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ABSTRACT. Weighted itemset databases are introduced to overcome the problem of ne-
glecting important itemsets when mining traditional databases for frequent itemsets based
only on their support. In this paper, we present a weighted sliding window filtering
(wSWF) algorithm for efficiently mining frequent weighted itemsets. The proposed al-
gorithm uses Diffsets strateqy for fast weighted support calculation. The main objective
of the proposed algorithm is to minimize the number of generated candidates and reduce
memory requirements without using any extra data structures. Experimental results show
that the proposed algorithm outperforms recently cited algorithms in terms of runtime and
memory requirements with a significant performance enhancement. In addition, the ex-
periments show that wSWF algorithm is scalable to run on large databases even at low
threshold values.

Keywords: Data mining, Frequent weighted itemsets, Sliding window filtering, Diffsets
strategy

1. Introduction. Frequent itemset mining (FIM) is one of the major tasks in the data
mining field that has been introduced and applied to different types of data, such as
transactional databases [1-3], temporal database [4,5], time series databases [6], utility
databases [7-9], and streaming databases [10]. It also has been applied in many application
areas, such as bioinformatics [11], web-usage analysis [12]. Over the past twenty years,
there are many presented FIM algorithms and techniques starting with Apriori algorithm
by [1]. There are also different techniques appearing like incremental mining [13,14], and
interactive mining [15,16].

The main problem with FIM is that it is interested only in itemset frequency. However,
some items are infrequent but more significant and important than frequent ones. For
example, in a market analysis, furniture is not a frequent item in sales, but it produces
a higher profit than some frequent items like tea and sugar. Therefore, in some applica-
tions, the benefits associated with the item (e.g., profit, cost or weight value) are more
interesting and require extracting the relative benefits between these items. To overcome
this problem, weighted association rule’s mining was introduced to consider the items’
weights in transactional databases. Ramkumar et al. [17] were the first to propose an
Apriori-based algorithm for frequent weighted itemset (FWI) mining with an application
to weighted association rules mining.
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Mining frequent weighted itemsets can be defined as finding the significant itemsets with
higher weights. The weight of each transaction is calculated based on the weights of its
items. This leads to “Weighted support” as a redefined measure of itemset weight based on
the weight of the transactions that contain this itemset. An itemset is considered frequent
weighted itemset (FWTI) if its weighted support is no less than a user-defined threshold
called minimum weighted support (minWS). Frequent weighted itemsets mining can be
applied to various applications such as market analysis [18,19], e-commerce management
[20] and some biomedical data analysis [21].

Existing studies [22-25] adopt the trend of utilizing the traditional FIM approaches to
cope with mining frequent weighted itemsets. The main problem with these techniques
is that they produce a large number of candidates during mining process that requires a
huge block of memory and extra running time to check these candidates. This could be
worst when working with very large and dense databases or at low minWS thresholds.

To solve this issue, we proposed an effective algorithm for mining frequent weighted
itemsets from weighted transaction databases. The main contributions of this work are
summarized as follows.

1. A new algorithm, named weighted sliding window filtering (WSWF) is presented
for mining frequent weighted itemsets with efficient memory usage and enhanced
performance.

2. Both real and synthetic datasets are used in the experimental studies to compare the
performance of the proposed algorithm with recently cited algorithms. Experimen-
tal results show a significant performance enhancement in both running time and
memory usage aspects. In addition, the experiment shows that wSWF algorithm is
scalable to run on large databases even at low threshold values.

The rest of the paper is organized as follows. Section 2 has introduced some frequent
weighted itemset (FWI) preliminaries and definitions with recently cited related work.
The proposed wSWF algorithm is presented in detail in Section 3. Experimental results
and discussion are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries and Related Work.

2.1. Preliminaries. A weighted transaction database DB = {T},Ts, ..., T,,} contains a
set of transactions where each transaction 7, has a unique identifier called Transaction ID
(TID). I = {iy,i2,...,4,} is the set of all items in DB, where each item i) has a positive
weight wy. For example, consider the database presented in Table 1 that contains six
transactions and five items, and the weight of each item is shown in Table 2.

TABLE 1. Example of the transactional database DB

TID | Transaction | tw
T A, C,D,E |0.28

T, B,C, E 0.36
T3 A B, E 0.43
T A C,D 0.30

Ts | A, B,C,E |0.40
Ts A, 0.40

w\.
U\.
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TABLE 2. The weights table of items in DB

Ttem | A | B|]C|D]|BE
Weight | 0.5 | 0.6 0.3 | 0.1] 0.2

Definition 2.1. Transaction weight of a transaction T, with N, items is denoted as tw(T},)
and defined as:
Zz‘keTp Wk

N,

p

tw(T,) = (1)

For example, from Tables 1 and 2, the transaction weight of 75 that contains 3 items
(B, C and E) is calculated as tw(7T,) = (0.6 + 0.3 + 0.2)/3 = 0.36. Table 1 shows the
transaction weight values of all the transactions in example DB.

Definition 2.2. Transaction ID list of an itemset X denoted as TID(X), is the set of
all transactions IDs that contain X and |TID(X)| is the number of transactions that
contains X in the database [26].

Definition 2.3. The weighted support of an itemset X is denoted as ws(X) and defined

as:
ZTpeTID(X) tw(T,)
ws(X) =
ZTPEDB tw(T,)

Definition 2.4. An itemset is called a frequent weighted itemset (FWI) if its weighted
support is no less than a user-defined minimum weighted support value denoted as minWS.
Otherwise, it is called rare or infrequent weighted itemset.

For example, for a given itemset X = {AB}, TID(X) = {13, T5,Ts}, then ws(X) =
(0.43 4+ 0.40 4 0.40)/2.17 &~ 0.56. If minWS threshold is set to 0.4, then X is a frequent
weighted itemset.

Problem Statement. Given a transactional database DB with a pre-specified weight
wy value for each distinct item 7, in DB and a user-defined minimum weighted support
value denoted as minWS, the problem of mining frequent weighted itemsets from DB is
to discover all the itemsets with weighted support values not less than minWS threshold.

(2)

Lemma 2.1. Traditional frequent itemset mining is a special case of frequent weighted
itemset mining when all the items have the same weight.

Proof: Let all the items in the database have equal weight value, i.e., w; = 1 for each
item ¢, in DB. Then:

ZikETp W ZikETp 1 N,

tw(T,) = L2 -1, VI,e DB
U)( P) Np Np Np ) p €
Moreover, the weighted support for a given itemset X is:
tw(T; TID(X
ws(X) = Y oreripx) tw(Ty) | (X _ support(X)

ZTpeDB tw(T,) |DB]

For example, assuming that all the items in Table 2 have the same weight value equal
to 1, then the weight of transaction T5 is calculated as tw(T3) = (1+1+1)/3 = 1. All
the transactions in the database will have the same transaction weight value (equal to
1). The weighted support ws(AB) = (1 + 1+ 1)/6 = 0.5, which equals the traditional
support value that considers the frequency of the itemset in the database.
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Property 2.1 (Downward Closure Property). For any itemset X, if X is an FWI, any
subset of X is an FWI also.
Proof: Let X be a superset of Y and X is an FWI, i.e., ws(X) > min W'S.
if Y C X, then TID(X) C TID(Y)

= Yrerioy) t0(T) 2 Xor errpx) tw(Th)

> m,erin(y) tw(Ty) Y1, eripx) tw(Tp)
- Yryepptw(Ty) = > r,epn tw(Tp) ij(Y)ZwS(X)

= ws(Y) > ws(X) > minWS =Y is an FWI

For example, in the example database shown in Table 1, at minWS = 0.4, itemset
{AB} is an FWI because ws({AB}) = 0.56. The sub-itemsets {A} and {B} are also
FWIs because their weighted support is 0.83 and 0.73 respectively.

2.2. Related work. Frequent weighted itemset mining was issued to overcome the dis-
covery problem of frequent itemsets in the weighted transaction database. Ramkumar et
al. [17] introduced this problem, firstly, and proposed an Apriori-based algorithm for FWI
with an application to weighted association rules mining (WARM). Their proposed algo-
rithm, WIS, simply starts with level-1 candidates and uses Apriori candidate generation
technique to generate level-2 candidates and so on until no more candidates were found.
The main problem of this algorithm is that it generates a huge number of candidates
who required multiple database scans to calculate their weighted support leading to poor
performance.

Later, Tao et al. [22] proposed a model for weighted support measure and weighted
downward closure property. They presented WARM algorithm for weighted association
rule mining. The algorithm is based on the Apriori algorithm and the number of candi-
dates is maintained using the weighted downward closure property. Muyeba et al. [27]
adopted the same approach in their work of fuzzy weighted association rules mining to
reduce some steps in candidate generation phase.

Yun et al. [28] were interested in mining maximal weighted frequent patterns in trans-
action databases. They proposed MWFIM algorithm using a prefix-tree with descending
weight order to minimize search space and prune infrequent patterns. MWFIM algorithm
discovers all weighted frequent patterns, and then mines the maximal frequent pattern
from it. The pattern is considered maximal weighted frequent if it has no weighted fre-
quent superset.

Recently, Le et al. [23] proposed a new method for frequent weighted itemset mining
using WIT-trees, as an extension of IT-trees proposed by Zaki and Hsiao in [29]. The
original one, called WIT-FWI, simply used downward closure property for early pruning
and TID list notation for weighted support counting. Vo et al. [24] enhanced the perfor-
mance of WIT-FWT algorithm by utilizing some features in the ID list implementation
and presented WIT-FWI-MODIFY algorithm. Finally, they used Diffset strategy pro-
posed by Zaki and Gouda in [30] for fast support counting and memory space reduction
to present WIT-FWI-DIFF algorithm. The main problem of this method appears when
mining a large database with long transactions. In this case, the number of level-2 can-
didates is huge, i.e., for N distinct items, there are (N x (N — 1)/2) candidates, which is
high computationally expensive because the Diffset strategy is applied over TID lists for
each item.

In some applications, such as a fraud detection and statistical disclosure risk assessment,
of the census, the infrequent or rare weighted itemsets are more interesting than frequent
ones. Cagliero and Garza [31] were the first to address this problem and proposed two
algorithms for mining infrequent weighted itemsets, called MIWI, using a frequent pattern
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growth technique. They compared their performance with a traditional, non-weighted,
infrequent itemsets mining algorithms, called MINIT [32]. Their experimental studies
showed a great performance enhancement over MINIT algorithm because of the efficient
pruning strategy in FP-growth technique.

3. Mining Frequent Weighted Itemsets. In this section, we present the proposed
weighted sliding window filtering (wSWF) algorithm for efficient frequent weighted item-
sets mining. The proposed algorithm is based on two main techniques. The first is the
sliding window filtering technique which is used to generate the candidate weighted fre-
quent itemsets. The second technique is the Diffsets strategy, which is used for counting
weighted support of generated candidates. The first two subsections present a brief dis-
cussion about these two techniques. In the later section, the proposed wSWF algorithm
is illustrated with a detailed example.

3.1. Sliding window filtering. Lee et al. [33] introduced the technique of sliding-
window filtering (SWF) for incremental mining of association rules. The database is
partitioned into several parts, and SWF algorithm applied filtering threshold for each
part to handle generated level-2 candidates (denoted as C2) in each part. The filtering
threshold is based on the local support of the C'2 candidates in each part. The idea of
SWF is to reduce the number of C'2 that are generated from each part. C'2 candidates
are carried over from one part to the next one until all the database parts are processed.

The final C'2 candidates list is small and close to the frequent level-2 itemsets because
the filtering threshold is applied to all parts. This will enhance the overall mining process
in both running time and required memory because later candidates are generated based
on the small list of C'2 candidates.

3.2. Diffsets strategy. For fast support counting, each itemset is attached to a list of
transactions; it occurs in (denoted as TID list). Simply, the database is scanned once
to find a level-1 itemsets and their TID lists. For later levels, the itemsets in level k is
joined together to generate level k£ + 1 candidate itemsets. In the joint operation, the
TID list for the candidate itemset is derived by the intersection of the TID lists of its
parents. For example, from the database in Table 1, TID(A) = {T1,T3,Ty,T5,Ts} and
TID(B) = {T»,13,T5,Ts}, then TID(AB) = {T3,T5,Ts} as the intersection of TID(A)
and TID(B). The weighted support of each candidate itemset is calculated as illustrated
in Definition 2.3.

The main problem with this technique is the memory requirements, especially in the
large and dense databases in which the TID list of each item is very long, and the inter-
section operation requires more processing time.

Zaki and Gouda [30] proposed Diffsets strategy for fast support counting and minimum
memory usage. Diffset computes the difference set between two TID lists with the same
equivalence class which is much more less than the size of TID lists in large or dense
databases. Their proposed technique starts again by scanning the database and holds
TID list for level-1 itemsets. For next levels, the following definition is used to enhance
TID list notation.

Definition 3.1 (Itemset Diffset). Consider two itemsets PX and PY with size k that have
the same equivalence class {P}. The Diffset of their join PXY of size k + 1 is calculated
by:

TID(PX)—TID(PY), k=1

DIFF(PXY) = { DIFF(PY) — DIFF(PX), k> 1 (3)
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where 18 the set difference operator, i.e., A — B is the set of all items in A and not
in B. The weighted support of a given candidate itemset { PXY} is defined as:
ZTpeDIFF(PXY) tw(T,)

ZTpeDB tw(T,)
For example, letting itemset { AB} be a candidate itemset generated by joining itemsets

{A} and {B}, ie., P ={ }, X = {A} and Y = {B}, then ws({AB}) is calculated as
follows:

ws(PXY) = ws(PX) — (4)

TID(A) = {Th T37 T47 T57 TG}, TID(B) = {T27 T37 T57 TG}
DIFF(AB) = TID(A) — TID(B) = {Ty, T;}

ws{ABY) = ws(d) -SRI = 085 - L ~ 050

3.3. The proposed wSWF algorithm. The main objective of wSWF algorithm is to
reduce the memory usage, computation of weighted support and minimize the candidate
generation phase running time. This could be achieved by generating level-2 candidates
(C2) that are approximately close to frequent level-2 itemsets (FWI,). In the proposed
algorithm, the database is divided into some parts while each part is processed sequen-
tially. C'2 candidates are propagated and filtered from each part to the next one until all
the parts are processed. During mining step, Diffsets strategy is used to handle weighted
support counting of the generated candidates and minimize required memory usage. Fig-
ure 1 shows the algorithm steps in detail.

3.4. Illustrative example. Considering the database shown in Table 3 which is split into
two parts, we shall apply the wSWF algorithm at minimum weighted support min W.S =
0.4 to find frequent weighted itemsets.

TABLE 3. Example of the transactional database DB

TID | Transaction | tw TW
T A, C,D,E |0.28
T, B, C E 0.36 | TW(P,) = 1.07
Ty A, B, E 0.43
Ty A, C, D 0.30
Ts A, B, D 0.40

The algorithm starts by calculating the transaction weight (tw) of each transaction
using Equation (1). The total transaction weight for each part is calculated as:

TW(P,) = Z )+ Z “TW(R,) (5)
In the example database shown in Table 3, there are two parts P, and P,. Then:

TW(P)) = tw(Ty) + tw(Ty) + tw(T3) = 1.07, and
TW(P;) = tw(Ty) + tw(T5) + tw(Ts) + TW(Py) = 2.17

Note that total transaction weight of the database DB, denoted as TW (DB), is equal
to TW (P,) because part P, is the last part in the database. The transaction weight of each
part will be used to calculate the local weighted support threshold while the transaction
weight of the database will be used for the global weighted support threshold.

The algorithm processes each part (as in procedure ProcessPart(P,, TW)) to gen-
erate the local C'2 (denoted as C2,) list and merge it with the global C2 list (denoted



A WEIGHTED SLIDING WINDOW FILTERING ALGORITHM

PN DO WD

— == O
o= o

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Input:
DB = transactional database with M items split into N Parts
W; = weights for items (i = 1,2,..., M)
minWS = minimum weighted support threshold

Output:
The frequent weighted itemsets (FWT)

wSWF ()
Cl=C2=0,FWI =
Calculate TW
foreach part P, in DB, n=1,2,...,N
Call ProcessPart(P,,,TW)
foreach itemset X in C'1
if ws(X) > min WS« TW(DB) Then Add X to FW 1,
foreach itemset X in C'2
DIFF(X)=TID(X,)—TID(X;) // Equation (3), k=1

ws(X) = ws(Xy) — CalculateW S(DIFF (X)) // Equation (4)

if ws(X) > min WS« TW(DB) Then
Add X to FW I,
Call CandidateGeneration(FW I3)

ProcessPart(P,,,TW)
C2,=10
foreach transaction 7" in P,
foreach item X; in T
C1X;|+ =TW(T)
Add ID(T) to TID(X;)
foreach item X; in T', j > 1
Add ID(T) to TID(X})
foreach itemset A in C2,
if ws(C2,[A]) > min WS« TW(P,) Then
if A € C2 Then
ws(C2[A]) = ws(C2[A]) + ws(C2,[A])
else Add A to C2

CandidateGeneration(FW I},)
FWliy =10
foreach itemset X; in FW I,
foreach itemset X; in FW I, j > 1
if Prefiz(X;) = Prefiz(X;) Then
Y=X;,U Xj
DIFF(Y) = DIFF(X;) — DIFF(X;) // Equation (3)
ws(Y) = ws(X;) — CalculateW S(DIFF(Y))
if ws(Y) > min WS «TW(DB)
AddY to FW I,
it FWIiq # 0 Then
Call CandidateGeneration(FW I}, 1)

FI1GURE 1. The proposed wSWF algorithm
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as C2). For example, in part P;, the first transaction {A,C, D, E} is scanned. For item
{A}, C1(A) is updated to be 0.28 and TID(A) = {T}. In the inner loop in lines 18 to
20, the algorithm passes next items to generate candidate C'2;. In this case, there are
three candidates, { AC, AD, AE'} each one with weighted support equal to 0.28. The same
is applied to the rest of the items in the first transaction. After the whole transaction
is processed, three more candidates {C'D,CFE, DE} are added to C2;. The algorithm
continues to process all the transactions in part P;, updates the support and the 71D list
of the candidate itemsets in C'1, and produces the final candidate C'2; list for this part.

After all the transactions in part, P; is being processed, and the algorithm checks the
itemsets in C2; and adds the frequent ones (according to current part TW) to C2, or
updates its weighted support if it already exists in C'2 in lines 21 to 24. For example,
the support of all the candidates in C'2; is checked against the local threshold of part P,
which is min WS« TW(P;) = 0.4%1.07 = 0.43. Only {AB, AE, BE and CE} are moved
to C'2 while the others are removed because their weighted support is less than the local
threshold.

The algorithm continues with processing the transactions in part P, and updates the
candidates in C'1 with updated TID lists and generates the candidate itemsets in C'2,
in lines 13 to 20. The support of all the candidates in C'2, is checked against the local
threshold of part P, which is min WS « TW(P,) = 0.4 % 2.17 = 0.87. If the candidate
itemset is found in C'2, then update its weighted support, otherwise add it to C2. For
example, itemset { AB} already exists in C'2 after processing part P; and appears in C'2s,
so its weighted support is updated to be 0.43 4+ 0.8 = 1.23. This is also applied to {AE},
{BE} and {CE} itemsets. Figure 2 shows the detailed steps of processing parts P; and
P, in the example database.

Processing part P1
C2, C2
Itemset | support Itemset | start | support
{AC} 0.28 {AE} 1 0.71
{AD} 0.28 {CE} 1 0.64
{AE} 0.71 {BE} 1 0.79
{CD} 0.28 ==>| {AB} 1 0.43
{CE} 0.64
{DE} 0.28
{BC} 0.36
{BE} 0.79
{AB} 043
Processing part P2
C2, C2
Itemset | support Itemset | start | support
{AC} 0.7 {AE} 1 1.11
{AD} 0.7 {CE} 1 1.04
{CD} 03 {BE} 1 1.19
*{AB} 0.8 == | {AB} 1 1.23
*{AE} 0.4 {AC} 2 0.7
{BC} 0.4 {AD} 2 0.7
*{BE} 0.4
*{CE} 0.4
{BD} 0.4

FIGURE 2. Processing DB parts in wSWEF algorithm
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After processing all parts, there are five candidates in C'1 with their weighted support
and TID list as shown in Table 4. The global minimum weighted support threshold is
calculated as min WS « TW(DB) = 0.4 % 2.17 = 0.87. The algorithm checks the support
of the candidate itemsets in C'l and adds the ones with support greater than or equal
to 0.87 to the output frequent weighted itemsets (FWI) list in lines 5 and 6. As shown
in Table 4, all the itemsets have support greater than 0.87, so all the candidates in C'1
candidates are frequent.

TABLE 4. C1 candidates and their weighted support

Itemset TID List Weighted Support
A {11, Ty, Ty, Ts, Ts} 1.81
B {T,, Ty, Ty, Ts} 1.60
C {1y, Ty, Ty, T5} 1.34
D {Ty, Ty, Ts} 0.97
E {1, Ty, T3, T5} 1.47

As shown in Figure 2, there are six candidates in C'2 after processing part P,. The
algorithm calculates the diffsets of these candidates using Equation (3) with £ = 1 to
calculate their actual weighted support using Equation (4), and then adds the frequent
ones to F'W I, for candidate generation step in lines 7 to 11. For example, consider
the candidate itemset {AC}, DIFF(AC) = TID(A) — TID(C) = {11, T3, T4, T5, Ts } —
{Tl,TQ,T4,T5} = {Tg,T(j}. Then ws(AC’) = ws(A) - ZTpeDIFF(AC’) tw(Tp) = 1.81 —
(0.43 +0.4) = 0.98, which is > 0.87, {AC'} is added to FW I, itemsets.

wSWEF algorithm generated only six C'2 candidates, while WIT-based algorithms will
produce 10 candidates because there are five frequent levels-1 itemsets. Table 5 shows
that all the generated C2 candidates by wSWF algorithm are frequent itemsets (FWW Iy)
after calculating their weighted support.

TABLE 5. (2 candidate itemsets

C2 FWI,
Itemset | Diffset | ws Itemset | ws
{AB} |{T1, T,}|1.23 {AB} |1.23
{AC} | {Ts, Ts} | 0.97 {AC} ]0.97
{AD} [ {T3, T} | 097 | = | {AD} ]0.97
{AE} [ {Ty, Ts} | 1.11 {AE} |1.11
{BE} {Ts} 1.19 {BE} |1.19
{CFE} {T,} 1.04 {CE} ]1.04

In candidates generation step in lines 25 to 35, the algorithm joins the frequent itemsets
with size k to generate candidates of size (k 4+ 1). Only the itemsets that have the same
prefix can be joined together to generate the new candidate itemset. The Diffsets of
the new candidate itemset is calculated using Equation (3) with £ > 1 and its weighted
support is calculated using Equation (4). If this candidate is found to be frequent, then
it is added to FW I, otherwise, it is removed. This process is repeated until no new
candidates are generated.

Table 6 shows the detailed steps for candidate generation phase for the F'W I, itemsets
shown in Table 5. Only four frequent itemsets { AB, AC, AD, AE} can be joined together
because they have the same prefix {A}. The remaining candidates { BE, CE} do not share
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any common prefix with any other FW I, itemsets so they are neglected during candidate
generation phase. For example, when X; = {AB} and X; = {AC} are joined together, a
new candidate Y = { ABC'} is generated in line 29. The Diffset DIF F(Y) is calculated by
DIFF(X;) — DIFF(X;) = DIFF(AC) — DIFF(AB) = {Ty, Ts} — {T1, T} = {T3, Ts}.
The weighted support ws(Y) = ws(X;) = rpcprrp) tw(1p) = 1.23—(0.43+0.4) = 0.4,
which is less than 0.87, so { ABC'} is not frequent and will not be added to FWW I3 itemsets.

The support of the generated candidates is checked against a global threshold (0.87)
but no one satisfies this threshold. Because F'W I3 does not contain any frequent weighted
itemsets, the algorithm stops running and produces the output FWlis as {A}, {B}, {C},
[D}, {E}, {AB}, {AC}, {AD}, {AE}, {BE}, {CE}.

TABLE 6. Example of the candidate generation phase

Itemset Candidate | Diffset ws
{AC} {ABC} {Ts, Ts} | 1.23 — (0.43 + 0.4) = 0.40
{AB} {AD} {ABD} {Ts, Ts} | 1.23 — (0.43 + 0.4) = 0.40
{AE} {ABE} {Ts} 1.23 — (0.4) = 0.83
{AD} {ACD} {Ts} 0.97 — (0.4) = 0.57
UCY aEr T acey | {10 0.97 — (0.3) = 0.67
{AD} | {AE} {ADE} {T,, Ts} 0.97 — (0.7) = 0.27

4. Experimental Results. Some experiments are performed to evaluate the perfor-
mance of the proposed wSWF algorithm in comparison with recently cited FWI algo-
rithms presented in [24]. The comparisons are interested in different aspects, including
algorithm running time, memory usage and number of generated C'2 itemsets. In addi-
tion, the scalability of the proposed algorithm is tested with respect to variable database
sizes. All the algorithms are implemented using Visual C++ 2008 Express Edition on
Windows 7 operating systems with 2.3 GHz PC and 3GB memory.

4.1. Datasets. Five real datasets (Chess, Mushroom, Connect, Accidents and BMS-
POS) are used in the experiments. These real datasets are obtained from frequent itemset
mining dataset repository [34]. These datasets do not include the weight values of each
item. We generated random weight value for each item ranging from 1 to 10 as in the
previously published work [35,36].

Table 7 shows the statistical information about the datasets used in the experiments.
For each dataset, it shows the number of transactions (# Trans), number of distinct items
(#Items) and average items per transaction. This information gives a clear view of the
density of the dataset. For example, Chess dataset has 75 distinct items while each
transaction contains about 37 items, which means about 50% of the items are in every
transaction because Chess dataset is a very dense database. BMS-POS dataset is an
example of sparse datasets because it contains about 515K transactions and 1.6K distinct
items but each transaction holds only 6.5 items on average.

Table 8 summarizes the experimental results with respect to the number of output
frequent weighted itemsets (#FWIs) for each dataset with a different minWS threshold.
The results presented in Table 8 show that the number of frequent weighted itemsets of
BMS-POS is small, for Accidents and Mushroom are medium, and for Chess and Connect
are large. For example, BMS-POS database produces about 130 F'W1s while Accidents and
Chess produce about 1,400 and 13,800 FWIs respectively. In addition, we can notice that
Connect dataset is considered very sensitive to minWS threshold because when minWS
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TABLE 7. Frequent itemsets mining datasets [34]

Dataset | #Trans | #Items | Avg. Items per Trans
Chess 3,196 75 37
Mushroom | 8,124 119 23
Connect 67,557 129 43
Accidents | 340,183 468 33.8
BMS-POS | 515,597 1,656 6.5

TABLE 8. Number of FW s for each database

Dataset | minWS (%) | #FWls
10 15
8 18
BMS-POS 5 53
3 131
95 15
) 90 71
Accidents 33 314
85 1,412
60 45
50 141
Mushroom 40 485
30 2,223
90 402
85 1,705
Chess 80 5,379
75 13,845
96 1,209
4 1739
Connect 99 12,823
90 30,079

changes slightly from 96% to 90%, #FWIs increased dramatically from 1209 to 30079
(about 25 times).

4.2. Runtime and memory usage analysis. In this experiment, the performance of
wSWEF algorithm is compared with three recent algorithms (WIT-FWI, WIT-MODIFY
and WIT-DIFF) presented in [24]. The WIT-based algorithms use both WIT tree data
structure, to store and generate candidates, and TID list representation for weighted
support counting. The main problem of these algorithms is in the number of generated
candidates during mining operation. WIT-based algorithms generate huge number of
candidates which requires much memory space and also extra running time to compute
the weighted support of these candidates and remove the infrequent ones.

Figures 3(a)-7(a) show the measured running time (in seconds) for these algorithms and
the proposed wSWEF algorithm with different minWS threshold values. We also measured
the required memory usage for wSWF and WIT-DIFF algorithm only as it overcomes
other two algorithms in both running time and memory usage. Figures 3(b)-7(b) show
the memory usage comparison between wSWF and WIT-DIFF algorithms.
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In Figure 3(a), although BMS-POS dataset produces a small number of FWIs, the
mining process at minWS ranging from 10% to 3% requires long running time. For
example, in WIT-DIFF the running time ranges from 62 to 201 seconds while wSWF needs
about 8 to 55 seconds only with average speed-up ratio 80.3%. For memory usage, we
notice that WIT-DIFF requires huge memory to create WIT-Tree structure. In contrast,
the needed memory for wSWEF is very low because it stores only the FWIs that are
generated from the reduced list of candidates as shown in Figure 3(b). On average,
wSWF reduces more required memory than WIT-DIFF with about 90%.

BMS-POS Dataset BMS-POS Dataset
400
—h— WIT_FWI —a— WIT-DIFF

—¥— WIT_MODIFY] e WSWF

10000 o |——WIT_DIFF
] [—#— wSWF 100 4
] = » — =

1000 o

1004 .~/.

(sec.)

200

Memory Usage (MB)

Running Time

'E

minW$ (%) minWs (%)
(a) (b)

FiGURE 3. Runtime comparison and memory usage - BMS-POS dataset

For Accidents dataset shown in Figure 4(a), the running times at 95% and 90% are
the same, and there is no big difference in #FWIs. When minWS changed to 85%, the
number of F'Wls increased to 1412 that required much time to extract from the database.
In all minWS values, wSWF algorithms overcome WIT-DIFF with a reasonable average
speed-up ratio about 50%. In Figure 5(a), at 60% minWS, WIT-DIFF requires 8 seconds
to extract FWIs while wSWF requires only 0.5 seconds. When the minWS reaches 30%,
wSWEF and WIT-DIFF need 38 and 86 seconds respectively. The average speed-up ratio
over all minWS values is about 75%. As shown in Figures 4(b) and 5(b), wSWF memory
requirements are relative to the number of generated FWIs. For WIT-DIFF algorithm,
the required memory is an issue, especially at low minWS values. When the number of
FWIs increased, the number of nodes in WIT-Tree also increased, which requires more
memory to store. wSWEF achieves a high reduction ratio in both Accidents and Mushroom
datasets with about 79% and 78% respectively.

For Chess dataset, wSWF runtime is only 0.3 and 1.1 seconds at min WS 90% and
75% respectively. On the other hand, WIT-DIFF needs about 3.5 and 11.4 seconds in the
same min WS values as shown in Figure 6(a). On average, the speed-up ratio of wSWF
is about 83%. This occurs because Chess dataset is very dense, and the length of the
generated F'WIs is long. In this case, extra time is required to construct WIT-Tree and
extract FWIs from it. This also is reflected in memory usage as shown in Figure 6(b). We
can notice the big gap in memory requirements between WIT-DIFF and wSWEF because
the extra memory is required to store WIT-Tree.

Finally, Connect dataset as we stated earlier is very sensitive to minWS value. This also
can be noticed in its runtime and memory usage analysis shown in Figures 7(a) and 7(b).
At high minWS values, such as 96% and 94%, the performances of wSWF and WIT-DIFF
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FIGURE 4. Runtime comparison and memory usage — Accidents dataset
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FIGURE 5. Runtime comparison and memory usage — Mushroom dataset

algorithms are reasonable for the small FWIs number. When the FWIs increased by 92%
and 90%, WIT-DIFF needs more time and memory to handle this huge number of FWIs.
In the same minWS values, wSWF shows good performance and produces the same FWIs
in small runtime compared to WIT-DIFF runtime. For Connect dataset, wSWEF achieves
an average speed-up ratio about 58% with 70% less memory than WIT-DIFF.

These comparisons show that wSWF algorithm outperforms other WIT-based algo-
rithms in generating F'WIs with different database characteristics and different minWS
values. They also show that WIT-based algorithms suffer from high memory usage due to
the used tree date structure. wSWF does not have this issue because there are no extra
data structures used. This leads to achieving small running time for wSWF compared
with other algorithms, especially for the datasets that produce large numbers of FWIs.

4.3. Number of C2 candidates. One of the main goals of wSWF algorithm is to use
sliding window filtering technique to reduce the generated level-2 (C2) candidates. To
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FIGURE 6. Runtime comparison and memory usage — Chess dataset
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FIGURE 7. Runtime comparison and memory usage — Connect dataset

make sure that this goal is achieved, the number of C'2 candidates is counted for both
wSWEF and WIT-DIFF algorithms for all datasets and plotted in Figures 8-12.

As shown in Figures 8-12, wSWF actually generated a reduced set of C2 candidates in
all the datasets with different minWS values. The number of C2 candidates generated by
wSWEF algorithm is affected by the characteristics of the database. Sparse datasets, such
as BMS-POS, wSWF reduce the number of C?2 efficiently especially at low minWS values.
For example, at 3% minWS, wSWF generates 65 candidates while WIT-DIFF generates
about 950 candidates for BMS-POS dataset.

In the other datasets, wSWEF also reduces the generated C2 candidates than WIT-
DIFF but with a smaller reduction ratio than BMS-POS dataset. This is because these
datasets are dense, and most of C'2 candidates are frequent itemsets. wSWEF' achieves a
good reduction ratio in the number of C'2 candidates with about 26%, 52%, 24% and 18%
for Accidents, Mushroom, Chess and Connect datasets respectively on average.
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4.4. Scalability. In this experiment, the scalability of the proposed algorithm was ex-
amined with respect to different database sizes. The IBM synthetic data generator [37]
is used to generate three synthetic datasets with 10K, 50K and 100K transactions. The
runtime of wSWF algorithm is measured at two minWS values, 1% and 0.5%, as shown
in Figure 13.

Scalability

—— 1%
—8— 0.5%

)

Running Time (Sec.

T T T T T T T
0 10 20 30 40 50 B0 70 80 90 100 110
No. of Transactions (K)

Ficure 13. wSWF algorithm scalability

We can notice that wSWEF algorithm is scalable and its running time is nearly linear
with respect to database size. For example, at 1% minWS, when moving from 10K to 50K
transactions, the running time increased by 4 times. In addition, the runtime for 100K
database is about 4.5 times of runtime for 50K transactions. At 0.5% minWS, which is
very small value, wSWF' runtime increased by 3.7 times when size increased from 10K to
50K, but needs about 12 times when database size is 100K because the number of FWIs
increased significantly.

4.5. Comparison summary. In this section, we present a brief summary for the com-
parison between wSWF algorithm and WIT-based algorithms [24]. As shown in Table 9,
wSWEF running time scalability is linear with respect to database size, while WIT-based
algorithms tend to require exponential time especially with large and dense databases.
The number of generated candidates is one of the main aspects of this comparison. wSWF
utilizes sliding window filtering technique in order to reduce the total number of gener-
ated candidates while WIT-based algorithms produce a very large set of candidates. The
memory requirements are greatly affected by the number of candidates. This leads to the
fact that wSWF requires small memory space while WIT-based algorithms require large
amounts of memory space to hold the large number of generated candidates. The shown
values and percentages are calculated for the real dataset results at the lowest minWS
value in each database.

TABLE 9. Comparison summary

wSWF Algorithm | WIT-based Algorithms [24]
Scalability Linear Exponential
Memory Requirements Small (102MB) Large (334MB)

wSWEF algorithm generates 42% less candidates

Generated Candidates than WIT-based algorithms on average.
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5. Conclusions. Weighted databases are transactional databases in which different weights
are assigned to different items in the transaction. Frequent weighted itemset (FWI) min-
ing is to maintain and discover frequent itemsets in weighted databases. Recent algorithms
face computation problems due to the large number of generated candidates and the pro-
cess of computing weighted support for these candidates. In this paper, we proposed
a weighted sliding window filtering (wSWF) algorithm that overcomes these problems.
The proposed algorithm reduced the number of generated candidates by using a sliding
window filtering technique and optimized the weighted support counting process by using
Diffsets strategy.

The results of the proposed wSWEF algorithm have shown a significant performance
improvement relative to recently cited FWI mining algorithms in three main aspects:
running time, memory requirements and number of generated candidates. The main key
point of this improvement is the number of generated candidate. wSWF algorithm pro-
duces the same FWIs that WIT-based algorithms produce but with 42% less candidates.
This reduction affects directly both running time and required memory space. For run-
ning time, wSWF achieves 75% speed-up ratio on average than WIT-DIFF algorithm.
Besides, the required memory space is also reduced by one-third on average; wSWEF al-
gorithm required about 102MB while WIT-based algorithms required about 334MB at
the lowest minWS value in each database. Large synthetic weighted datasets were used
to test the scalability of the wSWF algorithm, which is found to be linear even at small
minWS thresholds.

Incremental mining was introduced to overcome the problem of updated database in
which new transactions are added to the original database after the mining results [14-
16]. For the future work, we shall study how to adapt wSWF algorithm to deal with the
incremental mining problem in weighted databases.
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