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ABSTRACT. This paper is centered on state feedback control design for a networked con-
trol model of systems with two additive time-varying delays. Firstly, with a Lyapunov
functional (LF) defined on some symmetric matrices, the LF approach is employed to
study delay-dependent stability for the system. Note in existing papers all the symmet-
ric matrices are required to be positive definite in order to ensure the LF to be positive
definite, and this requirement is only sufficient but not necessary for the LF to be posi-
tive definite, a new stability result is derived by slackening the requirement. It is shown
both theoretically and numerically that the stability result is less conservative than some
ezisting ones. Based on the stability result, a state feedback controller is designed, such
that the closed-loop system is asymptotically stable. Finally, examples are given to show
the less conservatism of the stability criteria and the effectiveness of the proposed control
method.

Keywords: Networked control systems, Delay systems, State feedback control, Delay-
dependent stability, Stabilization

1. Introduction. For years systems with time delays have received considerable atten-
tion since they are often encountered in various practical systems, such as engineering
systems, biology, economics, neural networks, networked control systems and other areas
[1-6]. Since time-delay is frequently the main cause of oscillation, divergence or instability,
considerable effort has been devoted to stability for systems with time delays. Accord-
ing to whether stability criteria include the information of the delay, they are divided
into two classes: delay-independent stability criteria and delay-dependent ones. It is well
known that delay-independent stability criteria tend to be more conservative especially
for small size delays. More attention has been paid to delay-dependent stability. For
delay-dependent stability results, we refer readers to [7-13]. Among these papers, [11-13]
were of systems with interval time-varying delay. It should be pointed out that all the
stability results mentioned are based on systems with one single delay in the state.

On the other hand, networked control systems have been receiving great attention these
years due to their advantages in low cost, reduced weight and power requirements, simple
installation and maintenance, and high reliability. It is well known that the transmis-
sion delay and the data packet dropout are two fundamental issues in networked control
systems. The transmission delay generally includes the sensor-to-control delay and the
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control-to-actuator delay. In most of existing papers the sensor-to-control delay and
the control-to-actuator delay were combined into one state delay, while the data packet
dropouts were modeled as delays and absorbed by the state delay, thus formulating net-
worked control systems as systems with one state delay. Among recently reported results
based on this modeling idea, to mention a few, H, control co-design problems were
addressed for networked control systems in [4], while the event-triggered control were dis-
cussed for networked control systems via dynamic output feedback controllers [5]. It is
worth noting that there are new research reports [19-22] about networked control systems
with random property. For example, in [19] stability was investigated and stabilization
considered for networked control systems with random delays.

Note that the sensor-to-control delay and the control-to-actuator delay are different
in nature because of the network transmission conditions. The transmission delay and
the data packet dropout also have different properties. It is not rational to lump them
into one state delay. In this paper, to study networked control systems we adopt the
model of systems with multi-additive time-varying delay components. For simplicity, the
system with two additive time-varying delay components will be employed to address
state feedback control problem for networked control systems. When the physical plant
is a linear system and the controller is a linear state-feedback one with a controller gain
K, the networked control system takes the following form:

#(t) = Aw(t) + BKx(t — dy(t) — da(t)) (1)

where z(t) € R" is the state; A and B are known real constant matrices; dy(t), da(t) are
two time-varying delays. A nature assumption on the two delays is made

0 < di(t) < h, 0<ds(t) < ho 2)

and
di(t) < pur, da(t) < po (3)
Stability analysis for this kind of system was conducted in [14], and a delay-dependent
stability criterion was obtained. An improved stability criterion was derived in [15] by

constructing a Lyapunov functional to employ the information of the marginally delayed
state x(t — h), where h is defined in (6). However, another marginally delayed state

x(t—hy) was not considered, which caused — tfhdll ® i(a)T Z i (a)da to be discarded when
bounding the derivative of the Lyapunov functional. On the other hand, in the process of
the bounding, many free weighting matrices were introduced, making the stability result
complicated. Furthermore, in [14,15] as well as in most existing papers, to guarantee the
positive definite of a Lyapunov functional, it was required for all the involved matrices to
be positive definite.

In this paper we first consider delay-dependent stability for system (1) by constructing a
new Lyapunov functional to employ the information of the marginally delayed state x(t —
hy) as well as z(t — h). Based on the observation that the positive definite of a Lyapunov
functional does not necessarily imply that of all the symmetric matrices, less conservative
conditions are derived for the LF to be positive definite. On the other hand, when
bounding the derivative of the LF, we use a novel technique, motivated from [13], to avoid
introducing slack variables but produce a fairly tighter upper bound. The upper bound is
dependent on the two time-varying delays. To check negative definiteness for the upper
bound we propose a so called convex polyhedron method. The resulting stability criteria
turn out to be less conservative with fewer matrix variables. Then we apply the stability
criteria to control design problem, which is to determine a state feedback controller gain
K such that system (1) is asymptotically stable. A delay-dependent condition will be
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presented for the state feedback controller gain K such that the system is asymptotically
stable. When the condition is feasible, the controller gain can be computed.

Throughout this paper the superscript ‘7" stands for matrix transposition. I refers
to an identity matrix with appropriate dimensions. FE; Stands for the i column of
diag{I,, I, I,, I,,, I,} (i =1,2,3,4,5). For real symmetric matrices X and Y, the notation
X > Y means that the matrix X — Y is positive definite. The X > Y follows similarly.
The symmetric term in a matrix is denoted by *.

To end this section, a lemma is given, which will play an important role in deriving our
results.

Lemma 1.1. [16] For any symmetric positive definite matriz M > 0, scalar v > 0 and
vector function w : [0,7] — R™ such that the integrations concerned are well defined, the
following inequality holds

(/jw(s)ds)TM (/va(s)ds> <y (/OVM(S)TMW(S)@

2. Stability Analysis. In the following we consider the stability analysis problem. Spe-
cifically, given K we investigate the condition for system (1) to be asymptotically stable.
Lump d;(t) and d(t) into one delay

d(t) = di(t) + da(t) (4)
and then system (1) is changed into
i(t) = Ax(t) + BKz(t — d(t)) (5)
where 0 < d(t) < h, d(t) < p with
h=hi + hy (6)

= fur + fio (7)

However, this treatment is not suitable. On the one hand, from an engineering point of

view, the two delays may have different properties, and it is not appropriate to lump them

together. On the other hand, from a mathematical point of view, it is very conservative to

bound d(t) with h = hy + hs, since the maximum of d(t) is generally less than h = hy + ha.

In the following we present a new stability result for system (1) by considering the two
delays separately.

Theorem 2.1. The systems (1)-(3) are asymptotically stable for given K, hy, hs, 1 and
po if there exist matrices P = PT, Qy = QF, Qi = Qf, Q; > 0 (1 = 1,3), Z; > 0
(7 = 1,2) such that the following LMIs hold

Mpy 7+ 2, —Z1 — Zy

h >0 8
[ * Z1+ Zy + hi(Q2 + Q4) (8)
P+ 7 —Zs
® — Fyshy (7, + Z5)Ely — Byshy ' Z,FL < 0
o — Elghfl(zl + ZQ)EE — E24h2h72ZQEg:1 <0

o — E35h1_121E§5 — E24h1h_2ZQEg:1 — E23h2_IZQEg;) <0
P

— Bssh ' Z\EL — Byyh ' Z,EL < 0
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where E;j = E; — Ej;, and

¢ PBK hi'(Z,+ Z,) 0 0
* ) h;1Z2 h_1Z2 0
b= x * 3 0 A
* * —Qz — h71Z2 0
* * * —Q4 - hflzl
AT ar 7"
(BK)" (BK)"
+ 0 [h Zy + hZs)] 0 (14)

0 0
0 0

with h and p given in (6) and (7) respectively, and
_ T LN |
=PA+A P+Zi:1Ql W2y + Zo)

p2=—(1—p)Qs— (hy' +h™")Zy
3 =—(1—m)Q1 — (hy" + h")Zy — 20" 74

Proof: Define a Lyapunov functional as

V(t) = z(t)" Px(t) + /td o z(a)"Qx(a)da + /thx(a)Tng(a)da
+/ z(a)" Qsz(a )da+/th r(a)" Qur(a)da

/hl /Hs N2+ Zo)i(a )dads+/ " /+s ()T Zyi()dads  (15)

where d(t) is defined in (4). Clearly this Lyapunov functional can employ the information
of the marginally delayed state x(t — hy) as well as z(t — h).

Under the condition of Theorem 2.1, we first show Lyapuonv functional (15) is positive
definite. By Lemma, 1.1 it follows that

/ ) /+s T(7, + Zp)i(a)dads

> h1 [:E(t) — 2t + )" (Zy + Zy)[x(t) — x(t + 5)]ds (16)

/ 1/+s T Zoi(0)dads > ;/_h w(t) — 2t + ) Dol (t) — (t+ 5)ds (17)

On the other hand,
0

21T Pa(t) = % / hlx(t)TPx(t)dSnL% / ; () Pa(t)ds (18)
Noting @Q; > 0 (i = 1, 3), it follows from (15)-(18) that
V(t) > %/0 x(t)TPx(t)dS—i—%/;hl z(t)" Px(t)ds

0

+f " 2(t 4 5)T Qur(t + 5)ds + [t s Quatt + 5)ds

—hy
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1 [° -
+-— [z(t) — x(t + 9)]" (Z1 + Zo)[z(t) — x(t + s)]ds

[2(t) — z(t + 5)]" Zo[w(t) — x(t + s)]ds

/0[ x(t))] {1P+ E(Zl-FZQ) (21 + Zs) H x(t)

o La(tts 1 (214 Z2) + Qo+ Qu

[ L T[T e ] [t e

This together with (8)-(9) means Lyapuonv functional (15) is positive definite.

Now calculating the time derivative of the Lyapuonv functional along the trajectory of
(1) yields

V(t) < 22(t)"P(Az(t) + BKx(t —d(1)))
3 a7 Qurlt) — w(t — h)TQuat — h) — x(t — W) Qua(t — h)

—(1 - u) (t —d(t ))TQgrv(t —d(t) = (1 = pa)a(t — di(t))" Qua(t — da(t))
+(Az(t) + BKz(t — d(1))" (M Z1 + hZs)[Ax(t) + BKz(t — d(t))]

_ /tth #)T (2, + Z)i(a)da — /t:hlir(a)TZQx'(a)da (19)
Note that 1
/ "7+ Zy)i(a )da—/t_hlj( V' Zyi (o) de
= /t ) o)’ Z i (a /t i(a)" Zyd(a)da

t— d1
= / (s)' Z12(s) / (s)' Z,i(s)ds
t d1
t
[ s [
t d1

Write o = dl( )/hl and B = d2( )/h2 Then

t t
_ / i(s)" Zyi(s)ds = —h~! / b ()7 Zyi (5)ds
t—di(t) t

I
|
>
=
L
T~
=
QL
s
—~
~
SN—
=
—~
(V)
N
~
N
=
—
[Va)
SN—
QL
(V)

It follows from (21) that

- / ()T Zyi(s)ds < —h-! / d ()i ()7 71 (5)ds (22)
t—dy (t) t—di (t)

Using (22) we have that

ot /t NS dy (D] ()7 Zy ()
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— (- a)/t o P23

<—(1—a)h! /t PRICHOE AT (23)

By Lemma 1.1 combining (21) and (23) leads to

_/td E D) < o)~ alt = ()] AT 20

—2(t — di(t))] = (1 — o) [x(t) — x(t
—di ()] h Z[x(t) — 2(t — di(1))] (24)
Similarly we have
t—dy(t)
—/t i(5)" Zyi(s)ds < —[x(t —dy(t)) — x(t — h)]"h7 Zi[2(t — di(t))

h —x(t — hy)] — afz(t — di(t))
—z(t — h)|"hT Zy[w(t — dy (1)) — 2(t — hy)] (25)

_ /t_d o x'(s)TZQi(s)ds < —[x(t) — 2(t — dl(t))]Thleg[x(t)
—a(t — di(1))] — (1 — a)[z(t)
—a(t = dy()]"h Zala(t) — w(t — di(t))] (26)
t—di (t)
_/td(t) #(5)T Zoi(s)ds < —[a(t — (b)) — 2t — ds ()" by Zolx(t — d(2))
—x(t — di(t))] = (1 = B)[(t —d(t))
—x(t — di(1)]"hy ' Zola(t — d(t)) — x(t — di(1))]  (27)

t—d(t)
- /t #(5)T Zoi(5)ds < —[w(t — d(t)) — 2(t — B)Th~ Zo[x(t — d(t))

—z(t — h)] — afz(t — d(t))

1P hh =2 Z,[x(t — d(t))

| = Bla(t —d(t))

1P hoh 2 Zy[x(t — d(t)) — z(t — h)] (28)

h
h
h
—x(t—h

(

—x(t —
(
(

—x(t —

~— O~ e e

Define
C(t) = [e()T @t —d@&)" a(t—di(t)” a(t—h)T" ot—h)" ] (29)
0), (24)-(28) and using (29) we have
COTDC() — (1 — a)[a(t) — a(t — dy (t)]Thy N(Zy + Zo)[a(t) — x(t — di(1))]
—af[z(t — di(1)) — x(t — h)"hT 2 [t — di (1) — 2t — b))
Ha(t — d(t) — a(t — h)Thih 2 Zs[x(t — d(t)) — x(t — )]}
—Bla(t — d(t)) — x(t — W) hoh ™ Zo[a(t — d(t)) — w(t — h)]
—(1 = B)a(t — d(t)) — a(t — dy ()] hy Zofa(t — d(t)) — x(t — dy (t))]
= ¢(H)TM(a, B)C(1) (30)

By( 9), (2
V(t) <
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where
M(a, B) = ® — a(Esshy* Z, B + Eoshih 2 Z,E3) + (1 — a)[Ershy H(Z) + Z,) BL)
—BEyhoh 2 ZoEL, — (1 — B)Eyshy ' Z, B,
= a[® — (Esshy ' Z 1By + Esuh h 2 Z,E5,)] + (1 — a)[® — Eish{'(Z) + Zy) E];
—BEyhoh 2 Z,EL, — (1 — B)Eyshy ' Z, B,
= a[® — (Essh; ' Z | Ely + Eoyh\h™2Z,E5,) — BEayhyh™2Z,F,,
—(1 = B)Eoshy ' ZoE] + (1 — )[® — Eyshy (7, + Zy) EY,
—BEyshoh2Z,EY, — (1 — B)Eyshy ' Z,FL,
= a[B(® — Esshy' Z\Ejs — Essh™' ZoE3,)
(1 — B)(® — Essh; ' Z,FEL — Eoyhih 2 Z,FEL, — Epshy ' Z,FEL)]
(1 — @)[B(® — Eishi'(Z) + Zy)E{y — Esshoh™>Z5Ey,)
+(1 = B)(® — Eishi (Z + Z5) Efy — Exshy ' Z2Ey,)]

By (10)-(13) we have M(a, ) < 0. From (30) it follows that V (¢) < 0. Therefore, system
(1) subject to (2) and (3) is asymptotically stable. This ends the proof.

+
+

Remark 2.1. Recently in [18] the stability for systems (1)-(3) was also investigated using
the LF in (15) that involves symmetric matrices P, Q; (i = 1,2,3,4) and Z; (j = 1,2). As
seen from the proof, this paper does not require P > 0, Q; >0 (i =1,2,3,4) and Z; > 0
(7 = 1,2) to guarantee V(t) > 0 as [18]. Instead of P > 0 and Q; > 0 (i = 2,4), the
conditions (8) and (9) are derived in this paper to ensure V(t) > 0. By further requiring
P >0 and Q; >0 (i =2,4) to ensure V(t) > 0, we can obtain the stability result in [18].

Corollary 2.1. [18]. The system (1) subject to (2) and (3) is asymptotically stable for
given K, hy, he, 1 and po if there exist matrices P >0, Q; > 0 (i = 1,2,3,4), Z; > 0
(7 = 1,2) such that the following LMIs hold

® — Eyshi (7, + Zo)Ely — Eyshy' Z,E), < 0

® — Eysh (7, + Zo)El, — Byhoh ™2 Z,EL, < 0

o — E35h1_121E§;3 — E24h1h_2ZQEg:1 — E23h2_IZQEg;), <0

® — E3shy ' Z\Egy — Eash™' ZyE], < 0
where E;j = E; — E;, and

¢ PBK h{'(Z,+ Z,) 0 0
* hy ' Z, h=12Z, 0
b = * * 3 0 hleI

* * * —Qz — h_IZQ 0

* * * —Q4 - hl_lzl
AT AT 17

(BK)" (BK)"
+ 0 [h1 2y + hZs] 0

0 0
0 0

with h and p given in (6) and (7) respectively, and
4
o1 =PA+A"P+ Zi:l Qi — hy (71 + 7o)
2 =—(1—p)Qs— (hy' + h™ ") 2,
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o3 =—(1—p)Q1 — (hy' +hi") 2y — 207" Z,
Proof: Note that

Mp+ 7+ 7y — Ty — 7y
* Zy+ Zy + hi(Qa + Q4)
[ 24z —2i-2] [ %P 0
* Zy + 2o 0 hi(Q2+Q4) |

and

* Z2 + hQQ 0 hQ2 % ZQ

Therefore, if there exist P > 0, Q; > 0 (i = 1,2,3,4), Z; > 0 (j = 1,2) such that
Corollary 2.1 holds, these matrices satisfy (8)-(9) as well as (10)-(13). From this it follows
that Corollary 2.1 is covered by Theorem 2.1.

[p+22 7, ]:[p 0] {ZQ A

Remark 2.2. As seen from the proof of Corollary 2.1, to ensure an LF to be positive
definite, it is not necessary for all the symmetric matrices involved to be positive definite.
Requiring aoll the symmetric matrices to be positive definite may induce conservatism,
while slackening the requirement can reduce the conservatism.

Remark 2.3. Note that when estimating the upper bound of V(t) we have not introduced
a slack variable. The obtained upper bound of V(t) s dependent on the two time-varying
delays while those in [14,15] are dependent on the upper bounds of the two time-varying
delays. That is, the corresponding matriz M (o, B) to the upper bound of V (t) is a function
matrix of the two time-varying delays. To check the negative definiteness for the function
matriz, we adopt a new method that is motivated from [13]. The basic idea is that a
function matriz is negative definite over a convex polyhedron only if it is negative definite
at the verteres. Note that

M(1,1) = ® — Essh{' Z,Egy — Eyh™' Z,F,
M(1,0) = ® — Essh, ' Z,Ely — Eayhyh 2 ZyE5y — Foshy ' 7y By
M(0,1) = ® — Eish, " (Z) + Z3)E]y — Eashoh 2 Z,E]
M(0,0) = ® — Ei3hi ' (Z1 + Z5)E|y — Exshy ' ZoEy,.
From this we can see the negative definiteness of M («, ) over the rectangle: 0 < a < 1,
0 < B <1 is actually determined by that of M (v, B) at the vertexes. This approach to the
negative definiteness of a function matriz is called a convex polyhedron method. Apparently
the convex polyhedron method can be extended to more than two time-varying delays.
Gao et al. [15] took advantages of x(t—h) to derive a stability criterion, which improved

over that in [14], but another marginally delayed state x(t— hy) was not employed. In this
paper we make use of it to construct the Lyapunov functional V (t) in (15), thus making
- ti_hdll(t) ()" Z i (o) da retained in the estimate of V(t). On the other hand, when es-
timating the integrals in V(t) we do not mtroduce any free weighting matriz as [14,15],
but use a new technique. Take — ft Iy V' Z12(a)da as an example. First divide it into
two parts as (20), and then calculate each of them as (21)-(25), both of the two parts em-
ployed. In contrast, the second part was ignored in [15]. Note that although both of the two
parts were kept in [5,6], either was estimated conservatively For instance the first part

ft an V' Zyi(a)der was simply enlarged as —hi* ft ar( i(s)T Zy2(s)ds in [5,6],
and — h 1 ft_dl(t) — di (1)) z(s)T Z12(s)ds was dzsregarded. Thanks to the new technique,
the upper bound of V( ) is estimated tighter without introducing a slack variable, and the
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resulting stability criterion Theorem 2.1 is less conservative with fewer matrixz variables,
as shown in the following example.

Remark 2.4. In engineering practice, the information of the delay range is generally
available, so Theorem 2.1 is useful in checking stability for the delayed system described
by (1)-(3). On the other hand, it is significant to know the maximums of the two delays
the system can tolerate. As seen in the following example, by Theorem 2.1 and Matlab
LMI Control Toolbox we can compute the admissible upper bounds of the two delays, which
guarantee the system to be stable.

Example 2.1. Consider the system (1) with

-2 0 -1 0
A_[ 0 —0.9}’ BK_[—I —1]
and

di(t) < 0.1, dy(t) <08

For given upper bound hy of dy(t), we intend to find the admissible upper bound hy of
dy(t), which guarantees the system remains asymptotically stable for 0 < di(t) < hy,
0 < dy(t) < ho.

TABLE 1. Admissible upper bound hy for various hy

Method hq 1 1.2 1.5
[14] hy 0.415 0.376 0.248
[15] hy 0.512 0.406 0.283

Corollary 2.1 hy 0.5955 0.4632 0.3129
Theorem 2.1 he 0.6377 0.4923 0.3283

It is well known that for a system with time-varying delays, it is significant to compute
the maximum of the delay the system can tolerate [9,11]. As seen from the above table,
for given h; the stability result Corollary 2.1 can provide a larger hy than those in [14,15]
to ensure the system stable for 0 < d;(t) < hy, 0 < da(t) < hy, while in this regard
Theorem 2.1 can provide an even larger ho. In this sense, the stability criterion Corollary
2.1 is less conservative than those in [14,15], while Theorem 2.1 is less conservative than
Corollary 2.1.

When h; is given, the admissible h; can be seen from Table 2.

TABLE 2. Admissible upper bound h; for various h,

Method hy 0.1 0.2 0.3
[14] hy 2.263 1.696 1.324
[15] hy 2300 1.779 1.453
Corollary 2.1 hy; 2.3400 1.8337 1.5318
Theorem 2.1 hy 2.3426 1.8598 1.5660

From Table 2, it is clear that the stability criterion Corollary 2.1 is less conservative
than those in [14,15], while Theorem 2.1 is less conservative than Corollary 2.1. It is
worth noting that both Corollary 2.1 and Theorem 2.1 have much fewer matrix variables,
compared with those in [14,15].
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Remark 2.5. Note that Theorem 2.1 can only provide sufficient stability conditions for
systems (1)-(3). Though less conservative than the ezisting ones [14,15,18], Theorem 2.1
still has some conservatism. To further reduce the conservatism, it is needed to construct
a new LF and propose a new scheme bounding the derivative of the LF. This is our future
work.

3. Control Design. Theorem 2.1 can be served as a useful tool for the control design
problem formulated above.

Theorem 3.1. Consider systems (1)-(3). Given hy, ha, pn and po, there exists a state-
feedback controller gain K ensuring that the system is asymptotically stable, if there exist
K, P=P" Q,=0QF, Qi =QF, Q; >0 (i =1,3), Z; >0 (j = 1,2) such that the
following LMIs hold

[ WPy 7+ 7, ~Z — 2y

h - - >0 31
i * Zy + Zy + h(Qa + Q) (1)
[P+ 7, — 7,

- - | >0 32
L b ZQ+hQ2:| ( )
?Ti £]<0 (i=1,2,3,4) (33)

where
Oy =V — Ehy (Z) + Zy)Ely — Egshy ' Z,E%, (34)
Qy =V — EyshiY(Zy + Z,)Ely — Foyhoh™2Z,EL (35)
Q3 = U — Esshy ' Z,FEL — Foyhih 2 Z,EL — Eyshy ' Z,EL (36)
Oy =V — Esshy ' Z,FL — Fouh ' Z,FL, (37)
(38)

A = diag{—h7'PZ7'P,~h"'PZ;' P} 38
PAT  PAT
KTBT KTBT
r= 0 0 (39)
0 0
0 0
1 BK hi'(Zi+ 2») 0 0
1y hy'Z, h=1Z, 0
U= % =« Y3 0 hitZ, (40)
x % * —Qy— h'Z, 0
* * * —Qq — h ' 7,

1 = AP+ (AP)" + Z; Qi — hi'(Zy + Zo)

tho = —(1 = p)Qs — (hy' + h™") Z,
s = —(1—p)Qu — (hy ' + ") 22 — 20 2,
and E;; is given in Theorem 2.1. Moreover, if the foregoing conditions hold, a desired

controller gain is given by X
K=Kp™! (41)

Proof: Let us start from Theorem 2.1. If P is singular, obviously there exists a small
enough £ > 0 such that P+ <7 is nonsingular and Theorem 2.1 still holds with P replaced
by P + 1. Without loss of generality, we assume there exists a nonsingular P such that
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Theorem 2.1 holds. In the following, we write Z; = P~'Z;P~" (i = 1,2), Qj =P~ 'Q;P7",
(j =1,2,3,4), P = P1, J, = diag{P~", P~} and J = diag{P~', P~', P~1, P!, P~1}.
With these notations and (41) in mind, performing a congruence transformation to (8)
and (9) by J; we obtain (31) and (32) respectively, while performing a congruence trans-
formation to (10)-(13) by J we can obtain

U —TA T — BEish (7, + Z5)E%, — Eyshy ' Z,FL <0
U —TAT'TT — EyshiY(Zy + Z5)EYy — Eyshoh™2Z,EL, < 0
v — FA_IPT — E35h1_121E;{5 — E24h1h_222Eg; — E23h2_122Eg;) <0
U —TA T — Bysh ' Z\EL — Eyh ' Z,FL <0
where A, T" and U are given in (38)-(40), respectively. Using notations (34)-(37) we have
Q T
T A
That is, (33) holds. It is shown that Theorem 3.1 holds.
Note that the non-linearity of (33) due to A in (38). Theorem 3.1 suggests a non-convex

feasibility problem for the controller design. Employing CCL method [17] one can change
this problem into the following minimization problem:

mlntr(PP + }/121 + }/222 + ZIZI + ZQZQ)

P I Z 1 I
YRRk z-]zo’[ 5z
Y, P Q T

with A = diag{—h,'Z;,—h~'Z,}, Q; and T given in Theorem 3.1.

The conditions in Theorem 3.1 are feasible if min tr(PP+Y121+YQZQ+ZIZ+ZQZQ)
5n. To deal with the non-linearity in Theorem 3.1, we have an alternative way. Note that
(P —Z))Z; Y(P — Z;) > 0. Tt follows that PZ, 1P > —Z; +2P (i = 1,2). From this and
Theorem 3.1 we can obtain the following result though it is a little more conservative.

} <0 (i=1,2,3,4)

subject to

Ly
~ 2

<

Theorem 3.2. Consider system (1) with the delays subject to (2) and (3). Given hy,
ha, 1 and po, there exists a state-feedback controller gain K ensuring that the system is
asymptotzcally stable, if there exist matrices K P =P Q, = QQ, Q) = Q4, Q: >0
(i=1,3), Z; >0 (j = 1,2) such that the following LMIs hold

[ MP+ 7+ 2 AR S0
i * Zl+Z2+h1(Q2+Q4)
[ P+Z, —Z,
~ ~ >0
L * Z2+hQ2:|
[ Q;, T )
T A]<O (i=1,2,3,4)

where Q; and T are defined in Theorem 3.1, and A = diag{h7'(Z, — 2P), "' (Z, — 2P)}.
Moreover, if the foregoing conditions hold, a desired controller gain matriz is given by
K=KP

To illustrate the effectiveness of this control method we provide an example.
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Example 3.1. Consider system (1) with parameters given as follows:
012 0 0.2
=% e B 55
It is obvious that when K = 0 the system is unstable. However, for hy = 1, hy = 2,
= 0.1, ps = 0.2 we find LMIs in Theorem 3.2 are feasible with
p_ 1.1665 1.5843
~ | 1.5843 17.8683

By Theorem 3.2, there exists a state feedback controller with
K=KP™'=[-08071 —0.0223 ]
such that the system (1) is asymptotically stable for 0 < di(t) < 1, 0 < dy(t) < 2.

] , K=[-09667 —1.6770 ]

4. Conclusions. In this paper, the state feedback control design has been studied for
a networked control model of systems with two additive time-varying delays. A new
Lyapunov functional approach was employed to investigate the stability for the system.
The approach took the Lyapunov functional as a whole to examine its positive definite,
rather than restrict each term of it to positive definite as usual. Without introducing a
slack variable, the novel technique got a tighter upper bound of the Lyapunov functional’s
derivative. The resultant stability results, only involving the matrices in the Lyapunov
functional, are not only less conservative but also with fewer matrix variables than existing
ones. Based on the stability results a state feedback controller was designed, such that
the closed-loop system is asymptotically stable. Finally, examples were given to show
the less conservatism of the stability results and the effectiveness of the proposed control
method.
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