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ABSTRACT. In this paper the concept of fuzzy integers which can be used to represent
uncertain or imprecise integer quantity is proposed, the properties of fuzzy integers are
investigated, and a representation theorem of fuzzy integers is obtained. Based on the
representation theorem, the closeness of operation for fuzzy integers is discussed, it is
shown that the usual addition still preserves the closeness of operation for fuzzy integers,
but the usual multiplication and scalar multiplication do not preserve the closeness of the
operation for fuzzy integers, and a new multiplication and a new scalar multiplication
which preserve the closeness of operation for fuzzy integers are defined. Then for the sake
of convenience and more rationality in application, a special kind of fuzzy integers which
is called trapezoid-type fuzzy integer is introduced, and a method constructing trapezoid-
type fuzzy integers to represent uncertain or imprecise integer quantities is proposed. At
last, two practical examples are given to show the method of constructing fuzzy integers
to represent uncertain or imprecise integer quantities.

Keywords: Fuzzy number, Discrete fuzzy number, Fuzzy integer, Trapezoid-type fuzzy
integer, Uncertain or imprecise integer quantity

1. Introduction. Since 1965, professor Zadeh put forward the concept of fuzzy set in
[23], and more and more researchers devoted themselves into the theories of fuzzy set
and their applications [10, 15]. In 1972, Chang and Zadeh proposed the concept of fuzzy
number to study the properties of probability functions in [6]. With the development of
theories and applications of fuzzy numbers [7, 8, 9, 16, 18, 19], this concept becomes more
and more important.

It is known that the collection of all real numbers possesses continuous attributes,
but the collections of the numbers with some special properties like rational numbers or
integers do not. The quantity which may be any one of the collection of numbers with
continuous attributes is said to be a continuous type quantity, but the quantity which
can only be one of the collections of some numbers without continuous attributes is said
to be a discrete type quantity. Crisp real number can be used to represent certain and
precise continuous type quantity, and crisp discrete number (which can only be one of
the collections of some numbers without continuous attributes) can be used to represent
certain and precise discrete type quantity. Likewise, fuzzy (continuous) number can be
used to represent uncertain or imprecise continuous type quantity, and fuzzy discrete
number can be used to represent uncertain or imprecise discrete type quantity.

In engineering or real world, the problems dealt with by us relate not only to uncertain
or imprecise continuous type quantities, but also to uncertain or imprecise discrete type
quantities such as “a group of people”, “a bus of people”, “a flock of sheep” and “the
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grade of the public life in a kind of cities (like medium sized city)”. Therefore, studying
discrete fuzzy numbers and using discrete fuzzy number theories to deal with uncertain
or imprecise discrete type quantities are also important works. In 2001, Voxman defined
(1-dimensional) discrete fuzzy numbers and obtained some results about them in [17],
which as one kind of special fuzzy sets, have some application backgrounds. In 2005,
Wang et al. gave a kind of representation of a discrete fuzzy number using r-level sets
in [21]. Then Casasnovas and Riera studied some characters of discrete fuzzy numbers
in [1, 2, 3, 4, 5]. In 2012, Riera and Torrens introduced aggregation functions defined
on the set of all discrete fuzzy numbers whose support is a subset of consecutive natural
numbers, and they are applied to the aggregation of subjective evaluations in [12]. In
2013, Riera and Torrens studied the residual implications on the set of discrete fuzzy
numbers in [13]. Xie et al. discussed addition, multiplication and scalar multiplication
operations of 2-dimensional discrete fuzzy number in [22]. In 2014, Riera and Torrens
introduced aggregation functions on the set of discrete fuzzy numbers whose support is
a set of consecutive natural numbers from a couple of discrete aggregation functions,
and they can increase the flexibility of the elicitation of qualitative information based
on linguistic terms in [14]. Massanet et al. set up a new linguistic computational model
based on discrete fuzzy numbers for computing with words in [11]. Recently, we defined a
special kind of discrete fuzzy numbers which is called trapezoid fuzzy integers, investigate
the operations of trapezoid fuzzy integers, and gave a practical example to show their
application in [20].

In fact, many of the uncertain or imprecise discrete type quantities dealt with by us in
engineering or real world are all uncertain or imprecise integer type quantities, for example,
previously described “a group of people”, “a bus of people”, “a flock of sheep” and “the
grade of the public life in a kind of cities (like medium sized city)” are all uncertain or
imprecise integer type quantities. For another example, in [11, 12, 14], the uncertain or
imprecise discrete type quantities dealt with in subjective evaluations are also uncertain
or imprecise integer type quantities. So studying fuzzy integer numbers and using fuzzy
integer numbers to represent uncertain or imprecise integer type quantities (so that we can
use the fuzzy integer number theories to solve engineering problems or practical problems
related to uncertain or imprecise discrete type quantities) are important and meaningful.
Although we studied trapezoid fuzzy integers, the concept of trapezoid fuzzy integers has
a big limitation, and they are only suitable to represent the uncertain or imprecise integer
type quantities which are Two-side type (see Figure 1), but not suitable to represent the
uncertain or imprecise integer type quantities which are Right-side type (see Figure 2)
or Left-side type (see Figure 3), or possess some characteristics (see Example 4.1 and
Remark 4.1).

In this paper, we study a special kind of discrete fuzzy numbers which possess wider
range and are more suitable (compared with trapezoid fuzzy integers) for representing
uncertain or imprecise integer quantities, and study their properties and operations and
the methods constructing this kind of special discrete fuzzy number. The specific arrange-
ments of this paper are as follows. In Section 2, we briefly review some basic notions,
definitions and results about discrete fuzzy numbers. In Section 3, we give the definition
of fuzzy integers which is a special kind of discrete fuzzy numbers and can be used to
represent such uncertain or imprecise integer information, and study their representation
in cut set form. Then using the representation theorem obtained by us, we discuss the
properties and the operations (include addition, multiplication and scalar multiplication)
and the closeness of the operations and the rules of the operations. In Section 4, for the
sake of convenience in application, we introduce a special kind of fuzzy integers which
is called trapezoid-type fuzzy integer, and study the problem about how to construct
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trapezoid-type fuzzy integers to represent uncertain or imprecise integer quantities. At
last, we make a conclusion in Section 5.

2. Basic Definitions and Notations. Let R be the real number set, and I be the
integer set. And let K(R) denote the collection of non-empty compact subsets of R.
The addition, scalar multiplication and multiplication on the space K(R) are respectively
defined as A+ B={a+b|lac Ajbe B}, \A={Xa|a€ A} and AB={ab|a € Abe
B} for any A, B € K(R), A € R.

A fuzzy subset (for short, a fuzzy set) of R is a function u : R — [0, 1]. For each such
fuzzy set u, we denote by [u]" = {z € R" : u(x) > r} for any r € (0, 1], its r-level set. By
suppu we denote the support of u, i.e., the set {z € R" : u(x) > 0}. By [u]® we denote
the closure of the suppu, i.e., [u]® = {z € R: u(x) > 0}.

For any fuzzy sets u, v and real number k, we define the addition and the multiplication
of u and v, and the scalar multiplication of £ and u by the following:

(u+v)(r) = sup min{u(y),v(2)};

(wv)(z) = sup min{u(y), v(z)};

Yyz=x

(ku)(z) = { u(e/k) WEZD

A 1 ifz=0
0(5”):{ 0 ifz#£0 "

where

Definition 2.1. [17] A fuzzy set u : R — [0,1] is called a discrete fuzzy number if the
support of u is finite, i.e., there exist x1,x9,...,x, € R with x1 < x5 < ... < x, such
that [u]® = {xy,x9,...,2,} (the finiteness of the support implies [u]® = suppu), and there
exist natural numbers s, t with 1 < s <t <n such that
(1) u(xz;) = 1 for any natural number i with s <i <t;
(2) u(z;) < wu(xj) for any natural numbers i, j with 1 <i < j <'s, u(z;) > u(z;) for any
natural numbers v, j with t <1 <7 <n.

We denote the collection of all discrete fuzzy numbers by Fp.

3. Fuzzy Integer. For any sq, sy € I with s; < s9, we denote
(s1,89) ={x €l:8 <x<sy}
and call it a closed integer interval.

Definition 3.1. A fuzzy set u : R — [0,1] is called a fuzzy integer if its support is a
closed integer interval (denoted as (u(0),u(0))), and satisfies
(1) w is normal, i.e., there exists an & € (u(0),w(0)) such that u(z) = 1;
(2) u(z;) < u(z) for any z;, z; € (uw(0),2) with x; < x;;
(3) u(z;) > ul(x;) for any x;, x; € (&,0(0)) with x; < ;.
And we denote the collection of all fuzzy integers by Fr.

Proposition 3.1. Let u € F;. Then
(1) suppu = [u]’;
(2) u € FD-
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Proof: Since u € Fy, suppu is a closed integer interval, so suppu is a finite set. It
implies suppu is a closed integer interval, so we see suppu = [u]® by the definition of [u]°,
i.e., Conclusion (1) holds.

From u € Fy, we see [u]® is a closed integer interval by Conclusion (1), so there exist
T1,To, ..., 0y € I C R with 7y < my < ... < x, such that [u]® = {x,29,...,2,} (Where
it is obvious that z; = u(0) and x, = w(0)). By the Condition (1) of Definition 3.1, we
see there exists a natural number iy with 0 < ig < n such that u(x;)) =1 (i.e., z;, = &),
so [u]* # ¢ ([u]* is not empty). Denoting s = min{i : z; € [u]'}, t = max{i : z; € [u]'},
we have that 1 < s < iy <t <n and u(z;) = 1 for any natural number i with s < i < t.
In addition, if natural numbers 7, j satisfy 1 < i < 7 < s, then 1 < 1 < j < 1,
ie., zj,z; € (u(0),2) and x; < x;, so we know wu(x;) > u(x;) by the Conclusion (2) of
Definition 3.1. Similarly, we can show that if natural numbers 7, j satisfy ¢t < i < j < n,
then u(z;) > u(x;). Therefore, u satisfies the all conclusions of the definition of discrete
fuzzy numbers, so u € Fp.

Theorem 3.1. Let u € Fr. Then the following statements (1)-(3) hold:
(1) [u]" is a closed integer interval for any r € [0, 1];
(2) [u]™> C [u]™, for any 1,79 € [0,1] with 0 <7y <1y < 1;
(3) N2 [u]™ = [u]" for any positive non-decreasing sequence {rp}o>, with limy,_oory, =
re (0,1].
And conversely, if {A, CI1: r €[0,1]} satisfies the following conditions (i)-(iii):
(i) A, is a closed integer interval for any r € [0,1];
(ii) A,, C A, for any ri,r9 € [0,1] with 0 < ry <1y < 1;
(iii) N0 A, = A, for any positive non-decreasing sequence {r,}>%, with lim, ,r, =
r e (0,1],
then there ezists a unique u € Fy such that [u]” = A,, for any r € [0,1].

Proof: The proof of the first part of the theorem: Let u € F;. By the definition of
[u]", r € [0,1], Conclusion (2) of the theorem obviously holds. Then, for r € (0, 1], we
see [u]" C [u]® = (u(0),u(0)). In addition, from the normality and [u]' C [u]", we know
[u]" # ¢. Denoting z = minfu|” and T = max[u]", we see £, € I and [u|" C (z,7T)
since [u]" is an empty finite integer set. Let Z be a normal point of u, then z < & < 7.
Therefore, for any x € (x,T), we see x is an integer with z <z <z or & <z <T. As
x <z < &, we know u(x) > u(z) > r from Condition (2) of Definition 3.1, so = € [u]".
Likewise, as # < z < T, we can also see x € [u]" from Condition (3) of Definition 3.1.
Thus, we obtain (z,7) C [u]", so [u]" = (z,T). Therefore, we see for any r € [0, 1], [u]" is
always a closed integer interval since [u]® is also a closed integer interval by Definition 3.1,
so Conclusion (1) of the theorem holds. Let {r,}>2, be a positive non-decreasing sequence
with limy, oo, = 17 € (0,1]. For any n = 1,2,..., from r, < r, we know [u]" C [u]™
by Conclusion (2) of the theorem, so we have [u]" C N, [u]™. Let z € N, [u|™. Then
x € [u]™, i.e., u(x) > r, holds for any n = 1,2, ..., it implies u(z) > r, so x € [u]|". Thus,
we obtain N9 [u]"™ = [u]", i.e., Conclusion (3) of the theorem also holds. The proof of
the first part of the theorem is completed.

The proof of the second part of the theorem: Let A, C I, r € [0, 1] satisfy Conditions
(i)-(iii) of the theorem. Writing

sup{r € [0,1]:z € A,} ifx € Ay
“(“7):{0 ety } if 2 € A
in the following we prove that u € F and satisfy [u]" = A,, for any r € [0, 1].

Firstly, we show [u]" = A, for any r € [0,1]. Let rp € [0,1]. If z € A,,, then
ro € {r € [0,1] : x € A,}. Hence, u(z) = sup{r € [0,1] : x € A,} > ro, i.e., x € [u]™.
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Therefore, we have A, C [u]™ for any ro € [0,1]. Conversely, if ry € [0,1] and z € [u]™,
then u(z) > 1y as ro # 0, and u(x) > rg as 1o = 0, i.e., sup{r € [0,1] : z € A} > 1y
as ro # 0, and sup{r € [0,1] : v € A, } >rgasry=0. If sup{r € [0,1] : z € A, } > rp
(ro € [0,1]), by the definition of supremum, we see that there exists i € (0,1] with
x € A; such that © > rg, so by Condition (ii) of the theorem, we know = € A; C A,,.
If sup{r € [0,1] : x € A,} = ry (ro € (0,1]), then there exists a positive non-decreasing
sequence {r,}5, with z € A, (n = 1,2,...) such that lim, ,.r, = ro € (0,1], so we
have that © € N>, A4, = A,, by Condition (iii) of the theorem. Thus, we also obtain
[u]™® C A,, for any rq € [0,1], so [u]" = A, holds for any r € [0, 1].

Secondly, we show u € Fy. From the definition of u and suppu = [u]° = A; and
Condition (i) of the theorem, we see that u is a fuzzy set of R, and its support suppu is
a closed integer interval (denoted as (u(0),u(0))). The normality of u can be seen from
the non-empty of [u]' (by [u]' = A; and Condition (i) of the theorem), so Condition (1)
of Definition 3.1 holds. Let Z € (u(0),%(0)) such that u(z) = 1, and z;,z; € (u(0), %)
with z; < z;. We prove that u(z;) < u(z;), i.e., Condition (2) of Definition 3.1 holds
by reductio in the following. If u(z;) < u(x;) does not hold, then wu(x;) > u(z;), so we
see [u]“@) C [u]“®) and x;€[u]") by Condition (ii) of the theorem and the definition
of u(w;)-level set of u. It implies x; > min[u]“®) > z; which contradicts to z; < z;, so
u(x;) < u(z;), i.e., Condition (2) of Definition 3.1 holds. Similarly, we can show Condition
(3) of Definition 3.1 also holds, so by the definition (Definition 3.1) of fuzzy integers, we
have u € Fj.

At last, the uniqueness of u is obvious, so the proof of the theorem is completed.

Remark 3.1. Theorem 3.1 tells us that for any u € F; with r € [0,1], [u]" is always a
closed integer interval. We denote the closed integer interval by (u(r),u(r)), i.e., [u]” =

(u(r), u(r)).
Theorem 3.2. Let u € Fp. Then u € F; < [u]" is a closed integer interval for any
r € [0,1].
Proof: By the definition (Definition 2.1) of discrete fuzzy numbers and Theorem 3.1,
the theorem can be directly shown.
Lemma 3.1. Let (s1,t1), (S2,t2) be closed integer intervals. Then
(s1,t1)+ (52, ta)=(s1+ Sa,t1+ t2)

Proof: Let x € (s1,t1) + (82, t2). Then there exist y € (s1,t1) and z € (sy, t5) such that
r=y+z Froms <y<t;,s9<z<tyandy,z €1, wesee s; +5, <1x <t +1y and
x € 1,50 x € ($1+ S9,t1 +12). Thus, (s1,t1)+ (s2,12) C (s1+ S2,t1 +12) holds. Conversely,
let x € (51 + s9,11 + t2), then s; + s < x < t; + 1ty and x € I. Denoting y = x — sy, then
So<y<ti+ty—s; <tyandy €I, ie., y € (so,t9), so from z = y+ s; and s; € (s1,11),
we have © € (s1,t1) + (2, t2). Therefore, (s1 + sa,t1 + to) C (s1,t1) + (s2,t2) also holds,
so we have (s1,t1) + (s9,t2) = (s1 + S2,t1 + ta).

Remark 3.2. For any closed integer intervals (sy,11), (S2,t2), and any m € I, inclusion
relations

(s1,t1)(s2,t2) C (min{sysg, s1ta, 152, tate}, max{s, s, s1te, t1Se, tata})
and

{mty,ms1) if m <0
hold, but in turn, the inclusion relations

) >
misy, h) { (msy,mty)y if m >0

(s1,t1)(s2,t2) D (min{s;sq, s1ta, 152, tate}, max{s, s, s1te, t159, tata})
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and
(msy, mty)y if m >0
msi, t1) 2 { (mty,ms1) if m <0

are not true. So
(s1,t1) (82, t2) = (min{sysg, s1ta, t159, tale}, max{ s, s, s1te, t1S9, lata})

| {msy,mty) if m >0
msi, th) = { (mty,msy) if m <0

may not be true. Of course, as k € R,

. <I{?81,kt1> ka Z 0
kisith) = { (bt ks)) if k <0

more may not be true.

Theorem 3.3. Ifu,v € Fr,k € R, then for any r € [0,1],
(1) [u+v]" = [u]" + [v]";

(2) [ku]" = k[u]";

(3) [uv]” = [u]"[v]".

Proof: Let u,v € Fy,k € I. We first show that [u + v]" = [u]" + [v]", for any r € [0, 1].
For a fixed r € [0,1], if z € [u]" + [v]", then there exist y € [u]" and 2z € [v]" such that z =
y+ 2. Hence, we deduce that (u+v)(x) = sup,,_, min(u(s),v(t)) > min(u(y),v(z)) > r,
i.e., x € [u+wv]". This leads to [u+v]" D [u]" + [v]" for any r € [0, 1]. Conversely, for any
fixed r € [0,1], if z € [u + v]", then we have (u + v)(xz) > r as r # 0, and (u +v)(z) > r
as r = 0, i.e., sup, ,—, min(u(s),v(t)) > r as r # 0, and sup,,—, min(u(s),v(t)) > r as
r=0. If sup,,,_, min(u(s),v(t)) > r € [0, 1], then there exist s,,t, € R with s, +1, =z
such that min{u(s,),v(t,)} > r, so we have s, + ¢, = x and u(s,) > r and v(t,) > r, i.e.,
r = s,+t, and s, € [u|" and ¢, € [v]", it implies x € [u]"+[v]". If sup,,_, min(u(s),v(t)) =
r € (0,1], then there exist positive non-decreasing sequence {min(u(s,), v(t,))}o>, with
Sy + t, = x such that lim, . min{u(s,),v(t,)} = r. From s, € [u]° and ¢, € [v]°
(n =1,2,...), we see that {s, : n =1,2,...} and {t, : n = 1,2,...} are all finite, so
{min(u(sy),v(t,)) : n =1,2,...} is also finite. It implies that there exists natural number
ng such that min(u(s,,), v(ts,)) = sup{min(u(s,),v(t,)) :n=1,2,...} =r,s0 u(s,,) > r
and v(t,,) > r, i.e., sp, € [u]" and t,, € [v]", and then x = s,,, + tp, € [u]" + [v]". Thus,
[u+v]" C [u]" +[v]" for any r € [0,1] also holds, so [u+v]" = [u]” + [v]" for any r € [0, 1],
i.e., Conclusion (1) of the theorem is true.

We next show that [ku]" = k[u]” for any k € R and r € [0, 1]. By using the definitions
of ku and k[u]", we can see that [0u]" = O[u]" for any r € [0, 1], i.e., for k = 0, [ku]" = k[u]"
holds for any r € [0,1]. Let k # 0. Then, for a fixed r € [0,1], if z € k[u]", then there
exists y € [u]" such that x = ky. This leads to (ku)(z) = u(x/k) = u(ky/k) = u(y) > r,
i.e., x € [ku|". Therefore, we obtain [ku]" D k[u]" for any k # 0 and r € [0, 1]. Conversely,
for any fixed r € [0,1], if z € [ku]", then u(x/k) = (ku)(x) > r, so x/k € [u]", i.e.,
x € klu]". Therefore, we also obtain [ku]" C k[u]” for any k # 0 and r € [0, 1].

By using similar proof of Conclusion (1) of the theorem, we can also prove that [uv]” =
[u]"[v]" for any r € [0, 1]. Thus, the proof is completed.

By Theorems 3.1 and 3.3 and Lemma 3.1, we can obtain the following result:

Theorem 3.4. If u,v € Fy, then u+v € Fy, and

((u+0)(r), (w+v)(r)) = (ulr) +u(r),ulr) +v(r))

for any r € [0, 1].
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Remark 3.3. Theorem 3.4 tells us that the usual addition “+7 preserves the closeness
of the operation for fuzzy integers. However, by Theorem 3.3 and Remark 3.2, we can see
that the usual scalar multiplication and multiplication do not preserve the closeness of the
operation for fuzzy integers.

For the sake of the application of fuzzy integers, we define a new scalar multiplication
and multiplication operations which preserve the closeness of the operation. For this
reason, we give the following denotation and result:

For any x € R, we use |[z] to indicate the integer which is obtained by arithmetic
rounding to x.

Theorem 3.5. Let u,v € Fr,k € R, and for each r € [0, 1]
_ ) lma(r)], [mu(r)]) if k=0
A= { o] o)l k=0
B, =
(min{u(r)o(r), u(r)v(r),w(r)u(r), w(r)v(r)}, max{u(r)o(r), u(r)o(r), w(r)or), w(r)o(r) })
Then families of sets {A, : r € [0,1]} and {B, : r € [0,1]} both satisfy Conditions (i)-(iii)
of Theorem 3.1.

Proof: The theorem can be easily shown, so we omit the proof.
By Theorems 3.1 and 3.5, we can give the following definition:

Definition 3.2. Let u,v € Fr, k € R. We define scalar multiplication k o u (of k and u)
and multiplication wo v (u and v) as the fuzzy integers decided by {A, : r € [0,1]} and
{B, :r € [0,1]} in Theorem 3.5, respectively.

Theorem 3.6. Let u,v € Fr,k € R. Then kou,uov € Fy, and
(1) kou(r) = |ku(r)] and kou(r) = |ku(r)] as k >0,
kowu(r)= |ku(r)] and kou(r) = |ku(r)] as k < 0;
(2) wouv(r) = min{u(r)u(r), u(r)o(r),u(r)u(r),u(r)o(r)},
uoo(r) = max{u(r)v(r),u(r)v(r),a(r)v(r),a(r)v(r)}.
Proof: The theorem can be directly obtained by Theorem 3.5 and Definition 3.2.
Theorem 3.7. Let u,v € Fr,k € R. Then

(1) ku =kow as ku € Fy;
(2) uv =uowv as uv € Fy.

Proof: The theorem can be easily shown, so we omit the proof.
4. Method to Construct Fuzzy Integer.

4.1. Trapezoid-type fuzzy integer.

Theorem 4.1. Let sy, s1, t1 and ty € I with so < s1 <ty <ty € I. If the fuzzy set
u: R —[0,1] is defined as

1 if @€ (s1,t1)
2250 gf x e (m, s1)
u(x) = o S
=9 B2 i we (m)

where m,m € I with so < m < sy and t; < m < ty, then u € F7.

Proof: The theorem can be easily shown, so we omit the proof.
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Definition 4.1. Let sqg, s1, t1 and tog € I with sy < s; < t; <ty € I. If the fuzzy set
u: R —[0,1] is defined as

1 if x € (s1,t1)

2250 gf x e (m, s1)

u(x) = g1750 o
(z) e i v e (t,m)
0 if € (m,m)

then we call u a trapezoid-type fuzzy integer, and denote it as u = Fr(So|m, 1,1, tolm)-
Specially, if s; = t; (denoted n), then we call the trapezoid-type fuzzy integer u a triangle-
type fuzzy integer, and denote it as u = Fi(So|m,n, to|m), where m,m € I with so < m < s;
and tl S m S t().

And we denote the collection of all trapezoid-type fuzzy integers by Tra — Fr, and the
collection of all triangle-type fuzzy integers by Tri — Fy.

4.2. Constructing methods. In this section, we establish the method constructing
fuzzy integers to represent an object characterized by a group of uncertain or impre-
cise integers information. For the sake of convenience in stating, we first introduce the
following concepts.

1] 1 N IRERERE .

FIGURE 1. Two-side type FIGURE 2. Right-side type FIGURE 3. Left-side type

For an uncertain or imprecise integer information wu,

(1) if its maximal membership degree point(s) is (are) in the middle part (see Figure
1), then we said it to be of Two-side type;

(2) if its maximal membership degree point(s) is (are) only in the right (see Figure 2),
then we said it to be of Right-side type;

(3) if its maximal membership degree point(s) is (are) only in the left (see Figure 3),
then we said it to be of Left-side type;

Consider an object (denoted by O) which is characterized by an imprecise or uncertain
integer information. And suppose the following data set about the object is from m
sources (such as observations or samples) in an imprecise or uncertain environment:

X1, T2y ey Ty (7, € 1,i=1,2,...,m)

The problem to solve is how to construct a fuzzy integer (from the set of data: xy, zs, ...,
Tm) to represent the object O which is characterized by imprecise or uncertain integer
quantity.

The constructing method: First: We work out the means p of the object O from xy, x,, . . .,
T, Ti €1, 0=1,2,....,m:

p=3 (1)
=1
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Second: We work out the left separation degrees Lo and right separation degrees Ro
of the object O from z1,25,..., 2, x; € I, 1=1,2,...,m, respectively:

Lo = NLL Z:L‘i<u(lu’ o xl)
Ro =%

o Tl =10 ?
where Ny and Ny are the number of the character values which satisfy z; < p in
T1,%2y s T, T; € I, 4 = 1,2,...,m and the number of the character values which
satisfy x; > pin oy, 29, ..., 2, x; € I, 1 =1,2,...,m, respectively.

Third: Make a domain («a, ) (such that all the possible character values of the object
O are in it) of the character value of the object O according to the practical case, and
denote

p—ALo=max{ne€l: n<pu—ALo}
p+ARo=min{n €I: n>p+ \Ro}
(max) = max{y — A\Lo, o}
(min) = min{p + ARo, 8}
where \ is a parameter, that may be chosen in interval [2, 4] according to practical case.

(1) When the object quantity is of Two-side type, we construct a trapezoid-type fuzzy
integer u as

u=F (u— ALa|(M),M,N,M+ARa|(m) (3)

where N =max{n €I: n<pu}and N=min{n € l: n > u}.
(2) When the object quantity is of Right-side type, we construct a trapezoid-type fuzzy
integer u as
u = Fr(p — AL0|(max), N, B, B|5) (4)
where N =max{n € I: n < u}.
(3) When the object quantity is of Left-side type, we construct a trapezoid-type fuzzy
integer u as
u=F7y (a|aaaaﬁau+)\RO—)(ﬁ)> (5)
where N =min{n € I : n > u}.
Then we can use the trapezoid-type fuzzy integer u to express the object O.
In the following, we give practical examples to show the method constructing a fuzzy
integer to represent an uncertain or imprecise integer quantity.

Example 4.1. One day, there are 5 bus from City A to City B. Then the number (i.e.,
“5 bus people”) of people from City A to City B by the 5 buses is an uncertain integer
quantity, so we can use a fuzzy integer to represent the uncertain integer quantity ‘5 bus
people”.

According to the provisions of the transport company, not only over-passenger is not
allowed, but also the passengers less than half of the bus capacity are not allowed, so one
bus from City A to City B only can be taken by 19-38 people. For buses from City A to
City B, suppose the following set of data comes from the previous statistics (50 Samples)
of the number of passengers of one bus.

37,19, 35,37, 26, 36, 32, 38, 37, 34, 36, 36, 31, 25, 32, 38, 36, 36, 34, 34, 19, 33, 25, 29, 36
28,20, 36, 30, 27, 23, 21, 24, 34, 36, 31, 38, 25, 35, 37, 22, 29, 37, 38, 35, 34, 32, 28, 38, 33
The problem to solve is how to construct a fuzzy integer (from the set of data) to represent

the uncertain integer quantity “5 big bus people”.

First: By Formula (1), we work out the means u of the set of data: u = % o=
31.64.
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Second: By Formula (2), we work out the left separation degrees Lo and right separation
degrees Ro of the set of data: Lo = NLL viep(B — Ti) = 6.09 and Ro = NLR o (Ti —
p) = 3.84.

Third: Taking A = 3 and a domain («, B) = (19, 38) of the uncertain integer quantity “1
big bus people” according to the practical case (the provisions of the transport company),
we have p — ALo = 13.37 and p+ ARo = 43.16, so

p—ALo=max{ne€l: n<pu—ALo} =13

p+ARoc=min{ne€l: n>p+ARo} =44
(max) = max{y — ALo,a} = 19

(min) = min{y + A\Ro, 3} = 36

And due to the Two-side type attribute of the uncertain integer quantity “1 big bus people”,
we construct a trapezoid-type fuzzy integer u as uw = Fr(13|19, 31,32, 44|36) by Formula (3).

Then we can use the fuzzy integer 5 o u = 5 o Fr(13|19,31,32,44|35) to express the
uncertain integer quantity “5 big bus people”.

Remark 4.1. It is obvious that w = Fy(13|10,31,32,44|35) constructed in Ezample 4.1
is not trapezoid fuzzy integer which is introduced in [20]. From the constructions of
u = Fr(13|19,31,32,44|36) and trapezoid fuzzy integers, we see that it is rational to use
trapezoid-type fuzzy integer u representing “1 big bus people”, but it becomes unwise to
use a trapezoid fuzzy integer representing “l1 big bus people”.

Example 4.2. Let L = {1,2,3,4,5,6,7,8,9} represent Q = {EB,VB,B, MB, F, MG, G,
VG, EG}, where the letters refer ordinarily to the linguistic terms: Extremely Bad, Very
Bad, Bad, More or Less Bad, Fair, More or Less Good, Good, Very Good and Ezxtremely
Good. An expert panel consisting of 100 experts evaluate a person (denoted by P) for his
or her working ability. Everyone in the expert panel is asked to choose only one number in
L which is considered by the expert to be best matching with the working ability of person
P. Suppose the following data set be from the evaluation results of the 100 experts:

123456 7 8 9
000359 20 630

where n; in

ny Mg N3 Ng N5 Mg N7 Ng Tg

<123456789>

is the total number of experts which choose © in L. We can consider to construct a fuzzy
integer to represent the working ability of person P.

We can work out the value
221%1:0.03 X 4+0.05x5+0.09 % 6+0.2x7+0.63 x 8 =735
Taking it into account that 7 is the nearest integer to 7.35 and 4 = min{i € L|n; # 0} and
8 = max{i € L|n; # 0}, then we should construct u = Fy(3,7,9) to represent the working
ability of person P if the trapezoid fuzzy integers introduced in [20] are only considered.
However, it has a defect since u(8) = Fy(3,7,9)(8) = 0.5 is not consistent with ng = 63.
If we construct the fuzzy integer u = F;(3|4,7,10|g) to represent the working ability of
person P, then the defect is overcome since u(8) = Fy(3|4,7,10|s)(8) = 0.6667 is basically
consistent with ng = 63.

p=23



FUZZY INTEGERS 1493

Remark 4.2. Of course, using fuzzy integers to represent uncertain or imprecise integer
quantities like FErample 4.1 and 4.2 is not our destination. We introduce, study and
construct fuzzy integers in order to turn the problem of processing uncertain or imprecise
integer quantities into the problem of processing fuzzy integers by using fuzzy integer space
theory. Thus, fuzzy integers can be applied in some engineering or real world.

5. Conclusion. In this paper, we firstly gave the definition of fuzzy integers (Definition
3.1), showed that they are discrete fuzzy numbers (Proposition 3.1), and obtained a
representation theorem of fuzzy integers in cut-sets form (Theorem 3.1). Then based on
the representation theorem of fuzzy integers, we showed that a discrete fuzzy number is
a fuzzy integer if and only if its cut-sets are all closed integer intervals (Theorem 3.2),
obtained the operation rule in cut-sets form about usual addition and multiplication and
scalar multiplication (Theorem 3.3), showed that the usual addition still preserves the
closeness of operation for fuzzy integers (Theorem 3.4), but the usual multiplication and
scalar multiplication do not preserve the closeness of the operation for fuzzy integers
(Remark 3.3), and defined a new multiplication and a new scalar multiplication which
preserve the closeness of operation for fuzzy integers (Definition 3.2). And then, for the
sake of convenience in application, we introduced a special kind of fuzzy integers which is
called trapezoid-type fuzzy integer (Definition 4.1), and proposed a method constructing
trapezoid-type fuzzy integers to represent uncertain or imprecise integer quantities. At
last, we gave practical example to show the method constructing fuzzy integer to represent
an uncertain or imprecise integer quantity.

In the future work, we can study the problems of establishing suitable measures in fuzzy
integer space to identify, classify and rank imprecise or uncertain integer information, and
put obtained results into the applications in engineering field, such as industrial alarm
system in uncertain environment.
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