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ABSTRACT. In this paper, a control scheme combining linear extended state observer
(LESO) technique and back-stepping method is proposed for a class of single-input and
single-output (SISO) nonlinear uncertain system with known linear dynamics, unknown
nonlinear functions, internal uncertainties and external disturbance. And the system
states are not available for measurement. An improved LESO was presented. Compared
to the extended state in typical LESO structure, the one in this improved LESO does not
contain the known linear terms. This handling approach can decrease control energy.
This improved LESO can estimate simultaneously both the systems states and the total
disturbances. Through the compensation function of the extended state, the original sys-
tem can be changed into the linear system. Then we utilized the back-stepping method,
which is different from nonlinear PID used during the typical ESO-based control design
process, stabilizes the resulting linear system. Rigorous stability analysis shows that the
system output asymptotically converges to zero. Finally, the numerical simulation results
are given to illustrate the effectiveness of the proposed controller.

Keywords: System control, Back-stepping control, Extended state observer, Nonlinear
systems, Uniformly ultimately bounded

1. Introduction. In the past few decades, the various adaptive robust control techniques
with the high-precision performance have been rapidly developed for the nonlinear uncer-
tain control systems. At present, the back-stepping methods have been widely applied to
many control fields, such as spacecraft systems [1], mobile robots systems [2], and general
systems [3]. The basic back-stepping control is usually realizable only under condition
that the linear and nonlinear system dynamics are known. However, it is well known that
the most of real system dynamics are uncertain, even stochastic [4-6]. So it is difficult
to directly apply the basic back-stepping control to the uncertain plant with unknown
function.

In addition, the system state variables may be partially unavailable in some case. At
present, the various estimation techniques based control schemes have been developed to
solve the kind of problems (see [7-13] and the references therein).

In recent years, the extended state observer (ESO), as a kind of important estimat-
ing technique, is of special interest. The ESO is designed first in [14] for a general n-
dimensional SISO nonlinear system. The convergence of nonlinear ESO for SISO system
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is available only very recently [15]. In order to conveniently tune the parameter gains,
[16] proposed the LESO for SISO system. The convergence of LESO for SISO system is
investigated firstly in [17] and subsequently in [18]. According to existing results of ESO,
the extended state must include all system dynamics. However, some linear dynamics
terms contained in the extended state benefit sometimes to the system stability. So in
the typical ESO’s structure, the practice of this handling extended state probably leads
to the energy loss of the control system. Thus it is important how to dispatch the linear
terms from the extended state in the typical ESO’s structure.

This paper studied the composite LESO-based control problem for a class of SISO non-
linear uncertain systems. The system model includes known linear dynamics, unknown
nonlinear dynamics, model uncertainties and external disturbance. And the system states
are not available for feedback. An improved LESO structure was developed. The extended
state in this improved LESO’s structure does not contain the known linear system dy-
namics compared to one in the typical ESO structure. Using the extended state, i.e., the
estimation to the total disturbance compensates the plant model to complete the distur-
bance attenuation and rejection. As a result, the original system is changed into a linear
system. In existing based ESO-based control results, the nonlinear PID controller was
usually selected to stabilize the resulting system while we use the back-stepping control
law here.

This paper is organized as follows. The problem formulation is presented in Section 2.
The design and convergence analysis of LESO is included in Section 3. In Section 4, the
back-stepping control law is designed. The simulation results to show the effectiveness of
the proposed control algorithm are included in Section 5. Finally, the paper is concluded
in Section 6.

2. Problem Statement. Consider the following uncertain SISO nonlinear system:

2™ = (by + Aby) z + (by + Aby) 2’ + ... + (b, + Aby,) 2V
+f(z, ..., 22 2D 1) + (g 4+ Ag) u + w(t) (1)
y==x

where by, bs,...,b0, and g are known real constants, u € R and y € R are the input and
the output, respectively, the unknown function f(.) denotes the complicated nonlinear
dynamics, the functions Aby, Abs, ..., Ab, and Ag are model uncertainties, and w(t) is
external disturbance. Denote that W (t) = Abjz+Abya’+. . .+ Ab,z "V + f() +Agutw.
W (t) is viewed as the total disturbances of the systems (1).

Concerning the system (1) we introduce the following assumptions.

A1) The unknown function W (¢) is differentiable, and its derivative function is Lebesgue
measurable in 7.

A2) Denote that dvg—t(t) = h(t). The norm of the unknown function h(t) is bounded by a
known function p(t) : Rt — R™, that is, for all t € RT, ||h(t)|| < p(t). Here the function
p(t) : R* — R* is bounded by the constant p > 0, that is, p(¢t) < p for all t € R*.

A3) The known function p(t) : R¥ — R is a Lebesgue measurable function in ¢. And
given a compact interval [ b] C R*, the known function p(t) : Rt — R" is Lebesgue
integral.

Equation (1) can be rewritten in the state space as

{.ﬁt’lz.'lig,...,i’n_l:l‘n, xn:b1x1+b2x2++bn:ﬂn+gu+W (2)
y=mn

The nonlinear system (2) is assumed to be controllable, the input u is bounded, and the
input gain g is assumed to be non-zero. Hence, without loss of generality, we assume that
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g > 0. In this paper, the control objective lies in designing the LESO-based back-stepping
control law to ensure that the system output is convergent to zero in the finite time.

3. LESO Design and Convergence Analysis. Define x,,.1(t) = W(t) as the extended
state in (2). The corresponding extended system of (2) is given as follows:

{ l.'l 21'2,...,1"7171 = Tp, :'cn:b1x1+b2x2+...+bnxn+xn+1+gu

i'n+1 =h
where © = (] g - -- xn+1)T € R™! represents the state of the extended system. The
matrix form of the above extended system can be written as
I o0 1 0 -+ 0 O x 7 [0 ] [0 ]
T o o1 -+ 00 X9 0 0
T3 o 00 -~ 0O x3 0 0
: s Do : S I A h (3)
.i'n bl bg bg bn 1 Tn q 0
| Ty L0 0 0 -+ 0 0] [ 2pg1 | | 0 | L1
The LESO of the system (3) is proposed as follows
(& ] o0 1 0 0 07T 41 1 [ laT [0
P 0 0 1 0 0 T " 2q, 0
T 0O 0 O 0 O .’i'3 €n_3CL3 T1—1 0
Pol=1 : . : + : ( 16"1>+ | u (4)
:fcn by by b3 -+ by 1 Ty an g
_i‘n—l—l_ L0 0 0 --- 0 0] [ Zpyt | _%anﬂ_ L 0 ]
where Z = (21 To -+ & Tny1)” € R is the state vector of LESO (4), and the constant
—ay 1 e 00
—ay 0 e 00
¢ > 0 can be designed later. Denote that &= : : .. ¢t |. The
—a, +e"b e by --- b, 1
i 0 e 00
parameter gains ai, as, ..., a0y, d,+1 and € are required to satisfy
TP+ PO = —2Q (5)

for some symmetric positive definite matrixes P and Q.

Remark 3.1. Note that the parameter matriz of LESO (4) is different from one given in
reference [16]. In addition, we selected the total disturbance W (t) = Abjx + Absx’ + ...+
Ab,z™ D+ f()+ Agu+w as the extended state, that is x,41(t) = W(t). So the extended
state does not include the known linear dynamics term bix + box’ + ... + b,V . This
tackling technique is major different from one of the typical ESO given in [16].

Introduce the observing errors: Z = (z; 29 - - zn+1)T with z; = x;—2;,i=1,2,...,n+
1. Subtracting (4) from (3) leads to the error dynamics system as follows
21 —87101 1 .- 0 0 Z1 0
22 —872012 o --- 0 0 29 0
- : Do + | (6)
2n —6_"an + b1 bg s bn 1 Zn, 0
i1 —e g, 0 0 -~ 0 0 Znt1 h
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Theorem 3.1. Consider the error system (6) satisfying Assumptions A1)-A83). Then the
following results hold.

(I) Given any (Zy,ty) € R"™ x RT, there exists a continuous solution: Z(t) : [ty t;] —
Rn—l—l with Z(to) = Z().

(II) The solution of Equation (6) Z(t) : [to ti] = R"™', Z(ty) = Zy, is uniformly
ultimately bounded. Specifically, we have ||Z(t)|| < k(e) for t > tf(e), where ts(e) is a

finite time and k(g) = %6. (Appendiz details the proof of Theorem 3.1)

So the LESO (4) can estimate both states and extended state of the system (3), that
is,
561 — X1, 53'2 — T2, ..., i‘n — Ty, Zz'n+1 — Tpt1 = W(t) (7)
Remark 3.2. [t follows from Theorem 3.1 that the estimation error enters the closed ball
{Z :|Z]| < k(e)} after a finite time t;(g). It is easy to verify that the radius of the above
closed ball can be adjusted by the design parameter €, and because of lim,_,o+ k(g) = 0,
the estimation error Z converges to the origin as € goes to zero. It should be pointed out
that the proposed LESO can be feasible in case of the extended state including all linear
dynamics terms.

Remark 3.3. To eliminate the peaking phenomenon coming from the high gain, we intro-
duce saturation on the signal & = (&1 T2 -+ Tp Tn1)’ such that 35 = (&5 &5 -+ &5 &5 ,,)7,

N . N . T
where ¢ = (disat () dasat (2) -+ dysat (%) dpsrsat (22)) with S; > d;

i =1,2,....,n,n+ 1. Here d; denote the upper boundedness of &;, that is, |T;| < d;,
1=1,2,...,n,n+1.

4. Back-stepping Control Design. In this section, we develop the back-stepping con-
trol scheme for the case where all system states and total disturbance are available using
LESO approach.

Step 1: At this step, the first equation in Equation (2) is considered, i.e., iy = x5. The

virtual control law z7 is designed as x5 = —k;x1, where ky > 0, x1 = 1.

Step 2: Consider 2o = x3. Letting x2 = 29 — x5, we have xo = v3 — Z_ﬁx? Choose a

virtual control law 2% as 25 = —x1 — k2X2+g—szE2, where ky > 0.

i—1
. . . . . ox*

Step i: Consider &; = x;1. Letting x; = x; — zf, we have x; = x40 — Y. %xﬂl.

Jj=1

i—1
. ox*
Choose a virtual control law z;,; as x},; = —X;—1 — kiXi+ 2 W;xjﬂ, where k; > 0.
i=1

Step n: The final control law is designed in this step. Consider &,, = byx; +boxs + ...+
box, + W 4+ u.

n—1 N
Letting x, = 2, — 2%, we have X, = bixq + bowo + ... + by + W + gu — > %xﬁl.
7j=1

The final control law is designed as

n—1 .,

u=1/g —=Xn-1 = FknXn —01Z1 — boZo — ... = by, — Tpy1+ E 3—:?:xj+1 (8)
j=1

O A O A o O A Sk 9 — 5 Sk S— A

where k,, > 0, X1 =21, Xa = T2 — 25, .. ., Xi = Ti —TF, ...y Xne1 = Tne1 — T4, Xn = T —
o3 fd QY

Sk Sk Ok » ® 2 4 ok — » ® P A Sk

Ty, Ty = —k1X1,$3 = X1 — k2X2+3—j1$2, R e € S N ixi+ 21 g}%ﬂrla sy Ty =

]:

n=2 5z
. . SR
—Xn-2 — kn—1Xn-1+ > i, Litl-
i=1
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Remark 4.1. The composite controller (8) has been designed based on the back-stepping
method and the LESO technique. The leading difference from the conventional back-
stepping method is that the disturbance estimations are introduced in the final control law
to compensate the total disturbances at nth step.

Remark 4.2. The back-stepping control scheme (8) is a function of the LESO’s outputs
1, Toy oy Epy Enyr1. Since the inputs of LESO (4) are x1 (or y) and u. So the proposed
back-stepping control scheme only requires the output y of the system (1) to be measureable.

The above design procedure of the back-stepping control can be summarized in the
following theorem.

Theorem 4.1. Considering the uncertain nonlinear system (1). The LESO is designed as
(4)-(5). Under the proposed back-stepping control scheme (8), the output y asymptotically
converges to zero.

Proof: The closed-loop can be described as

(X1 = X2 — kix1, Xa=X3 — kaX2 — X1, X3=Xa — k3X3 — X2,- -,
Xn—1 = Xn — kn—an 1 — Xn-2

Xn = bl.'L'l + bgfL’Q +...+ b nLn + W — Z oz, l‘]+1 Xn—l — knf(n — bli‘l (9)

_bQi‘Q — ... — bnfi?n $n+1+ Z o7 ; IL’]+1
\ Jj=1
It obtains from (7) that X1 — X1, X2 = X2y -+ -» Xn = Xn, &7 — 2], 25 — xh, ..., 25 — xk.
Ignoring the estimation errors in &y, To, ..., %, and 2,41 leads to x, = byxy +bexo 4+ ... +

n—1__,
bnTn + W — Z a; ki1 — Xnet — knXn — bid1 — baiby — ... = by — Tyt 3 %%H =
. =
—Xn-1— ann So the closed-loop system (9) can be rewritten as

X1=X2 — k1X1, X2=X3 — F2X2 — X1, X3=Xa — k3Xx3 — X2, - -» (10)
anIZXn - kananl — Xn—2, Xn: - ann — Xn—1

Denote that x = [x1 x2 ... xaJ". Consider the Lyapunov function candidate V = 1xTx.
The time derivative of V along the solutions of (10) is V = —kix? — kaX3 — ... — kn)X2.
Thus we can know that the closed-loop system (10) is asymptotically stable. Furthermore,
the output y asymptotically converges to zero. The proof of the theorem is complete.

5. Simulation Study. In this section, the simulation results are given to illustrate the
effectiveness of the proposed control techniques. We consider a second-order system mod-
eled by & = (=2 4+ Ay (t))x + 3+ Aqo(t))T + f(&,2,t) + (1 + Ag)u + w. Its state-space
form is described as follows

T 0 1 T 0 0

where the model uncertainties Ab; = 0.02sin(nt), Aby = 0.02 cos(nt), Ag = 0.01 sin(nt),
the system nonlinear dynamics function f = —3z;73, the external disturbance w(t) =
2sin(0.17t) +3sin(0.2v/t + 1). So the total disturbance W = Az +Aszo+Agu+ f+w =
0.02sin(mt)xy + 0.02 cos(rt)ze + 0.01sin(mt)u — 3z123 + 2sin(0.57t) + 3sin(0.2y/1 + 1).
To proceed the design of LESO and back-stepping controller, the design parameters
are chosen as ¢ = 0.01, a; = 2.8252, ay = 4.4085, a3 = 0.9129, k; = 20, ky = 36.
The initial states are arbitrarily chosen as x; = —0.045, o = 0.06. The LESO and
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o 0 1 0]
the back-stepping controller are, respectively, given by | 2o | = | =2 3 1 T
T3 0 00 T3
282.52 0
+ | 44085 | (x1—a1)+ | 1 | wand
912900 0
u(t) = —x1(t) — 36x2(t) — 221 (t) — 32o(t) — 23(t) + Ory(t) To(t) (12)

021 (t)
with x1 () = &1 (t), #5(t) = —20x1 (1), X2(t) = 2(t) — 5(t), G247 = —20.

Figures 1 and 2 give the simulation results which are obtained by applying the controller
(12) to the system (11). In Figure 1, the plot (a) shows the system output profile, and
the plot (b) shows the control law profile, respectively. From the plot (a) in Figure 1, we
can see that the system output is convergent to zero with small error except some spikes
caused by the high gain in LESO. In addition, the plot (b) in Figure 1 shows that the
control magnitude is also small. Figure 2 shows the tracking performance of LESO. From
Figure 2, we can see that the outputs of LESO can closely track the system states and
total disturbances with very small errors. So the replacements of system states and total
disturbances with their estimations are valid during the design of control law.
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FI1GURE 1. Trajectories of output y as well as control law u

6. Conclusions. In this paper, a composite LESO-based backstepping control scheme
has been presented for a class of SISO uncertain systems. Compared to the typical LESO,
the extended state in this improved LESO structure does not contain the known linear
terms. This improved LESO can estimate simultaneously both the systems states and
the total disturbances. The compensation function of the extended state can change
the original system into the linear system. The proposed back-stepping method, which is
different from the nonlinear PID used during the typical ESO-based control design process,



LINEAR EXTENDED STATE OBSERVER BASED BACK-STEPPING CONTROL 1417
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FI1GURE 2. Tracking performance of LESO

can effectively stabilize the resulting linear system. The proposed control method is an
alternative way to solve the control problem for the SISO nonlinear plant model with
uncertainty. The simulation results illustrate the effectiveness of the proposed control
scheme.
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Appendix. Proof of Theorem 3.1

—e tay 1 0 0 0
—e 2ay 0 0 0 0
PI‘OOf: (I) Let (i — : : .. : : y \Il(t) — . € Rn+1.
—6_"an + b1 bg T bn 1 ;
—5*(”+1)an+1 0o -+ 0 0 h(t)

Consider the function H(Z,t) = ®Z(t) + U(t). As a consequence of assumptions A1l)-
A3), H(Z,t) is a Caratheodory function, that is, it is continuous in Z for all ¢ € R
and Lebesgue measurable for all Z € R"*! in t. Given a compact set E of R"*! and a
compact interval [a  b], there exists a Lebesgue integral function M(¢) : [ b] — R such
that ||H(Z,t)|| < M(t) for all (Z,t) € E x[a b]. Thus, given (Zy, o), E and [a b] such
that Zy € intE and ¢y € [a  b], there exists a continuous solution, Z(t) : [ty ¢] — R™*,
Z(ty) = Zy. (see [19]).

(IT) For every : = 1,2,...,n+ 1, set n; (t) = ;jﬁ?” n=(m ... 77n+1)T. It follows from
(3) and (4) that for every i € {1,2,...,n — 1}, n; satisfies

dn(t) d <x (et) — & (g))

dt  dt gntl—i
_ Tig (et) = Figa (et) . (ml (et) — iy (5t)>
872—1, 4 67’1,
= Nig1 (t) —aim (t),
for i = n,
dna. (t) _ d <xn (et) — Ty, (5t)>
dt dt €

6n

= Z bi (z; (et) — @ (1)) + (Tpy1 (€1) — Bpyy (61)) — ay (l'l (et) — iy (st)>

=Y b (1) 4 g (8) = aw (1)
=1
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and for i = n + 1, d"”;tl(t) = & (Tp41 (et) — Zpg1 (et)) = —anpam (t) + €h(t). We then
put all these equations together into the following differential equations satisfied by n; (t),
1=1,...,n+ 1.

(w0 — ) (1) —aymy (1),

a B (t) — agm (t),

(*)

%P—26W41w+mﬂw—%mw,

[ 22t = g, (8) + 2h(t)

Choose a Lyapunov candidate function V' = %nTPn. Evaluating the time derivative of
V on the solutions of (*), we obtain V = nT POy + en” PU(t) = —nTQn + enT PU(t) <
~Amin (@) 1011 +ep | Pl 1]l

Performing some manipulations gives

V< =i (Q) [Inll* +2p [P Inll < =21V + kreV'V (**)
where 1 = /’\\:ai((%)), ki = \/%p. It follows from (**) that V < —puV—puy/V (\/V - R+),

where R, = % > 0. Hence, as long as VvV > R, that is, V > RZ%, we have
—uV (\/V—RJr) < 0. Therefore, if V(ty) > R and V() > R for t > t, then
V < —uV, which implies that V(t) < exp(—pu(t — t3))V (to). Thus, we can find a finite
time t7(g) such that V(¢) < R% for t > to+ t(c), where t7(c) = %ln <%§f))

On the other hand, if V(ty) < R%, then V(t) < R2 for t > t,. Therefore, there
exists a finite time ¢7(¢) such that V(t) < R% for ¢t > ¢ + ts(¢). We also have that
+Amin (P) Inl|> < V(t) < R%. Using this fact coupled with the definition of R, we have
for t > to + t(e) that [|n]| < 2 ke — Ms Furthermore, we have for

/\min(P) 12 /\min(Q))‘mln( )
t >ty +tr(e) that

1

120 = (24 b 2)E = (Em () i (D)4t (e ()

< ((m N+ (02 (1) + - + (g (1) 2>§ 2 (NP

The proof of the theorem is complete.
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