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ABSTRACT. In this paper, generalized orthogonal matching pursuit for distributed com-
pressed sensing (DCS-GOMP) is proposed. As its name, the algorithm is based on or-
thogonal matching pursuit (OMP), but not need sparsity as prior knowledge and multiple
indices are identified at each iteration for recovery. These make it a potential candidate
for many practical applications, where the numbers of non-zero (significant) coefficients
of signals are not available. Numerical experiments are conducted to demonstrate the
validity and high performance of the proposed algorithm, compared with other existing
DCS algorithms.
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1. Introduction. Compressed sensing (CS) [1], a paradigm to acquire sparse signals at
a rate significantly below Nyquist rate, has attracted increasing interests in recent years.
The major principle of CS is that sparse or compressible signals with a few significant
samples can be recovered using a small number of linearly transformed measurements
[2]. Assume that x is a signal of N-dimension, it is called K-sparse if x can be well
represented by K (< N) coefficients under linear transformations. In CS theory, signal
x can be reconstructed through the linear measurement system as follows:

y = &x (1)

where y € RM*! is the M-dimensional measurement (M < N), and ® is an M x N
matrix called measurement matrix. The goal of CS is to reconstruct x via y. The CS
framework is interesting since it indicates that x can be precisely recovered from only
M = O (Klog N) measurements, implying the potential of significant cost reduction
in digital data acquisition [3]. Meanwhile, for recovering x perfectly, it requires the
measurement matrix with low coherence [1-3]. Gaussian matrices have been proved to
satisfy the condition of coherence.

A straightforward approach for recovering x is to translate this problem into /g-norm
minimization problem as follows:

min ||x||, st. ®x=y (2)
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Unfortunately, solving [p-norm minimization problem is NP-hard since it contains an
exhaustive search over all possible solutions, which cannot be applied for practical ap-
plications [4,5]. Hence, much research has been conducted to investigate faster recovery
algorithms with moderate complexity. Donoho and Candes et al. proposed that a much
easier [;-norm optimization, based on linear programming (LP) techniques, is equivalent
to the ly-norm optimization, i.e.,

min||x[|, st. ®x=y <& min|x|, st Px=y (3)

if ® satisfies the so-called restricted isometry property (RIP) with a constant parameter
[1,4-6]. Although the /;-norm optimization technique can provide nearly optimal solution
[4,5], its complexity is still a thorny problem especially for large scale applications; for
instance, the complexity of LP algorithms based on interior point methods is O(M?N3/2)
[7].

Due to the low complexity, several recovery algorithms based on iterative greedy pur-
suit have been researched widely in recent years, for instance, orthogonal matching pur-
suit (OMP) [8], improved backward optimized orthogonal matching pursuit algorithm
(IBOOMP) [9], regularized OMP (ROMP) [10], compressive sampling matching pur-
suit (CoSaMP) [11], subspace pursuit (SP) [12] and sparsity adaptive matching pursuit
(SAMP) [13].

In the past few years, researchers realize that the CS theory which is mainly designed to
exploit intra-signal structures at a single sensor is not sufficient for practical applications,
such as wireless sensor network (WSN). Hence, distributed compressed sensing (DCS), a
new distributed coding algorithm for multi-signal ensembles that exploit both intra- and
inter-signal correlation structures was proposed [14]. The DCS theory depends on the
concept of joint sparsity of a signal ensemble. In a typical DCS scenario, several sensors
measure signals which are each individually sparse and also correlated from sensor to
sensor. Each sensor independently encodes its signal and then transmits just a number
of obtained coefficients to a collection point. Under some right conditions, all of the
signals can be jointly recovered by decoding at the collection point. Some researches are
conducted to interpret joint sparsity for DCS. In [15] two different joint sparse models
(JSM) which can be applied in different scenarios are defined to demonstrate various types
of connections between these sparse signals.

Enlightened by algorithms for CS, some DCS algorithms were proposed. For instance,
based on [;-minimization technique, linear program is used to jointly recover sparse signals
[16]. Additionally, some iterative greedy pursuit algorithms are developed to recover sig-
nals jointly. Simultaneous orthogonal matching pursuit (SOMP) [17] was proposed for the
multi-signal joint sensing and recovery. Five greedy algorithms for DCS were proposed in
[18], including simultaneous iterative hard thresholding (SIHT), simultaneous normalized
[HT (SNIHT), simultaneous hard thresholding pursuit (SHTP), simultaneous normalized
HTP (SNHTP), simultaneous CoSaMP (SCoSaMP). Inspired by SP algorithm, Sundman
et al. develop it for DCS cases to jointly recover sparse signals [19], which is termed
as Joint-SP. Unfortunately, [18,19] need sparsity as the prior information, which is not
realistic in practical applications. On the other hand, the methods proposed in [14-17]
cannot deal with the DCS problem based on the model in [20], which can be seen as a
generalization over previously typical JSMs. As an improvement, SAMP for DCS (re-
ferred as DCS-SAMP) was proposed [20]. It has provable recovery accuracy as that of LP
optimization technique, and demonstrates low complexity comparable to that of OMP
methods.

In this paper a new iterative greedy algorithm is proposed to solve the DCS problem.
Enlightened by the generalized orthogonal matching pursuit (GOMP) [21], DCS-GOMP
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is conducted to reconstruct several input signals jointly without any prior information of
sparsity. Additionally, multiple indices are identified at each iteration of DCS-GOMP for
recovery. Following the same model in [20], common and individual support-sets are used
in this paper to characterize jointly sparse signals. The JSM we use is also called mixed
support-set model. For highlighting the advantages of DCS-GOMP, it is compared with
DCS-SAMP, Joint-OMP [19] and Joint-SP [19] through several numerical simulations, in
terms of the requirement of measurements and the robustness against sparsity. In order
to test the validity for practical application, a DCS problem of speech signals is solved
by DCS-GOMP and DCS-SAMP, respectively. And also, recovery of image is performed
by the proposed algorithm. The final results sufficiently demonstrate the application
potential of our algorithm.

The remainder of this paper is organized as follows. In Section 2, DCS and three dif-
ferent joint sparse models (JSMs) are introduced to exhibit different types of connections
between the sparse signals. Section 3 discusses the proposed algorithm in detail and pro-
vides some theoretical analysis of DCS-GOMP guaranteeing perfect recovery. Simulation
results which evaluate the performance of the proposed algorithm numerically are shown
in Section 4. Conclusions are stated in the end of this paper.

2. Distributed Compressed Sensing and Mixed Support-Set Model.

2.1. Distributed compressed sensing. The same DCS model of [20], which exploits
both intra- and inter-signal correlation structures, is considered here. That is

yj:@X]‘, (j:1,2,,L) (4)

where each signal x; € RV*%. For a signal sparse in certain transformed domain, there
exists a determined sparse basis ¥ by which x; can be sparsely represented by no more
than K (< N) coefficients. In case of ¥ = I, x; is termed as K-sparse signal in time
domain. The measurements y; are obtained by using the measurement matrix ® € RM*~
on x; through M linear combinations. Equation (4) can also be interpreted as matrix
form:

Y = X (5)
where X = (x1,Xs,...,%x) € RV*L represents the ensemble of K-sparse signals and Y =
(Y1,¥2,---,¥L) € RM*L ig the set of measurements. The goal of DCS is to simultaneously

reconstruct X from Y.

2.2. Mixed support-set model. Three existing joint sparsity models (JSMs) that ex-
ploit the interrelation between the sparse signals in Equation (4) are demonstrated below.
They are applied in different cases.

2.2.1. JSM-1: Common sparse supports model. In this model all signals are generated
from the same sparse set of basis vectors while with various coefficients [17]:

where B; is supported only on the same = C {1,2,...,N} with |Z] = K and K is
the sparsity of x;. That means all signals are K-sparse with same indices but different
coefficients.
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2.2.2. JSM-2: Sparse common component + innovations. In this model, all signals share
a common sparse component while each individual signal owns a sparse innovation com-
ponent [17], i.e.,

Xj:Z+Zj, (]:1,2,,L) (7)
where z = ¥4, ||B.]|, = K. and z; = ¥8;, ||B;]|, = K;. The Iy norm ||B]|, only counts
the number of nonzero entries in vector 8. Obviously, the K,-sparse signal z is common
to all of the x; (j =1,2,...,L). The signals z; are the unique components of the x; with
sparsity K.

2.2.3. JSM-3: Sparse common support + sparse independent innovation (mized support-
set). This model extends JSM-2 so that there is no restriction on the associated signal
values. That is, the common component is common only in the support set while nonzero
coefficients of the innovation parts and common parts are various among the signals [20].
JSM-3 can be interpreted as

X]‘:Cj—FZ]':‘I/(B]‘—f—O'j), (]:1,2,,L) (8)

The vector B; is, common among all signals, supported only on the same = C {1,2,..., N}
with |=| = K, where K, is the sparsity of ;. o is the innovation part coefficients vector
with the nonzero support cardinality K.

One can find that Equation (8) could be seen as a generalization over Equation (6)
and Equation (7). Assume each x; is K-sparsity, if the interrelation among them is
ignored, it roughly requires ¢ X K x L measurements to fully represent all of the signals
and L independent reconstruction procedures. In contrast, applying the mixed support-

L
set model, the DCS method requires only c - (KC + > Kj> measurements and only one
7=1

reconstruction procedure to recover the sparse signals simultaneously [20]. In this paper,
DCS-GOMP is proposed for JSM-3.

3. Generalized Distributed Orthogonal Matching Pursuit. Some notations used
in this paper are summarized below.

A™: the pseudo-inverse of matrix A.

A;: a submatrix of A which is composed of the columns of A with indices i € I.

x(I): a vector composed of the entries of vector x with indices i € I.

res’: the residue in the k-th iteration.

|A], 0o : taking co-norm of matrix A row by row.

Arg max(x, d) : select indices corresponding to d largest elements in vector x.

3.1. Algorithm description. The whole procedure of DCS-GOMP is described as fol-
lows.
Input: measurement matrix ®, measurement Y, the number of signals L, number of
indices selected at each iteration p.
Initialization: %; =0 (j =1,2,...,L),res® =Y, k=0,T" = &.
while [|res®)]| > ¢

v = H‘I)’res(k)H . C' = Argmax(v,p) (i.e., select indices corresponding to p

row—oo

largest elements in v)
k=k+1. TH=T®tDyC, res® =Y-&.n®},Y.
end
ﬁJ(F(k)) = q);—(k)y-j? 5\(]({17277]\[} _F(k)) =0.
In each iteration of DCS-GOMP, correlation between columns of ® and residual are
calculated and indices of the columns corresponding to p maximal correlation are found
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as the new entries of the estimated support set I'®*). New residual is established based on
I'®). Tterations stop only when the condition ||res*)||, < e holds true. Here ¢ is a very
small value; typically, it can be taken as 10~°. Finally, the estimates of nonzero entries of
the sparse signals x; (j = 1,2,..., L) are obtained by LS solution %;(I'®)) = &1, y;.

3.2. Recovery condition analysis of DCS-GOMP based on restricted isometry
property (RIP). In this section, the recovery conditions of DCS-GOMP are explored
based on RIP. Some useful lemmas are listed below.

Lemma 3.1. (Lemma 3 in [12]) If the sensing matriz satisfies the RIP of both orders M
and My, then 6y, < 0pg, for any My < Ms.

Lemma 3.2. (Proposition 3.1 in [11]) For I C €, if 6);; < 1 then for any x € R

(1= o) Ixl, < @)@ < (146 il )

<

Ixll, < |(@/@1) 'x

1
1
oy S g s (10)

||
Lemma 3.3. (Lemma 1 in [12]) Let I, I, C Q be two disjoint sets, if 01, 14r,] < 1, then

] = 0

, S Oinin [x[); (11)
holds for any x supported on I5.

For analyzing the RIP based condition of DCS-GOMP, firstly, the condition ensuring
a success at the initial iteration is discussed. Success is defined for at least one correct
index is found at the iteration. Then the condition ensuring the success in non-initial
iteration is explored.

3.2.1. Condition of successful recovery at the initial iteration. The following theorem is
the sufficient condition ensuring a success of DCS-GOMP at the initial iteration.

Theorem 3.1. Let x; (j = 1,2,...,L) be the sparse signals with support set @ and
p < |Q| = q, then the DCS-GOMP algorithm can successfully recover sparse signals X,
fromy; = ®x; at the initial iteration if

(12)

p+q \/7_'_1

Proof: Denote I'" as the set of p indices found at the initial iteration. That means
@;‘(1)}’]‘ are p largest entries in ‘I>'yj, SO

= max [ [ y,) (13)

where ¢, represents the b-th column of ®. Note that the average of ¢ correlation power
is no larger than the average of p-best correlation power, so

\/—H r()B’yH \/—|BaX‘/2| @5, ¥;)|
(14)

1 , 1 ,
= max oy’ > = Pb, Y =—H<I’ yH
|B=p\/|B|Z| ! \/|Q|é|< Il =75 1%eil,

beB

i
H <I>F(1) yi
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Using Lemma 3.2 and y; = ®¢x,(()) we have

p
|#rni], = £ |#erex@)], = \ B - s, (15)

On the other hand, if 'V N Q = @, from Lemma 3.3

| @10 @axi(@)]) < dpra il (16)

P
Opt 151l < \/5(1 = 09) lIxl, (17)

at least one correct index is found at the iteration. From Lemma 3.1, §;, < dp4q, thus
Equation (17) holds when

Py, ) >

That means if

p
Sosallll, < /20~ i) Il (18)
ie.,

Optq < \/74— ] (19)

As discussed above, I') contains at least one entry of @ at the initial iteration of DCS-
GOMP.

3.2.2. Success condition at non-initial iteration. The following contents reveal the success
condition of DCS-GOMP at non-initial iterations. To ensure success at (k + 1) iteration,
two bounds should be determined. The first is the upper bound 7, of the p-th largest

correlation in magnitude between resg-k) and columns indexed by F = Q\(I'®) U Q), i.e
the set of remaining incorrect indices. The second is the lower bound v, of the largest

correlation in magnitude between res§-k) and columns that indices contained in @ — I'®),

i.e., the set of remaining correct indices. Obviously, at least one correct index is found at
(k + 1)-th iteration if v; > 7,. The following lemmas demonstrate the two bounds.
, where (i) = arg max ‘<(ps,res(-k)>‘
L0(i—1)}

. (k)
$Po(i), Tes;
s:s€F\{0(1),0(2),-
so that T; are ordered in magnitude (1 > 1o > -+ ). Then, T, the p-th largest correlation

between res ) and {pi}icr at (k+1)-th iteration of DCS-GOMP has an upper bound of

5p(1+k pk+q—1 HXJQ r H2
(S et 2 .

where [ is denoted as the number of correct indices included in T'®).

Lemma 3.4. Let 7; =

The proof of Lemma 3.4 is similar to that of Lemma 3.6 in [21], except that the recovered

(k)

sparse signal and residual here are x; and res;”, respectively. Since the recovery process

is not finished yet, [ is smaller than ¢. That means, Q — I'®), the set containing the rest
correct indices is not empty. On the other hand, suppose newly found p indices are not
overlapping with previous ones, the number of indices in T™) is kp. After k successful

iterations, at least k correct indices are contained in I'®. Under this hypothesis we can
obtain I = |Q —TW| > k.

<909( )s resyc) >

where 0(i) = arg max
5:5€(Q—TF)\{0(1),0(2),....0(i—1)}

Lemma 3.5. Let v; =

)

¢s,res§-k)>‘ so that v; are ordered in magnitude
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(v1 > vy > -+ ). Then, vy, the largest correlation between res ) and {‘Pz}ze (Q-r() at
(k+1)-th iteration of DCS-GOMP has a lower bound of

\/(1 + 0q- (1 +5pk pk+q—1 HXJ Q- r H2
1— 0y — (21)
1 — Opr Vg —1
The proof of Lemma 3.5 is similar to that of Lemma 3.7 in [21], except that the recovered
sparse signal and residual here are x; and resg-k), respectively. Based on these two lemmas,
the condition guaranteeing success at (k+1)-th iteration is obtained.

Theorem 3.2. Suppose DCS-GOMP has run k iterations successfully for recovering x;,
then DCS-GOMP succeeds at the (k+1)-th iteration if

1
<7
Vaq+3

Proof: Comparing the constants k, [, p and ¢, there are two obvious inequalities:
1<k<l<gand1l < p < q. Note that pk < pq, ¢ — 1 < pq, pk +q — 1 < pqg and
p(1 + k) < pg. Using Lemma 3.1, we have 0,5 < Opg, 9g—1 < Opgy Ophrgi < Opg and
5p(1+k) < Opg-

As mentioned, the condition ensuring at least one correct index is found at the (k+1)
iteration is v; > 7,. From Lemma 3.4 and Lemma 3.5,

Op(1+k)Opk-+q—1 HXJ Q—TI% H2
Tp < <5p+ql+ - 15, )
AN @
s o O \I@-TO, 5pq [ (@ = TW),
P (1 - 5PQ)

VP — Opg) N
>Q%1—WH%MHw»mzu&Qrwm
> —

(22)

1-0 Ji=1
(1_5 Ve ) (@ — T

v

1— 6, Vai—1 (24)
= 1 — 30, HXJ'(Q B F(k))Hz
1 — 0pq Vag—1

Following Equation (23) and Equation (24), the sufficient condition guaranteeing v, > 7,

is
1 — 3dp, HXJ'(Q_F(k))H2 Opq HXJ'(Q_F(k))H2

> (25)
1 — dpq Vq—1 (1 — dpq) VP
ie.,
5,0 < ! (26)
" (¢—1)/p+3
Note that ¢ — I < pg, Equation (26) holds true if
1 1
< = (27)
Vpa/p+3  Vai+3

Thus, Theorem 3.2 is proved.
As mentioned above, the sufficient recovery conditions of DCS-GOMP at initial itera-
tion and non-initial iteration are established, respectively.
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4. Numerical Experiments. In this section, performance of DCS-GOMP is compared
with that of DCS-SAMP, Joint-OMP and Joint-SP, in terms of the requirement for mea-
surements, the robustness against sparsity. And also, the relationship between the number
of selected indices p and successful recovery is investigated. Note that all the four algo-
rithms can be applied in the model JSM-3; however, Joint-SP and Joint-OMP require
sparsity as prior information. Algorithms proposed by [17] and [18] are only applicable to
JSM-1, so they are not discussed in this section. In the end of this section, DCS-GOMP
is used to recover speech signals and a sparse image, respectively. These demonstrate its
application prospect.

To evaluate the performance of DCS-GOMP, L input signals whose nonzero coefficients
are random Gaussian values are generated. For each signal x;, the common components
¢; and independent innovation components z; are assumed to be sparse with sparsity K,
and Kj, respectively. For convenience, Kj; is assumed to be equal for all the signals and
the measurement matrix ® is taken as an M x N random Gaussian matrix.

4.1. Comparisons among DCS-GOMP, DCS-SAMP, Joint-OMP and Joint-SP.

4.1.1. Requirement for measurements for the four algorithms. This experiment investi-
gates the probability of success recovery vs. the number of measurements. DCS-SAMP,
Joint-OMP, Joint-SP and DCS-GOMP are used respectively to recover signals with N =
200, K, = 15, K; = 6 and L = 5. The number of measurements A is a changed pa-
rameter increased from 55 to 100. 100 trials are performed to test the stability of the
four algorithms against measurements. The probability of success is represented by the
frequency of success. In a trial, “success” is defined for each prec(j) (j = 1,2,...,L) is
more than 10°, where prec(j) is defined as follows:

prec(j):| <3l (Gj=1,2,...,L) (28)

% = Xll;

Obviously, the larger prec(j) are, the better the performance of DCS-GOMP is. The
experiment result is shown in Figure 1.

The four curves with red circle, green asterisk, blue triangle and black plus represent
the probability curves of success for DCS-GOMP, Joint-SP, DCS-SAMP and Joint-OMP,
respectively. From Figure 1, for all the four algorithms, the probability of success increased
with the increase of M. The probability curve of Joint-OMP was very close to that of
Joint-SP. Performance of DCS-GOMP was better than that of Joint-OMP and Joint-SP
when M > 60. For DCS-GOMP, the probability of success reached 0.9 when M = 70.
Joint-SP and Joint-OMP roughly needed 75 measurements to ensure the probability of
success reaching 0.9. Only requiring M = 75, the probability of success of DCS-GOMP
reached 1. Among the four algorithms, DCS-SAMP was the worst for its high demand for
M. Actually, its success probability roughly stayed at zero when M was no more than 75.
To reach the probability of 0.9, DCS-SAMP required 90 measurements in this experiment.
From what had been shown above, DCS-GOMP requires fewer measurements for recovery,
compared with Joint-OMP, Joint-SP and DCS-SAMP.

4.1.2. Robustness against sparsity for four algorithms. Since DCS-GOMP is based on
JSM-3, the relationship between sparsity and the performance of algorithm is explored
here. In this experiment, DCS-SAMP, Joint-SP and Joint-OMP are still compared with
DCS-GOMP.

Firstly, the sparsity of common components was varied in trials to investigate the
performance of the four algorithms. 100 trials were performed with N = 200, M = 90,
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Probability of Success
e o o
P o @

e
w
:

—5— DCS-GOMP

—— DCS-SAMP
Joint-SP

. | —+— Joint-OMP

55 80 85 7'm0 75 80 85 80 05 100
No. of Measurements

Q
o
.

o
T

FIGURE 1. Probability of success vs. the number of measurements for DCS-
SAMP, Joint-SP and Joint-OMP. The numerical values on x-axis denote the
number of measurements and those on y-axis represent the probability of
success for each algorithm.
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Sparsity of Common Components

FIGURE 2. The probability of success vs. sparsity of common components
for four algorithms. The numerical values on x-axis denote the sparsity of
common components of signals and those on y-axis represent the probability
of success for each algorithm.

K;=2and L =5. K, was varied from 25 to 33. The result of this experiment was shown
in Figure 2.
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The reason why our analysis began with K, = 25 lied in the fact that all of the four
algorithms performed perfectly when K, < 25. Their significant differences of perfor-
mance were exposed when K, > 27. When the sparsity of common components was
increased from 27 to 33, the probability of success of Joint-SP and Joint-OMP both
dropped rapidly. Performance of DCS-GOMP was comparable to that of DCS-SAMP.
The reason why Joint-SP and Joint-OMP were sensitive to the increase of sparsity of
common components might lie in the fact that the algorithms utilized the strategy of
jointly finding the common support-set to recover each signal iteratively [19]. When the
sparsity of common components was increased to a certain level, at which the algorithms
could not successfully find the common support-set, the probability of success dropped
far below 1.

Secondly, what happens when the sparsity of innovation components is increased is
investigated. In this experiment, 100 trials were performed with N = 200, M = 90,
K, =15and L = 5. K; was varied from 2 to 14. The experiment result was shown in
Figure 3. Thanked to the fixed sparsity of common components, the probability curves
for Joint-SP and Joint-OMP decreased slightly in this experiment. The probability curve
of DCS-GOMP was very close to that of Joint-SP and Joint-OMP when the sparsity of
innovation components was no more than 10. Once K; > 10, performance of DCS-GOMP
dropped rapidly. Especially, when the sparsity of innovation components was varied from
9 to 12, the success probability of DCS-GOMP dropped from 1 to 0.33. Among the four
algorithms, performance of DCS-SAMP was the worst in this experiment.

4.1.3. Performance of DCS-GOMP vs. the number of selected indices. Since p indices
are selected at each iteration of DCS-GOMP, the relationship between probability of
successful recovery and the number of selected indices is investigated in this experiment.

Parameters used in this experiment were taken as N = 200, M = 100, K, = 15 and
L =5. K; was a changed parameter. After 100 runs, Figure 4 demonstrated probability

iy
by
iy
7
b

Probability of Success
e o o © o o
B o N w

e
w
s

o
b

—<— DCS-GOMP
—*%— DCS-SAMP

0.1 Joint-SP ]
oL JointOMP_| . L
2 4 6 8 10 12 14

Sparsity of Innovation Components

FIGURE 3. The probability of success vs. sparsity of innovation compo-
nents for four algorithms. The numerical values on x-axis denote the spar-
sity of innovation components of signals and those on y-axis represent the
probability of success for each algorithm.
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0.3F
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e p=3
01 —=— p=6
0 p=9 1 1 1 Il

8 7 8 9 10 11 12 13 14
Sparsity of Innovation Components

FIGURE 4. The probability of success vs. the number of selected indices p.
The numerical values on x-axis denote sparsity of innovation components
and those on y-axis represent the probability of success for each algorithm.

curves for p = 3, 6 and 9, respectively. As shown, no matter p = 3, 6 or 9, the probability
curves dropped with the increase of K;. However, with fixed Kj, the smaller p was,
the better performance was. The significant difference among the three curves appeared
when K; > 10. For instance, when K; = 13, the probability of success was 0.78 for p = 3;
meanwhile, the probability of success was only 0.45 for p = 6. From Figure 4, the number
of selected indices should be as small as possible to ensure exact recovery.

4.2. Application of DCS-GOMP.

4.2.1. A DCS problem for speech signals. In many practical scenarios, sparsity of signals
are unknown. Additionally, not all signals are sparse in time domain. For practical signals
that are sparse in transformed domain, DCS-GOMP can also recover them with tolerable
errors.

Figure 5 presented three speech signals fragments of length N = 1000. Measurement
matrix was a random Gaussian matrix of size 500 x 1000. These signals were not sparse in
time domain but can be represented sparsely by discrete cosine transform (DCT). Figure
6 demonstrated their DCT coefficient vectors. Note that each DCT coefficient vector was
not strictly sparse. Actually, few of its elements were significantly large while many of
others were very close to zero. Viewing these coefficient vectors, one could find that their
cardinalities of innovation components were not equal with each other and were much
larger than cardinalities of common components. That meant the common information
among these coefficient vectors was very limited. Note that joint reconstruction for DCS
was based on common information among signals. These DCT coefficient vectors were
measured and then reconstructed by DCS-GOMP. The recovery result was shown in
Figure 7. It was obvious that all the sparse representations were recovered properly.
Finally, inverse discrete cosine transform (IDCT) was applied to convert the recovered
data back to time domain, and recovered the three original speech signals. The final
result was demonstrated in Figure 8.
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Ficure 6. DCT coefficients of the three original signals. They were pre-
sented by blue dots.

To evaluate the recovery, 50 trials were performed. Signal-to-reconstruction-noise-ratio
(SRNR) was used to evaluate the reconstruction errors, which was defined as:

2

SRNR() = { 10log,, 9L —1.53) (29)
1% = %53

where the calculation of mathematical expectation was replaced by an average over the

number of trials. The larger SRNR was, the better the performance was. The obtained

SRNR for the original signals were 29.9467, 35.8837 and 27.4723. Although the speech
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points represented the DCT coefficients of the original signals and red circles
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FicUrE 8. Recovery of the original speech signals

signals were not strictly sparse in transform domain and the common information was in-
adequate, DCS-GOMP reconstructed signals with acceptable precision. As comparisons,
Joint-OMP, Joint-SP and DCS-SAMP were considered to reconstruct these speech sig-
nals. Note that both Joint-OMP and Joint-SP required sparsity as priori knowledge for
reconstruction, which was not realistic for application. DCS-SAMP was a reconstructing
algorithm without sparsity as priori knowledge. We used DCS-SAMP to recover these
speech signals but the DCT coefficients could not be recovered correctly. Based on these
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discussions, DCS-GOMP was a reliable and practical alternative for recovering speech
signals, compared with existing ones.

4.2.2. Recovery of sparse image. In this experiment, recovery of the 256 x 256 image
“cameraman” (Figure 9) was conducted to demonstrate the performance DCS-GOMP
in realistic case. The recovery was performed using 16 X 16 blocks. The purpose of
such processing was dividing the recovery procedure into a number of smaller, and hence
simpler, procedures. Each block could be represented sparsely by 2D Haar Wavelet basis,
which was dented as ¥. Note that for each block, wavelet coefficient vector was not
strictly sparse. Actually, only few of coefficients were significantly large while many of
others were very close to zero. Viewing these wavelet coefficient vectors, one can find that
their cardinalities of innovation components were not equal with each other and were much
larger than cardinalities of common components. Taking into account that these wavelet
coefficient vectors were not sparse enough, for each block, only 30 largest magnitude
wavelet coefficients were kept. For each block, the measurements were obtained via the
sensing matrix ¥, where ® was a 128 x 256 measurement matrix and its entries were
randomly drawn from the Gaussian distribution with mean 0 and variance 1. Denoting
X, and Y; as the j-th block and corresponding measurements, the CS model was

Y, = d¥X; = &S, (30)

where S; = ¥X; was the coefficient vector of the j-th block. Instead of recovering each
coefficient vector independently, DCS-GOMP was performed to jointly recover them. In
this experiment, these coefficient vectors were jointly recovered four by four. After recov-
ering these coefficient vectors, all blocks were recovered by inverse 2D wavelet transform
and then combined to obtain the whole image. Figure 10 was the recovery result that
provided a Peak Signal-to-Noise Ratio (PSNR) value of 29.57. Comparing Figure 10 with
Figure 9, this recovery performance was acceptable. Though these wavelet coefficient
vectors are not sparse enough and cardinalities of innovation components of these wavelet
coefficient vectors were not equal with each other, DCS-GOMP had recovered the image
without sparsity as priori knowledge.

FIGURE 9. Test image “cameraman”
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FIGURE 10. Recovery result of “cameraman” by DCS-GOMP (PSNR = 29.57)

As pointed out in 4.2.1, both Joint-OMP and Joint-SP required sparsity as priori knowl-
edge for reconstruction, which was not realistic for application. As a comparison, DCS-
SAMP was also used to recover the image in the same way as DCS-GOMP, but recovery
completely failed.

5. Conclusions. In this paper, a new DCS algorithm, which is termed as DCS-GOMP,
has been derived for joint signal recovery. In DCS-GOMP, multiple indices are selected at
each iteration to estimate the support sets of signals. Extensive experiments confirm its
validity and high performance, compared with other three existing DCS algorithms. The
highlights of the algorithm are its capability of recovering several signals simultaneously
without sparsity as prior information and its stability against the number of measurements
and the sparsity of signals. Capability of solving DCS problems with unknown sparsity
in realistic scenario exhibits its application perspectives. Further research is required to
develop a computationally efficient version of the proposed algorithm in noisy environment
as well as to better analytically characterize the performance of the algorithm.
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