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ABSTRACT. For the large scale and complicated structure of networked control system,
time-varying actuator faults could inevitably occur when it works in a poor environment.
H, fault-tolerant controller for a new networked control system with time-varying ac-
tuator faults occurring is designed in this paper. Based on the network transmission
environment, the networked control system is firstly modeled as a closed loop discrete-
time system with time varying actuator faults and outside disturbance considered. And
the time varying property of actuator faults is reflected by a time-varying parameter.
Moreover, using Lyapunov stability theory and linear matriz inequality (LMI) approach,
the H, fault-tolerant controller is proposed to guarantee such faulty networked control
system asymptotically stable. Finally, simulations are included to demonstrate the theo-
retical results.

Keywords: Networked control system, Actuator faults, H,, fault-tolerant controller,
Lyapunov stability theory, LMI

1. Introduction. Feedback control system wherein the control loops are closed through
a real-time network is called networked control system (NCS). Because of its suitable and
flexible structure, NCS is widely used in the fields such as information technology, life
science and aeronautical and space technologies. However, there not only exists induced
delay, data packet loss and sequence disordering in NCS [1-3], but also faults usually occur
when it works [11], which could cause negative impact on the performance of the system,
even leading to system instability. Recently, the fault-tolerant control of NCS with delays
has become a new popular issue in the control field [4-12,15-17].

A robust fault-tolerant control based on the integrity control theory when actuator
faults occur is discussed by Y. N. Guo et al. [4]. The faults of each sensor or actuator
were taken as occurring randomly by E. Tian et al. [5], and their failure rates are governed
by two sets of unrelated random variables satisfying certain probabilistic distribution. A
methodology for the design of fault-tolerant control systems for chemical plants with dis-
tributed interconnected processing units is presented based on Lyapunov stability theorem
by N. H. El-Farra et al. [6]. X. Y. Luo et al. [7] propose the guaranteed cost active fault-
tolerant controller (AFTC) strategy that the fault detection and isolation unit sends out
the information to the controller choosing strategy when actuator failures appear, and
then the optimal stabilizing controller with the smallest guaranteed cost value is chosen.
A switched model based on probability is proposed to research problems of fault-tolerant
control when actuators become aging or partially disabled in [8], but not considering the
outside disturbance. X. Li and X. B. Wu [17] investigate the problem of integrity against
actuator faults for NCS under variable-period sampling, in which the existence conditions
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of guaranteed cost faults-tolerant control law are testified in terms of Lyapunov stability
theory, but not referring to the effects of uncertain parameters and outside disturbance.

Almost all literature above considers the faults in some special cases, and no design
considers the time-varying faults. However, in practical application, because of large
scale and complicated structure of NCS, the faults could vary from time to time when
it works in a poor environment. It is significant and necessary to explore a reasonable
control method to improve the performance of NCS when time-varying faults occur, which
motivates us to conduct this research.

In this paper, H,, fault-tolerant control problem of networked control system with time
varying actuator faults is studied. On the basis of the network transmission environment,
the networked control system is modeled as a closed loop discrete-time system with outside
disturbance considered. And the model of networked control system is related to the
boundary values of the actuator faults and the time varying property of actuator faults is
reflected by a time-varying parameter. Using Lyapunov stability theory and linear matrix
inequality (LMI) approach, the H,, fault-tolerant controller is proposed to guarantee such
faulty networked control system asymptotically stable.

2. Modeling of Networked Control Systems with Actuator Faults. The structure
of NCS is shown as follows.

Actuator ™ Plant »  Sensor
)
i, .................................................. oo :
i Delay :r, () Network Delay :z.(0|
A A O i
Controller |

FIGURE 1. The structure of networked control system

In Figure 1, 7, represents the transmission delay from sensor to the controller, while 7,
represents that from controller to the actuator. Induced delay of system can be calculated
aAS T = Tge + Teq-

A linear control plant is described by state equation as follows.

t(t) = Ax(t) + Bou(t) + How(t) !
(1) = Ca() W

where x € R", u € R™, y € R" and w(t) € Ly[0,00) € RP represent state, input, output
vectors and outside disturbance separately, while A,, B,, C' and H, are matrices with
appropriate dimensions.

To facilitate the model, some rational assumptions are introduced as follows.

A1l. Single data package is transmitted. The packet loss and sequence disorder are not
taken into consideration during the transmission process.

A2. Time-varying time delay exists during the data transmission process, but it is
bounded, and the maximum time delay does not exceed one sampling period, namely T €
[0,T], where T is the sampling period.

A3. Sensor is clock driving; controller and actuator are all event driving.

The timing diagram of signals in NCS is shown in Figure 2. Due to the structure of
NCS and the above assumptions, within a sampling period, the system input is not a
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FIGURE 2. Timing diagram of signals transmitting in NCS

constant value, but is a piecewise constant. In a cycle, input objects can be described as

_Julk=1), i<t <tpitm
uw_{u%L b+ 1 <t<tp+T 2)

where t; is the k' cycle sampling time, and 7 is the corresponding delay.
The discrete-time model of system (1) can be obtained as follows.

z(k+1) = Az(k) + Byu(k) + Bou(k — 1) + Hw(k) 5
y=Calh) @)

where A = ¢%T, By = [[ ™ ed!Bdt, B, = fTT_Tk e Bydt, B = [ e*'B,dt, H =

I T eAot [T dt
0 o

As 7 is uncertain, By and By are also time-varying, so the model of NCS is converted
to a discrete system with uncertain parameters shown as Equation (3). The equivalent

model of system (3) is given by C. Xie et al. [10], also used by Q. Zhu and K. Lu [11].

{ z(k+1) = Az(k) + DFEu(k) + (B — DFE)u(k — 1) + Hw(k) (4)
y = Cux(k)

where B = B1+ By = fOT e’ B,dt, D and E represent constant matrices with appropriate
dimension. F is an uncertain component matrix satisfying F7 F' < I. Detailed calculating
method of D, E and F is proposed in [10].

Assuming that the system is fully measurable, state feedback is introduced as follows.

u(k) = Kz (k) (5)
Considering the actuator faults may occur, the controller is expanded as
u” (k) = o(k) K (k) (6)

where u” = [ul" ul,---  ul]” represents faulty signal. ®(k) = diag(é,(k), ¢2(k),-- -,
dm(k)); ¢; = 0 represents that actuator i faults occur; ¢; = 1 represents that actuator
1 is normal; 0 < ¢; < 1 represents partial faults occur at actuator . When ® = I, it
represents all actuators are normal. The condition that all actuators failure occurs at the
same time is not taken into consideration here.

Moreover, the faults are usually bounded in the practical work and they are assumed to
be measurable. And the upper bound of fault matrices is defined as ®,, = diag(¢u1, duz, - - -,
Gun), 1 > ¢yi > 0; while the lower bound of fault matrices is defined as ®; = diag(¢1, ¢z,
oo dm)y 1> ¢y > 0. That is to say ®(k) € [®;, ®,], which is time-varying.
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The mean value of matrices ®; and ®, can also be expressed as

. ui T Qli
o = diag(dor, oz, -+, Pon),  Poi = % (7)
Furthermore, following matrices are introduced.
. i(k) — doi
L(K) = diag 1y (1), (1) -+ LR, 06) = 2= )
0i

Obviously, we have

1< 1 — Poi < Li(k) = bi(k) — do; < Pui — Poi _ Gui — Pui <
Po; Po; Po; Pui + Pui
Based on (9), we have —1I,,,,, < L(k) < I,,x,,. From (8), it can be obtained
¢i:¢0i(1+li), 2'21,2,...,”

Naturally, it is denoted by ®(k) = ®¢(I + L(k)), and the closed-loop systems model with
actuator faults can be obtained as:

z(k+1) = Az(k) + DFE®(I + L(k))Kz(k)
+(B — DFE)®y(I + L(k — 1))Kz(k — 1) + Hw(k) (10)
y = Cu(k)

Remark 2.1. Unlike the previous models as [6,11], the NCS with time-varying actuator
faults considered is modeled as a closed-loop system (10) with time-varying parameter L(k)
which reflects the time varying property of actuator faults, and this model is related to the
boundary values of the faults ®, and P;.

3. H,, Fault-Tolerant Controller Design. To analyze the stability of the system
expediently, following definition and lemma are introduced.

Definition 3.1. [13,14]. For system (10), if it satisfies that: 1. The closed-loop system
is asymptotically stable if w(k) = 0; 2. Under any zero initial condition, given v > 0, for
any nonzero vector w(k) € Ly[0,00), the output y(k) satisfies ||y(k)||, < v |lw(k)|,. It is
called that system (10) is asymptotically stable with Hy, norm bound -y.

Lemma 3.1. [14]. For any matrices W, M, N, F(t) with F'F < I, and any scalar
e > 0, the inequality holds as follows.

W+ MF#)N+ NTFT)MT <W +eMMT + < 'NTN (11)

Theorem 3.1. Given gain matriz K, if there exists symmetric positive definite matrices
P and @, as well as a set of constants € > 0 and v > 0, satisfying

[ —cl 0 0 E<I>0(I+ L)K —E<I>0(I+ L)K 0 T
* — 17 DT 0 0 0
* * —p! A B<I>0(I+ L)K H
* * * * —Q 0

| x * * * * _72[ ]

then system (10) is asymptotically stable with Hy, norm bound ~. x represents the sym-
metry blocks of matriz.
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Proof: Consider the following Lyapunov function
v(k) = 2" (k)Px(k) + 2" (k — 1)Qx(k — 1).

For the convenience of writing, we denote L = L(k) in the following expressions. Con-
ducting subtract operating along the arbitrary trajectory of system (10) is given by
Av(k) = v(k+1) —v(k)
= 2" (k+1)Pz(k+1) + 2" (k)(Q — P)x(k) — " (k — 1)Qu(k — 1)
= [Az(k) + DFE®y(I + L)Kz(k) + (B — DFE)®¢(I + L)Kz(k — 1)
+Hw(k)]"P[Az(k) + DFE®y(I + L)Kx(k) + (B — DFE)®,K (I + L)x(k — 1)
+Huw(k)] + 2" (k)(Q — P)x(k) — 2™ (k — 1)Qz(k — 1)

T

(k) I"PT - P+Q T7PQ  TTPH (k)
= [ z(k —1) * Q'PQ—-Q QTPH z(k —1) ] (13)
w(k) * * HTPH w(k)

where T = A + DFE®o(I + L)K, Q = Bdo(I + L)K — DFE®(I + L)K.
Plus y” (k)y(k) — v*w” (k)w(k) at two ends of Equation (13), we have

Av(k) +y" (k)y(k) — v*w" (k)w(k) (14)
z(k) 1" [TTPT—P+Q+CTC TTPQ " PH (k)
=1 z(k—-1) * QrPQ - Q OTPH z(k —1)
w(k) * * HTPH — 21 w(k)
If
[ I"Pr—P+Q+CTC  TTPQ I'"PH 1
« O'PQ-Q  Q'PH <0 (15)
] . «  H'PH T |

from Equation (14), it is known that,
Av(k) +y" (k)y(k) — v (k)w(k) <0 (16)

If w(k) = 0, obviously, there is Av(k) < 0.
From zero initial condition, we know v(0) = 0. And it can be obtained that v(cc) > 0.
Therefore,

Y [Ao(k) +y" (B)y (k) — " (k)w (k)]

00
k=0

<0 . (17)
Moreover,
ST () (k) — 2 ()] < —o(o0) < 0 (13)
Therefore, we have -
S E) < 3 7T Rk (19)
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Namely, |ly(k)|l, < v|lw(k)||,- Based on Definition 3.1, it knows that system (10) is
asymptotically stable with H,, norm bound 7. Based on Schur complement theory, in-
equality (15) is equivalent to

—p! r Q H
x —P+Q+CTC 0 0
. 8 —Q 0 <0 (20)
* * * —nyI

Submitting the expressions of I' and 2, inequality (20) can be rewritten as

—p! A Bd,(I+L)K H
x —-P+Q+CTC 0 0
* —Q 0
* * —721
_ D 0 T
0 (E®o(I + L)K)"
0 —(B®(I + L)K)T
| 0 0
0 p1"
(E®o(I + L)K)T 10
e+ | T o | <0 (21)
0 0

From Lemma 3.1, the sufficient condition of inequality (21) follows that

—p! A Boy(I+L)K H

*x —P+Q+C'C 0 0

* * —Q 0

* * * —~2I
p] [D]" 0 0 ’
ol o | (BRI + D)E)T (E®y(I + L)K)"

lol o] T | 2B+ )E) | | —(Bdo 1+ L)) | <0 (22

oo 0 0

Using Schur complement theory again, the inequality (22) is equivalent to inequality (12).
This completes the proof.

Now, we reformulate inequality (12) into LMI via a change of variables.

Theorem 3.2. For NCS (10), if there exists symmetric positive definite matrices X, S
and matriz W, as well as a set of constants N\;(i = 1,2) > 0, € > 0 satisfying the following
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LMI:

—1 0 0 0 0 0 0 0 CX 0 0 7
x Xl 0 0 0 0 0 0 0 W 0
x x Xl 0 0 0 0 A(Bdg)T 0 0 0
x* % x M 0 0 0 0 w -W 0
x ox %k M AN(ED)T 0 0 0 0 0
X ok % x % —el 0 0 Ed,W  —E®d, W 0 < 0(23)
* % % %k % * —el eDT 0 0 0
x % k% % * * —p-1 A B»W H
x ok k% % * * * —P '+ S 0 0
* %k k% * * * * -S 0

L ox % ok x % * * * * * —ul ]

then the NCS (10) is asymptotically stable with Hy norm bound v = \/ji and the control
gain is K =WX 1.

Proof: Inequality (12) can be rewritten as

ey A 0 Ed, K _EdK 0 1 [FE®7 T 0 1%
« —e-'T DT 0 0 0 0 0
% « —p! A BOdK H 0 |, | 0
% « —P+Q+CTC 0 o || o KT
* * * * -Q 0 0 —KT

| * * * * * —721_ | 0 ] L 0
T0 7 rEd,1T r 017 o1t ro -0 1"

0 0 0 0 0 0

T I O I B 2 B ) O B 2 A R TS
—KT 0 0 KT KT 0
L0 | L0 o ] Lo L0 ] L0 |

Based on Lemma 3.1, a sufficient condition not containing the time varying parameter
matrix can be given by

r—el 0 0 Ed.K —E®K 0 T FE®,1 [Ed, 7"
« —e 7 DT 0 0 0 0 0
% « —p1 A Be&K H |\ | 0 0
* * x —-P+Q+CTC 0 0 1o 0
* * * * —Q 0 0 0
% * * * * —~2T | | 0 1L 0 |
-0 11 o 17 -0 11 o0 1" r071ro1"
0 0 0 0 0 0
_ 0 0 B® B® 1o 0
AT | per T | e 00 00 + 25! 0 0 <0 (25)
KT | | =KT 0 0 KT | | KT
o0 || o | o || o | Lo || o |
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Using Schur complement theory repeatedly, it can be equivalent to

—1 0 0 0 0 0 0 0 C 0 0 7
x A O 0 0 0 0 0 0 K 0
x o+ AN 00 0 0 (B®)" 0 0 0
x % x M1 0 0 0 0 K -K 0
x x  x % AT (E®)T 0 0 0 0 0
x k% x % % —l 0 0 Ed)K —Ed,K 0 <0 (26)
x % * * * * —~'1 D7 0 0 0
x % * * * * * —p! A B K H
x % * * * * * * —P+Q 0 0
* % * * * * * * * —Q 0
B * * * * * * * * —721_

Pre- and post-multiplying (26) by block-diag(I, I, \oI, I, \\I,I,eI, I, P~' P! I), and
then leting X = P~ W = KP~™' = KX, S = P7'QP™", 4* = p, inequality (23) can be
obtained. K can be calculated as K = WX ~!. This completes the proof.

~—

Remark 3.1. Obviously, in the result above, the time-varying variable L representing the
change of actuator faults is not contained, so this result not only can effectively be applied
to NCS with some special and constant forms of faults, but also fits to NCS with the faults
varying from time to time. Compared with the traditional methods such as [11] in which
the result is related to the faults matriz, the method proposed here is more universal.

4. Simulation. Consider the model of an inverted pendulum as follows.

1 —036 0 012 1.32 0.31
. 01 —-11 0 001 11 —0.52
0 =1016 019 —042 o |TOFT| 195 [+ ] (a9

0 0 —0.02 0.23 —0.75 1.01
We choose the sampling period 7" = 0.1s. It assumes the parameters as a; = 1.53,
ay = —1.68, a3 = —2.1, ay = 1.83. Computed as [10,11], it follows
—1.3025 1.4302 0.0117 0.17
D_ —0.1798 + 0.6623¢  0.1975 + 0.7272:  0.0027 0.0265
- 0.4084 — 0.0817;  —0.4484 — 0.089:  2.099 0.0496 |’
| 0.0064 —0.0003;  —0.0071 — 0.0004¢ 0.0647 1.8212
0.031 —0.8136 + 1.48057
—0.0489 —0.8136 — 1.48057
H= 0.0281 |~ E= —1.5499 ’
| 0.1021 —0.7954
. o(—1.0503+0.18319)(0.1-7) _ | o(—1.0503—0.18313)(0.1-7) _ |
F = diag —, - ,
—1.6070 + 0.2801: 1.7645 4 0.3076¢
o—04189(0.1=75) _ 1 0.2295(0.1-7¢) _ |
0.8796 ’ 0.4199 >

Obviously, FTF < I is satisfied.

Considering the sensor faults may occur, it assumes the upper bound value is 0.95
and the lower bound value is 0.3, namely 0.3 < & < 0.95. By making use of LMI tool-
box in MATLAB to solve the linear matrix inequality (23), Hy fault-tolerant controller
parameters of NCS can be obtained

K=WX'=[-11365 14213 2.1465 2.6178 |.
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We choose the initial state of the system as z(0) = z(—1) = [1 0.2 0.1 —1.1 ]T,
the outside disturbance as w(t) = 8'06 (5)t5h§r: =< 65 . When actuator is normal, the
state responses of NCS are shown in Figure 3, and the system gets preliminary steadiness
at 38s. When time varying actuator faults occur, the state responses of NCS are shown in
Figure 4, from which we can see the transition time of state response obviously becomes
longer than that in Figure 3 for the introduction of time-varying faults, but the system
is still asymptotically stable and gets preliminary steadiness at 45s. The corresponding
distribution of time varying actuator faults is shown in Figure 5. Moreover, from Figure
3 and Figure 4, we know the state can return to the equilibrium position in a certain
period of time when the NCS is affected by outside disturbance. So, the performance of
NCS can be well maintained by H,, fault-tolerant controller.

Moreover, we apply the method proposed in [11] into the time-varying actuator faults
problem. And the design of controller fails with K = [—1.5359 —0.3211 1.2108 —0.5793 } ,
and the response of system state is shown as Figure 6, from which we know the traditional
design cannot stabilize the system. Thus, it sufficiently demonstrates the effectiveness and
feasibility of this paper.

5. Conclusions. When time varying actuator faults occur, H,, fault-tolerant control
problem of networked control system is studied in this paper. Based on the network trans-
mission environment, the networked control system is modeled as a closed loop discrete-
time system with time varying actuator faults and outside disturbance considered. And
the time varying property of actuator faults is reflected by a time-varying parameter.

1.5 :
0 10 20 30 40 50 60 70 80 90 100

Time t/s

FIGURE 3. State response of NCS without actuator faults

e U
0 10 20 30 40 50 60 70 80 90 100
Time t/s

FIGURE 4. State response of NCS with time varying actuator faults
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0 10 20 30 40 50 60 70 80 90 100
Time t/s

F1GURE 5. The time varying actuator faults in NCS

0 10 20 30 40 50 60 70 80 90 100
Time t/s

FIGURE 6. State response of NCS with time varying actuator faults

Moreover, using Lyapunov stability theory and linear matrix inequality (LMI) approach,
the H, fault-tolerant controller is proposed to guarantee such faulty networked control
system asymptotically stable. Finally, the feasibility and effectiveness of this method have
been demonstrated by a simulation example.
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