+1v =21}
else { Update all prototypes v;, 1 < j < ¢ (Equation (19)) }
4-Recalculate U = U* [Equation (9)], V = V* [Equation (10)]
5-Use U* and/or V*;

Ficure 4. UFL algorithm
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3. The Proposed Algorithm. Assuming that the n available object vectors that form
the learning database X are originated from at least two distinct categories, and given a
measure of inter-points similarities, the proposed method starts by creating two clusters
around the least similar objects [15]. For this, the representative points or prototypes of
the created clusters, vy and vy, are initialized using these two objects after swapping them
with the two first objects x; and x5. The (n — 2) remaining objects are then successively
examined. For each object x; — With 7 varying between 3 and n — A new learning rule is
used that allows three different decisions to be made depending on the extent to which
x; is similar to the ¢ prototypes vy, vg, ..., v, representing the so far discovered clusters.

The choice of the best decision to take is based on two quantitative criteria. The
first criterion is the maximum value of the computed similarities between z; and the ¢
existing prototypes: Max,(z;) = W(Sim(i,p)). The second criterion is the difference

1<p<ec

between Max;(x;) and the similarity degree of x; to the second most similar prototype:
Mazxy (z;) — Maxy(x;).

The first decision consists in creating a new cluster and initializing its prototype by
x;. This decision is taken when Max(z;) is less than a user-defined threshold &, whose
values can theoretically vary between the limits &nn = @ (Sim(i,7)) and Epax =

1<i,j<n
i#]
Mazx, (Sim(i,j)). This decision means that x; is not similar enough to the prototypes of
1<i,j<n
i#]

the previously detected clusters in order to consider that it would come from one of these
clusters. Therefore, a new cluster is created around z;.

The second decision consists in deferring the exploration of z; until other objects are
examined. This decision is taken if Maz(x;) > £ and Max(z;) — Mazs(x;) < i
The first condition means that the level of similarity that x; presents with the existing
prototypes is sufficient to consider that it comes from one of the ¢ already discovered
clusters; the second condition means, however, that a big ambiguity exists concerning
the cluster from which z; may be originated. This ambiguity depends on the number
c of existing clusters, with the worst case occurring when x; presents the same level of
similarity with the prototypes of all these clusters. ;11 is a threshold that the difference
between the membership degrees of x; to the clusters corresponding to its two most
similar prototypes should exceed in order for the learning process to take account of the
information carried by this object. Otherwise, exploration of this object is deferred until
subsequent objects, if any, are explored, which may help reduce the observed ambiguity.
Note that the similarity measure Sim(x;, v;) between an object x; and a prototype vy, can
also be interpreted as the membership degree of x; to the cluster represented by vy [3].

When the difference Maz,(x;) — Maxy(x;) is greater than or equal to the threshold
;11, and the maximum value of computed similarities Max, (z;) is greater or equal to the
threshold &, a third decision is made. It consists in exploiting the information carried by
x; in order to update the prototypes of the existing clusters according to the learning rule
given by Equation (19).

Finally, by repeating this method for the same input data using different values of the
similarity threshold &, different more or less acceptable clustering results can be obtained.
To select the best result among all these candidate solutions, two validity criteria are used

[3,15-17]. Namely, the partition entropy is defined by:

PE{U) = —% D> fuiklog, (ui)] (21)

i=1 k=1



A NEW DYNAMIC ALGORITHM FOR UNSUPERVISED LEARNING 1333
and the partition coefficient is modified by Dave and defined by:

PC(U) = %ZZ(UM)Q (22)

i=1 k=1
In terms of pseudo-code, the proposed method can be summarized as follows.

Input: Unlabeled data X
Output: The estimated number of clusters ¢*, and the matrix of prototypes V = (v1, ..., vex)
1 — Choose a similarity measure, sim [Equation (16)]
— Find the least similar objects, x; and x;
~ swap(zy, x;); swap(wa, 7;)
— Calculate:
Min(¢) = Min(Sim(i,j)), Max(§) = Max(Sim(i, 7)), A(&)[10%]
1<i,j<n 1<i,j<n
i#] i#j
2- For (¢ = Min(¢), € < Max(£), €+ = A(€) {e =2 v = x; v3 = a;
e Initialize
Objects_Treated = 2; // Number of analyzed objects
IsTreated[1] = 1; IsTreated[2] = 1;
IsTreated[i] = 0 for i = 3,4,...,n
NbTreated[i] = 0 for i = 3,4,...,n // Number of times z; is analyzed
e While (Objects_Treated < n)
{for (i =3,i<=n,i++)
{ if (IsTreated [i] == 0) do
{ if (NbTreated[i] <= 2) do
{ double Maz; =0, Mazy = 0;
if (Sim(i,0) > Sim(i,1){Maz, = Sim(i,0); Mazs = Sim(i,1);}
else {Maz, = Sim(i,1); Maxs = Sim(i,0);}
for (j =3;j <=c¢; j++)
if (Sim(i,j) > Maz,) {Mazs = Maxy; Maz, = Sim(i, j);}
if (Mazy < &) do {c++; v, = x;; IsTreated[i] = 1; Objects_Treated++;}
else if (Maxy — Maxs) >=1/(c+1)) {
Update all prototypes (Equation (19)); IsTreated[i] = 1; Objects_Treated++;}
else {NbTreated[i]++;}
} else {Update all prototypes (Equation (19)); objects_Treated++; IsTreated[i] = 1;}

}
} }
¢ Use U to PE(U) and PC(U).

}
3-Return ¢* and V.

FIGURE 5. Proposed algorithm

4. Results and Discussions. To evaluate the performance of the proposed algorithm,
a collection of experiments is conducted on four real-world datasets. These datasets are
available from the UCI Machine Learning Repository [18]: Wine, Breast Cancer, Balance
scale and Haberman’s Survival (see Table 1). A segmentation of an MRI image of brain
is also given.

Wine dataset is a result of a chemical analysis of wines from three different cultivars.
There are 13 attributes and 178 samples from three classes corresponding to three different
cultivars with respectively 59, 79, and 48 samples per variety.

Breast Cancer dataset is a 9-dimensional pattern classification problem with 699 sam-
ples from malignant (cancerous) class and benign (non-cancerous) class. The two classes
contain respectively 458 and 241 points.
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The third file is Balance scale dataset which contains 625 data objects. Each data
object has 4 attributes: left weight, left distance, right weight, and right distance. There
are 3 classes with 49 samples Balanced (B), 288 Left (L) and 288 Right (R).

The last example is Haberman’s Survival dataset that is the result of a measure of 306
cases on the survival of patients who had undergone surgery for breast cancer. It is a
3-dimensional pattern classification problem from two classes.

Table 1 describes the considered data and gives information about the attributes, size
and number of classes.

Firstly, the cluster detection procedure is run for the values of & comprised between
Min(§) = Min(Sim(i,j)) and Mazx(§) = Max(Sim(i,j)). The step varies with AJ =

1<i,j<n 1<i,j<n
7] i#]
0.1.

By varying &, different sets of ¢ clusters can be detected. The role of this first exploration
is to show how the number of detected clusters varies with &.

However, some values of ¢ are skipped for some data sets. To obtain these values in
BCW dataset for example, the considered dataset was explored with a step Ad = 0.001.
Table 3 summaries the results of this exploration.

For each data set, Table 4 shows the smallest values of the threshold & that led to a
number of clusters comprising between 2 and 6.

As depicted in Table 5, two validity indices are used to choose the best partition among
a set, of alternative partitions. Optimal values are displayed in bold. We can see that the
best solution always corresponds to the actual number of clusters for all examples.

Both UFL and IUFL determine the number ¢ of clusters presented in the data set.
We run the two algorithms 30 times after changing randomly the order of elements. The
optimal value of ¢ corresponds to the minimum of PE(U) and the maximum of PC(U).
Table 6 presents results of this exploration.

TABLE 1. Description of datasets

BCW Wine Balance Habern:zan’s
Survival
No. of Samples 699 178 625 306
No. of Attributes 9 13 4 2
No. of Classes 2 3 3 2

TABLE 2. Variation of ¢ with the step § = 0.1 for BCW dataset

£ (%) c
21, 31 2
31, 31 10

TABLE 3. Variation of ¢ with the step 6 = 0.001 for BCW dataset

£ (%)
[12, 31-21, 61

21, 71
21, 81-23, 11]
23, 21-24, 11]
[24, 21-25, 21]

SOl W NN
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TABLE 4. Lowest threshold values of £ (%) for detecting different numbers
of clusters ¢ (2 < ¢ < 6)

c| BCW Wine Balance Haberman’s
Survival

2| 12.31 22.19 * 39.83

3| 21.71 22.69 33.33 43.83

4| 21.81 22.99 33.53 44.83

5| 23.21 23.39 34.73 47.83

6| 24.21 23.59 * 48.83

TABLE 5. Validity indexes values for each detected number of clusters ¢

(2<e¢<6)
c 2 3 4 5 6
sow % | 0.385 0511 0536 0575 0.627
PC10.832 0.694 0.627 0.562 0.492
— %] 0971 0.604 0.647 0.770 0.809
PC| 0519 0.556 0525 0.371 0.305
T * 0889 0926 0940 *
Balance PC| *  0.419 0306 0239 *
oo o | B 0.965 0.983 0989 0992 099
PC|0.523 0346 0258 0.205 0.169

TABLE 6. Comparison of detected ¢ by UFL and TUFL

Algorithm BCW | Wine | Balance | Haberman
¢ correct 10 4 6 14
UFL ¢ incorrect 20 26 24 16
¢ correct 24 23 25 23
IUFL ¢ incorrect 6 7 5 7

[UFL reconstructs the classes which are presented in each data set by labeling the
data. These bases are supervised but any information about classes is given to the algo-
rithm. Thus, it is possible to determine both the number of misclassified objects and the
recognition rate.

The experiments above aim to illustrate the usefulness of IUFL in comparison to the
following algorithms: k-means, FCM, PCM, ISODATA and UFL. These algorithms assign
every data point to clusters by the minimum distance assignment principle. This principle
consists in assigning a new data point x; to the cluster to which its membership value is
the highest.

In this project, we implemented these algorithms in C++ programming language. At
first, FCM with usual norms is used for partitioning data. These norms are Euclidean,
Spearman, Manhattan and Chebychev, which are particular cases of Minkowski distances.
We run the program at the same conditions but using different distances.

The other algorithms were applied to data sets and their performance was compared.
The following table summarizes the results obtained for the considered algorithms.

Table 7 shows that IUFL can improve the performance of clustering considerably and
can lead to an increase in accuracy for class discovery.
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TABLE 7. Recognition rate for considered dataset
FCM
Dataset [ Euclidian Manhattan Spearman Chebychev |k-means ISODATA PCM UFL IUFL
Distance Distance Distance  Distance
BCW 65.96% 66.39% 49.22% 53.51% 66.1% 65.52%  61.52% 64.95% 66.1%
Wine 69.67% 69.67% 70.23% 69.67% 69.67% 66.30% 66.86% 69.67% 71.92%
Balance 53.92% 38.08% 36.8% 36.64% 48.16% 50.4% 50.72% 48.96% 66.4%
Haberman’s
Survival 49.02% 49.68% 51.64% 52.95% 49.02% 49.02%  50.33% 52.95% 53.93%

TABLE 8. Actual centers and learned prototypes for considered dataset

Dataset Actual centres Learned prototypes
2,956 7,195 3,005 7,239
1,325 6,572 1,294 7,035
1,443 6,56 1,424 6,961
1,364 5,547 1,325 5,971
BCW 2,12 5,298 2,077 5,54
1,305 7,564 1,301 7,986
2,1 5,979 2,098 6,255
1,29 5,863 1,241 6,291
1,063 2,589 1,087 2,627
13,744 12,278 13,153 13,817 12,509 12,962
2,010 1,932 3,333 1,89 2,454 2,512
2,455 2,244 2,437 2,44 2,288 2,398
17,037 20,238 21,416 16,89 20,775 19,773
106,338 94,549 99,312 105,206 92,318 103,763
2,840 2,2588 1,678 2,866 2,074 2,135
Wine 2,9823 2,0808 0,781 3,026 1,787 1,612
0,29 0,363 0,447 0,287 0,387 0,388
1,899 1,630 1,153 1,915 1,457 1,521
5,528 3,086 7,396 5,788 4,08 5,679
1,062 1,056 0,682 1,078 0,945 0,886
3,157 2,785 1,683 3,093 2,498 2,388
1115,711 519,507 629,895 1214,622 454,006 736,87
2,938 3,611 2,399 2,643 4,029 2,259
Balance 2,938 3,611 2,399 1,925 3,585 3,587
2,938 2,399 3,611 3,109 2,029 3,892
2,938 2,399 3,611 1,989 3,172 3,89

IUFL provides ¢ prototypes which are very close to the actual centres. Table 8 displays
the actual centres calculated from original labelled data, and those produced by IUFL.

For the segmentation of MRI image, we consider Figures 6-8.

Table 9 presents minimum values of £ corresponding to each detected number of clusters
(2 < ¢ < 6) produced by TUFL and validity indices of segmenting Imagel. The best
partition corresponds to ¢ = 3.

Table 10 presents the variation of the number of detected clusters for Image2, and
validity indexes produced by IUFL. It shows that best partition is obtained for ¢ = 4.

The learned prototypes by the New UFL are used to initialize FCM which gives a very
good initialization of cluster centers compared to FCM.

5. Conclusions. In this paper, we have proposed a new method based on an unsuper-
vised learning procedure which explores the learning database X in order to (1) discover
its intrinsic number of clusters and to (2) provide a prototype for each detected clus-
ter. To this end, a new learning rule was proposed. It consists in avoiding treatment
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(a) Imagel (b) Image2

FicUure 6. MRI images of brain

-

S

(c) (d)

FIGURE 7. Segmentation of Imagel. (a) Original image, (b) FCM with
c =3, (c) ISODATA with ¢ = 2, (d) New UFL + FCM with ¢ = 3.

FIGURE 8. Segmentation of Image2. (a) Original image, (b) FCM with
c =4, (c) FCM with ¢ =5, (d) FCM with ¢ = 6.

of immediately some vector objects that cannot be “easily” recognized and that may
cause fuzziness in the partition. These vector objects are reported until examining other
newly encountered vector objects and dispelling the fuzziness or reducing the confusion.
In other words, the information provided by the examined objects during the iterative
process contributes to minimizing the fuzziness of the final partition.

Our evidence shows that incorporating the proposed rule in the process improves clus-
tering accuracy. In our tests on the four datasets, an improvement of up to 29.76%
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TABLE 9. Number of clusters and validity indexes values produced by New
UFL for Imagel

§%) ¢ PE PC
20 2 0.666 0.516
60 2 0.556 0.530
70 3 0.520 0.542
71 4 0.540 0.482
72 5 0.543 0.473
75 6 0.531 0.459

TABLE 10. Number of clusters and validity indexes values produced by
New UFL for Image2

£%) c PE PC
[10-50] 3 0.407 0.690
[60-70] 4 0.353 0.713
75 5 0.503 0.564
80 8 0.503 0.495

is realized relative to FCM with Chybechev distance and 29.6% relative to FCM with
Spearman distance.

Unfortunately, our method is time consuming. This is because the proposed rule re-
stricts the automatic treatment of vector objects and explores unlabeled vector objects
twice.

The advantages of the algorithm are its simplicity and self-organization. It can be
used as an initial process in other algorithms. We also envisage in future work merg-
ing or splitting clusters or eliminating small clusters using the automatically determined
threshold.
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