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ABSTRACT. In this paper we propose an adaptive fusion approach for iris biometric.
The proposed fusion method incorporates four matching algorithms using feature quality
and relative entropy to enhance iris fusion performance. This method introduces relative
entropy measure to the fusion process to assign low weighting coefficients to features with
less information and higher weights to features with more information. We investigated
the parameters which influence the rejection rates and acceptance rates to determine the
optimal equal error rate. The best equal error rates were aimed at high recognition ac-
curacy. The proposed method was tested on two public iris databases. CASIA left eye
images produced 99.36% recognition accuracy and 0.041% equal error rate as compared
to 98.93% recognition accuracy and 0.066% error rate produced by the weighted sum
fusion. For the CASIA right eye images, the proposed method produced 99.18% recog-
nition accuracy and 0.087% equal error rate as compared to weighted sum fusion with
98.81% recognition accuracy and 0.096% equal error rate. From the UBIRIS database,
the proposed method produced 99.59% recognition accuracy and 0.038% equal error rate
as compared to 98.53% recognition accuracy and 0.07/% equal error rate produced by
weighted sum fusion. The proposed method shows improved recognition performance in
terms of AUC and the EER.

Keywords: Score level fusion, Scores normalization, Weighted sum fusion, Simple sum
fusion, Adaptive fusion, Relative entropy

1. Introduction. Fusion techniques have become the popular approach to enhance mat-
ching performance and recognition accuracy levels. This is because unimodal approaches
are faced with many limitations which reduce recognition performance. Various levels of
fusion approaches have been introduced to solve the recognition performance problem.
These include multi-sensor fusion, multi-instance fusion, multi-sample fusion and multi-
modal fusion. The choice of level of fusion depends on the data available to use. In
[1], Desoky et al. presented fusion results from template fusion. The challenge of using
template fusion arises when different feature extraction methods produce incompatible
features which may be of varying dimensions which suffer computational expense. To
overcome this drawback, attention has been shifted on score based fusion. This is be-
cause scores acquisition is easy and scores provide more information about the templates
being matched. Nandakumar et al. in [2] used a score based fusion approach using like-
lihood ratio-test density based estimation. Gaussian mixture model was used to model
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the distribution of genuine and impostor scores in order to produce robust results using
likelihood-based ratio-test estimation. This method requires the distribution of scores to
be estimated accurately. If the distributions of scores have not been accurately estimated,
this fusion method can produce undesirable results. Gawande et al. [3] implemented a
multi-algorithmic fusion using three different iris feature extraction techniques. Wang et
al. [4] also implemented similar procedure by combining phase information and zero cross-
ings features using support vector machines. The use of multi-algorithmic fusion requires
score normalization. He et al. [5] assessed the performance of score level fusion methods
and their score normalization techniques in order to determine the more robust score nor-
malization method. In their work they implemented simple sum rule fusion and compare
them with support vector machine fusion approaches. Their results demonstrated that
the latter can produce improved recognition performance if the kernel parameters have
been carefully chosen. Kumar and Passi [6] also argued that the sum rule based offers
added advantage of ease of computation as compared to learning based fusion approaches.
On the contrary, Wang et al. [7] presented results tested using various fusion methods
based on UBIRIS database and their results show that with highly accurate kernel pa-
rameters set, support vector machine outperforms simple sum fusion. With these current
fusion methods, feature quality is not measured to enhance fusion performance. Measur-
ing feature quality is useful in order to account for low quality features and high quality
features during fusion. However, measuring feature quality for fusion is also a challenging
task. This challenge motivated this work to introduce adaptive fusion which incorporates
feature quality metrics and the error rates produced by each matcher. The metric for
measuring the feature quality was based on the relative entropy measure which was also
used in [8]. It is imperative to map feature quality values with the fusion function since
quality improves system performance and increases system robustness. Our novelty lies
in introducing the quality metric parameter and incorporating it with the EER during
fusion. The significance of this contribution lies in improving recognition performance
even on noisy iris images.

2. Our Method. Our fusion approach combines four matching algorithms, namely Na-
tional Hamming Distance (NHD) [9-11], Weighted Hamming Distance (WHD) [12,13],
Weighted Euclidean Distance (WED) [14] and Phase Only Correlation (POC) [15]. This
fusion approach exploits the feature quality measure of each extracted feature from the
feature extraction algorithms. The choice of algorithms was based on their efficiency in
extracting iris information. Combination of these algorithms would indeed enhance iris
recognition performance even on noisy iris images. In this work, each algorithm was im-
plemented independently and assessed based on the effect of noise reduction using the
EER measurements for each iris recognition method. The EER was computed from two
related algorithms and used to compute the weighting parameters during fusion process.
The procedure followed to accomplish the proposed approach is depicted in Figure 1. To
get the features to assess their quality and the scores from each matcher we followed the
procedure in [9-11] to preprocess raw data. The stages performed on preprocessing were
segmentation and normalization.

2.1. Iris image segmentation. Iris image acquisition requires that the eye image should
be captured with its surrounding parts which include parts of the face. Captured iris im-
ages are highly occluded with noise and the entire eye image is not necessary during
subject’s recognition. The region of interest should be segmented using efficient seg-
mentation algorithms in order to isolate the iris region from other unwanted parts of
the eye image. Accurate segmentation offers increased potential to enhance recognition
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FIGURE 1. Structure of the proposed fusion

FIGURE 2. Segmentation results from CASIA and UBIRIS images

performance. Segmentation is the process of using robust algorithms to remove unneces-
sary parts of the eye image into a useful selected set of data which is transformed into
mathematical measurements or model which represent the original image. In this work,
an approach introduced by Masek in [16] was adopted and used to segment eye images.
From the two databases used in this work, not all images were accurately segmented. Im-
ages with segmentation failures were discarded from test results to avoid their influence.
The results of images which were accurately segmented are shown in Figure 2. The first
row of Figure 2 shows raw images before segmentation and the last row shows the results
of segmentation algorithm as implemented in this paper. The first two columns show
images from CASIA iris database and the last two columns are images extracted from
UBIRIS database.

Regardless of the success of segmentation, noise regions are the major causes of de-
graded iris recognition performance. The next step is to detect and remove noise using
thresholding techniques. Detected noise regions such as eyelashes and eyelids are masked
in order to exclude them during feature extraction. However, not every noise region
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(i) CASIA IMAGES (i) (i) UBIRIS IMAGES V)

FiGURE 3. Results of noise masking for CASTA and UBIRIS images

within the image was able to be identified as noise region. The results of noise masking
are presented in Figure 3.

The columns marked (i) through (iv) in Figure 3, depict noise masking on a segmented
iris image. The masked regions include eyelashes, eyelids and specular reflection from the
camera which can be seen from the image in the second row and first column. The images
in the first two columns marked (i) and (ii) are from CASIA iris database; and columns
marked (iii) and (iv) are from UBIRIS database.

2.2. Iris image normalization. To extract consistent features from all the images,
segmented image should be normalized to correct for image deformation. In this work the
Daugman Rubber sheet model [9-11] was adopted and used to normalize the iris region.
This procedure involves mapping each image pixel from rectangular coordinate to polar
coordinates. The reason for transforming the iris region into a normalized form is to gain
consistency in image sizes and to avoid image deformations caused by the distance between
the cameras and the subject, head tilt, pupil dilation, etc. Figure 4 shows the results of
normalization method, with the segmented and masked images on the first column and
their corresponding features and noise masks on the second column. The first two rows
marked (i) are images from CASIA database and the last two rows marked (ii) are images
from UBIRIS database.

Images in column two shows the results of pixels transformation from rectangular co-
ordinates to polar coordinates using normalization algorithm. The arrow is showing the

(i)

FIGURE 4. Results of normalization for CASTA and UBIRIS images
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image before transformation and points to the image after transformation. The rectan-
gular blocks of images showed in the second column are unwrapped iris images with iris
features in gray and their corresponding noise masks in black and white. To assess feature
quality, relative entropy was adopted and used to measure and generate the quality metrics
for both intra and inter classes. The quality values were computed on extracted features
because different feature extraction methods were used. The features were extracted from
the blocks of images in the second column of Figure 4. It was imperative to assess and
compute quality values on the extracted features in order to measure the amount of fea-
ture information and feature quality after extraction. The samples of extracted features
assesses using relative entropy are shown in Figure 5.

FiGUuRrE 5. Samples of image features

2.3. Iris feature extraction and feature matching. Since the combination approach
proposed here incorporates scores from four iris matching algorithms, features were ex-
tracted using four different extractors. The first set of features was extracted using Gabor
filters at multiple scales. The feature comparison was done using the NHD. The procedure
for this approach can be found in [9-11]. The second set of features was extracted using
multi-lobe differential filters. To generate the scores, features were classified using WHD
which uses adaptive weight maps to reduce the effect of noise during matching. Details
of this approach can be found in [12,13]. The third set of features was extracted using
the multi-channel Gabor filtering. Extracted features were classified using WED. The
procedure for this approach can be found in [14]. The last set of features was extracted
from blocks within the iris region using hierarchical models. Feature classification was
done using POC. Since features were extracted using various approaches which extract
different features, feature fusion would be very complex due to incompatibility challenges.
Score level fusion was the most convenient because matching scores contain very useful
explanation about the matching algorithms used. Due to the use of different matchers,
scores also appear at a heterogeneous scale. To transform the matching scores to a ho-
mogeneous scale prior to fusion, the scores were converted to homogenous scales using
hyperbolic tangent normalization in order to increase simplicity and compatibility during
fusion.

2.4. Feature quality measure. Measuring feature quality offers an added advantage
during classification. It is crucial to use consistent features to avoid an increase in EER
due to inconsistent features extracted. The approach taken here differs from that in [17]
which measures image quality by assigning a 1 for consistent bit and 0 otherwise. The
proposed approach of measuring feature quality was adopted from [8], where relative en-
tropy was used. The relative entropy, also known as Kullback Leibler Divergence (KLD)
measures the difference between non-symmetric probability distributions. KLD has re-
ceived considerable attention in information theory and its application in image quality
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assessment remains crucial. Variations in feature distribution need to be quantized in a
biometric systems seeking robustness. KLD is a good measure of variations between two
probability distributions. Generally the KLD may be expressed mathematically in terms

of Equation (1).
KLDG|w) = [ =)o, (215 1)

w(z)

x

This metric is very useful in measuring information loss if the parameter w is used to
estimate z as described by Equation (1). According to Equation (1), the functions z(x)
and w(z) are the probability mass functions of the intra-class and inter-class distribu-
tion respectively; and whose integrals can be computed along the feature vector space,
X. Since KLD measures the expected amount of extra information required to encode
one distribution of set of features to another distribution, the feature mean intensity be-
comes necessary. For each class of probability distribution, the mean intensity for each
normalized image can be computed using Equations (2) and (3) as explained below.

E.(z) = % Z X, (2)

The parameter F, in Equation (2) represents an expected value of the probability distri-
bution function, z(z).

Bufx) = = zx (3)

The parameter E,, in Equation (3) represents an expected value of the probability distri-
bution function, w(x). The covariance of the probability mass functions z(x) and w(x)
were computed using Equations (4) and (5).

S = [(x - B)' (X - B,)] (4)

z

Y = [(X - E,) (X - E.)] (5)

w

The probability mass functions z(z) and w(z) can now be transformed into Equations (6)
and (7) by combining Equations (4) and (5).

1 1 L —
z2(x) = \/ﬁ.exp <—§ (X —E)') (X = Ez)) (6)

z
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The relative entropy measure which was used to measure the quality of the feature dis-
tribution of the intra-class z(z) and inter-class w(z) was computed using Equation (8).
This procedure can also be found detailed in [8].

w

KLD(z||lw) = / 2(z) (logy 2(x) — log, w(x)) dv (8)

The values computed by Equation (8) range between 0 and 1. The relative entropy values
were ranked prior to fusion, and Table 1 shows the rankings.
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TABLE 1. Table of KLD value ranking

Rankings | Min(KLD) | Max(KLD)
High 0.90 1.00
Good 0.59 0.89
Low 0.39 0.58

2.5. Score normalization and fusion. Matching scores were generated from various
algorithms which output heterogeneous scores. In this work, the scores generated from
NHD, WHD and POC were homogeneous and ranging from (0-1). The scores generated
from WED were at a scale of (0-100). To alleviate this anomaly, we normalized the match-
ing scores prior to fusion to ensure homogeneity using the hyperbolic tangent estimator
normalization. The hyperbolic tangent was adopted to transform the matching scores to
a (0-1) homogeneous scale for fusion compatibility due to its robustness and efficiency
against score which may appear as outliers. The hyperbolic tangent can be expressed
mathematically in terms of Equation (9).

om0 (5 o

The parameter Sy, is an output of the normalized scores, S; is the raw scores data
before normalization, S is the mean of the raw scores and o is the standard deviation
of the raw scores. The value 0.01 represents the spread of the scores distribution. The
parameter S which is an estimated mean of the raw genuine scores was estimated using
Hampel estimating parameters [18] which are computed using the influence function in

Equation (10).

Y 0<|y|<a
hy) = a * sign(y) a<|yl<b (10)
y) = a * sign(y) * <CC_T|Z|) b<lyl<c
ly| > ¢

In Equation (10) the parameter y denotes the value of the genuine scores which is the
difference between the genuine score distribution and the median value of the genuine
scores. The value of S is obtained as a result of the sum of the median value and the
output of the influence function, h(y). This normalization algorithm is very robust to
outliers but its optimality depends mainly on the parameters a, b and ¢ which should
be chosen with much caution. The choice of these three parameters was based on the
tuple o, # and 7. In our case, the choice @« = 80, § = 90 and v = 95 produced the
highest recognition performance in terms of the Area Under the Curve (AUC) and the
EER. From this tuple, the parameters (a, b, ¢) were chosen in such a way that a% of the
genuine scores should at least fall within the range (m — a, m + a), 8% of all the genuine
scores should at least fall within the range (m —b, m+b) and 7% of all the genuine scores
should at least fall within the range (m — ¢, m + ¢), where the parameters a, b and ¢ are
as they appear in Equation (10) which estimate the influence function.

Our main results are reported using the Receiver Operating Characteristic (ROC) curve
and tables which show the values of the AUC and EER in Section 3. The final matching
decision was also determined to render a match or a mismatch. This decision was based on
a predefined threshold value which offers increased performance. The decision threshold
method for a match or a mismatch was defined using Equation (11).

_ Aa TS S Sz
D= { R, Otherwise (11)
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The decision module accepts a biometric user if the submitted biometric returns a match
score which is lower or equal to the predefined threshold. If the return result is otherwise,
the biometric system will recognize a user as an impostor and rejects the biometric user.
In Equation (11), D is the decision module parameter after comparison, A is the accept
decision, R is the reject decision, T’ is the predefined threshold from the fused scores and
S is a vector of all the individual scores.

3. Results and Discussions. Results presented here were derived from two public iris
databases, namely CASIA-IrisV3-Interval and UBIRIS datasets. From the CASIA data-
base we used the left and right eye images separately and compared their results on various
figures. We selected 275 left eye images from CASIA and 815 from right eye images.
They were all saved as 320x 280 JPEG image files. The images selected were from differ-
ent subjects because we used five instances for each subjects and some subjects had less
than the desired number of instances. We selected 1200 right eye images from UBIRIS
database whose description says they were captured at 300 dpi and saved as 2560x 170/
JPEG image files. The training sets reported here are images which were segmented cor-
rectly so that segmentation failure will not pose bias of our fusion results. Results from
each matching algorithm were analyzed using various threshold values before fusion. The
EERs for each matcher were calculated to determine the individual performance of each
matcher. Table 2 below shows the performance of individual matchers using false rejec-
tion rates at a constant false accepts rate. These errors were incorporated in the fusion
process together with the quality values to compute the fusion weights. From the false
rejection rates shown below at equal false accepts rate assigned at zero level, the varying
levels of recognition performance can be easily determined.

TABLE 2. Table of error rates from individual matchers

Algorithm FAR (%) | FRR (%)
Gabor Filter 0.00 0.0082
Multi-Channel Gabor Filter 0.00 0.0086
Multi-Lobe Differential Filter 0.00 0.0063
Hierarchical Phase Based 0.00 0.0065

During the fusion process, various weights were investigated and the optimal combi-
nation which results to low error rates was selected. Various fusion approaches were
implemented, investigated and compared with the proposed fusion model. The proposed
fusion approach outperformed all other traditional fusion approaches when tested against
all the datasets. The performances of these algorithms were tested using the AUC and
EER. The ROC curves are also presented which show all the fusion techniques tested on
all three datasets. Table of performance measures appear after each ROC curve. When
the distinction between impostor scores and the genuine scores is high, the system secu-
rity increases and error rates also decline due to high distinction between the two score
distribution. However, when the distinction between the impostors and the genuine scores
is very low, it becomes difficult to set an effective optimal threshold value and these lead
to impostors gaining access or genuine users being denied of access. System security be-
comes very poor and error rates also increase. In this work it was discovered that the
performance of the fusion algorithm is highly influenced by the quality parameters and
the weighting coefficients computed from the EER of individual matcher shown in Table
2. Our experimental results tested against the CASTA left eye images are presented in
figure below.
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ROC Curve for fusion techniques using CASIA &ft images
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FIGURE 6. ROC curve for CASIA left eye images

From the ROC Figures 6 and 7 it shows that the CASTA left eye images performs
better than the CASTA right images. However, the images used in this work have been
extracted from various subjects, due to the condition of five instances desired for each
image. Since various subjects were used in the CASTA database, the results from Figure 6
and Figure 7 cannot significantly deduce that the left eyes are better than the right eyes.
From the images used in both left and right eye images, resolutions vary and the level of
noise between them also vary. For these databases results were highly influenced by the
weighting parameters used, since they were not adjusted to suit a specific database during
matching. The weights incorporated in the adaptive fusion process were (0.4, 0.6) and
(0.6, 0.4) which produced the best results in terms of low EER and high AUC. For the
weighted sum the best results were achieved with weight of (0.3, 0.7) and (0.7, 0.3) when
fusing the four scores from four iris matching algorithms. Table 3 below shows the results
of comparison of other sum rule based fusion techniques against the proposed adaptive
fusion. From this table of results, the proposed adaptive fusion has high accuracy as
shown by the value of AUC and improved performance as shown by its low EER.

TABLE 3. Table of performance and EER for CASIA left eye images

Fusion Algorithm | Performance (%) | EER (%)
Sum Fusion 98.3 0.0092
Minimum Fusion 98.6 0.074
Weighted Sum Fusion 98.9 0.066
Proposed Fusion 99.3 0.041

Table 4 demonstrates the performance of the proposed approach as compared against
the other fusion approaches using the CASIA right eye images. The table shows that
the proposed method outperforms the other fusion approaches both in terms of AUC and
EER values.

Table 5 shows performance of the proposed fusion against other fusion approaches using
the UBIRIS database. The UBIRIS as shown by Table 5 and ROC curve shown in Figure
8 outperforms all the databases tested. The proposed method produces excellent results
even on the noisy iris database when noise parameters are accounted for during the fusion
process. This is evident from the results of our approach compared to the results produced
by the state-of-the art fusion methods.
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ROC Curve for fusion techniques using CASIA right images
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TABLE 4. Table of performance and EER for CASIA right eye images

Fusion Algorithm | Performance (%) | EER (%)
Sum Fusion 97.0 0.17
Minimum Fusion 98.4 0.12
Weighted Sum Fusion 98.8 0.096
Proposed Fusion 99.1 0.087
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Ficure 8. ROC curve for UBIRIS images
TABLE 5. Table of performance and EER for UBIRIS images

Fusion Algorithm | Performance (%) | EER (%)

Sum Fusion 97.0 0.17
Minimum Fusion 98.26 0.0069
Weighted Sum Fusion 98.53 0.074

Proposed Fusion 99.59 0.038
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4. Conclusions. An adaptive quality based fusion approach based on the weighted min-
imum score fusion has been proposed and presented. The experimental results for the
proposed quality based fusion approach were tested against CAISA and UBIRIS iris im-
ages databases. The results presented using ROC demonstrates that an adaptive fusion
method with tuned weights performs better than a weighted fusion approach. Evidence
from the two datasets demonstrated that recognition performance increases when quality
values are incorporated during fusion. A large dataset from a noisy database also demon-
strated the capability. From the tables and ROC figures it is clear that the adaptive fusion
outperforms the weighted sum fusion and the other state-of-the-art fusion methods by a
significant gap. In all the training datasets the proposed approach produced low EER
rates and high AUC which determines the recognition performance and biometric system
accuracy. The left eye images from CASIA gave better recognition accuracy over its right
eye images. Nevertheless, the images used were taken from various subjects whose im-
ages were taken on different sessions. This is because most of the image files are missing
on CASIA-IrisV3-Interval database, and for this work five training images per subject
were used. The type of training images in terms of pixels resolutions differs based on the
imaging conditions of different sessions. It was also noted that various subjects possess
varying levels of eyelashes which also include hiding the iris region with their eyelids.
Most training images used from left eye were highly rich in iris features as compared to
the training images from the right eye. These features have led to better recognition of
left eyes over right eyes. In future, this work will be extended to assessing feature quality
values by dividing the image into blocks and measure the quality of features from each
block. This will improve the recognition performance and system accuracy even more.
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