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ABSTRACT. Two stages filtering process to reduce the mized Gaussian plus impulse noise
is proposed. The first stage is reducing impulse noise. Furthermore, the second stage is
reducing Gaussian noise. A merger between the decision based method and kernel obser-
vation is conducted to reduce impulse noise. Meanwhile, five Gaussian masks are used to
reduce Gaussian noise. The use of the mask is adjusted to the image texture. In contrast
to the previous method, our method can give a much better restoration in some particu-
lar cases, not only in the quality of the filtering result, but also in the fast computation
time. In this study, we can improve the speed of previous method. Experimental results
have shown that the proposed method outperforms the alternative filters in suppressing
the mized Gaussian plus impulse noise.
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1. Introduction. The corrupted image with noise is one of the main problems in the
image processing and computer vision [1]. Noise may appear during any of acquisition,
pre-processing, compression, production phase, storage and transmission. In transmission
signal, the signal received at the receiver side weakened. For example, the distance be-
tween transmitter and receiver of the television is located far apart, so that the received
signal at the receiver side of the television becomes weak and noise will appear. Two
common types of noise which usually appear are Gaussian noise and impulse noise. Cur-
rently, the development of digital television technology is rapid that is following many
people’s needs. The digital television is able to implement a filter algorithm that has
optimal performance in eliminating noise. Mostly, the existing image denoising algorithm
is only optimal to reduce one type of noise (Gaussian or impulse noise). However, the
digital image is often suffered from more than one type of noise during the process of
acquisition, pre-processing, compression and transmission [2, 3.

Denoising method that is only used for reducing one type of noise is much easier than
the mixed noise removal. In such adverse conditions, it needs the method to press noise
in the image to become a better-quality image. Contamination image with noise makes a
user difficult to recognize the original image data.

The best performance of the filtering technique is accomplished by performing itera-
tively the noise filtering process until the several pixels detected as noisy become negligibly
small [4]. A good image denoising model has significant characteristics of removing noise
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while preserving edges details of an image [5]. In addition, it should have low computa-
tional complexity and fast computation time process [6].

A large number of algorithms have been proposed to remove mixed Gaussian plus
impulse noise, some of which are based on Total Variation (TV) regularization [7, 8, 9,
10, 11]. TV regularized energy minimization [12] performs well for preserving edges area
while removing noise and has been used for multiplicative noise removal [13, 14, 15].
However, TV regularized often causes staircase effect [16] and the texture information
over-smooth in the image [17].

Sparse land model and K-Singular Value Decomposition (K-SVD) algorithms [18] are
also used to reduce Gaussian noise [19]. Furthermore, modifying K-SVD is used to op-
timize the mixed Gaussian and impulse noise removal. Modifying K-SVD is combining
the impulse noise removal based on the mean of the neighboring uncorrupted pixels and
an effective learning dictionary method. Pressing of an impulse noise in the early stages
is able to optimize the performance of the K-SVD [20]. The filtering result has a good
visual image. However, computation time is not so fast, and KSVD method can be used
for filtering a single image that is obtained from photo satellite and medical imaging ap-
plication. Therefore, the applications of K-SVD in image sequences are still needed to be
improved, especially in computation time problem. Application of K-SVD method must
be supported by high-speed processors. Therefore, it is necessary to design a new image
filtering method that is easy to be implemented, and it has a fast computing time process.
However, it has capabilities almost similar to the K-SVD method.

There are many goals in designing noise removal methods.

1. The visual result of the proposed method must have a smooth, clear texture and no
artefacts in the filtering result.

2. The important texture detail should not be lost.

3. The filtering process is conducted especially on the noisy pixel, without engaging the
important pixel that is indicated as original pixel.

4. Image boundaries should not be blurred or sharpened.

5. Preserve the integrity of edge area.

6. An approach of the filtering method is created to obtain a fast computation time.

In this paper, we propose a new filtering method based on kernel observation and edge
direction. This method is the development of the previous method which only used a
mask in the filtering process and did not pay attention to the edge of the image area. In
our proposed method, we use kernel observation method for reducing impulse noise and
adaptive kernel selection based on an edge image to suppress Gaussian noise. This paper
provides five types of Gaussian mask based on the direction of the edge of the image. The
writings of this paper are organized from Section 1 up to Section 5.

2. Noise in Image. The digital image is often disturbed by noise. In this paper, a filter
is conducted to reduce the mixed Gaussian and impulse noise. We provide a corrupted
image as the input of the filter that we made. We create the corrupted image by mixed
Gaussian and impulse noise by performing the following steps.

e Firstly, we corrupt the clean image (F) with Gaussian noise (g). Hence, the resulting
image is the corrupted image by Gaussian noise (I), as described in Equation (1).

I=F+g (1)

e Secondly, furthermore, we mix a corrupted image by Gaussian noise (I) with impulse
noise as illustrated in Equation (2).
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Lij = I,; with probability 1 — p

(2)

I;; is the element of corrupted image by mixed Gaussian and impulse noise. d;; is
uniformly distributed random numbers between the minimum d,,;, and the maximum
value dpax. p is the noise density of random-valued impulse noise with 0 < p < 1.

_ { d;; with probability p
j

3. Proposed Method. The mixed Gaussian and impulse noise is removed in our pro-
posed method through two stages filtering process. The first stage is reducing impulse
noise. Furthermore, the second stage is reducing Gaussian noise. The detail information
about both stages of the filtering process is explained in the following subsection.

3.1. Impulse noise removal. We make impulse noise removal of a merger between the
decision based method and the kernel observation. Decision based method is conducted for
filtering pixels that are detected as impulse noise. Thus, the method needs impulse noise
detectors. Meanwhile, the kernel observation inspects the uncorrupted pixels surrounding
the pixel that was detected as impulse noise.

3.1.1. Impulse noise detector. In the proposed method, we introduce a simple impulse
noise detector that can be used to detect the fixed impulse noise and random-value impulse
noise. Detection of the fixed impulse noise such as salt and pepper noise is easier than
random-value impulse noise. This is caused by the noise intensity which has fixed value
at 0 or 255. Hence, a noisy pixel in this condition is indicated by value 0 or 255. While
for detecting random-valued impulse noise, we use sample pixel window (W). Firstly,
we calculate the absolute value of the difference between each element window and the
median value, as presented in Equation (3). Sometimes in the high-density impulse noise,
the result of median value in the window is 0 or 255. If that happens, we replace the
median value with 128.
Wij = |med1an(W) - Wl]| (3)
We compare the value of each element of the window W with a threshold value (1),
for determining each element of the window W noisy pixel or not. If an element in the
window has an absolute value greater than the threshold value, then the pixel at (i, j)
position in the window will be detected as noise (V) and vice versa. The threshold value
(1) is calculated from the average value between the minimum and the maximum absolute
value of element of the W window.

A ~

T = % (min(W) + maX(W)) (4)

3.1.2. Impulse noise removal based on decision. Decision based method only filters on
the pixels that are detected as noise. Referring to noise detector (N), we can write this
method as in Equation (5).

- Oy if >

Pj=4q Y * 5
“ { I;; others )

A

P;; is the element of impulse noise removal. O;; is the replacement pixel that was detected
as impulse noise. O;; is obtained by observing the surrounding pixels that are detected as
impulse noise. We are only averaging two pixels, which are not detected as impulse noise
to obtain one pixel O;;.

Observation begins from horizontal, vertical, left-diagonal and right-diagonal. For ex-
ample, the observations of two pixels in the horizontal direction at the position (i, 7)
in the image I are fi,j,l and fi,jﬂ. Further, by turning it on the angles £90°, £45°,
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Z135° pixels observations on the vertical direction, left-diagonal and right-diagonal will
be obtained. Preliminary observations for two noises-free pixels are conducted in the 3x3
window. When observation could not find two noises-free pixel on the window 3x3 in
the predetermined direction, the window size will be increased into 3x4, 4x4 and 4x5
successively.

In this stage, the image of ]5ij does not contain impulse noise, but still contains the
Gaussian noise. For that reason, the next stage needs the filtering process to reduce
Gaussian noise.

3.2. Gaussian noise removal. Reducing Gaussian noise in the image can be conducted
by convolution of the corrupted image with a Gaussian masks as in Equation (6).

F=P«H (6)

x is convolution operator. P is the corrupted image with Gaussian noise and H is Gaussian
mask. n is type of Gaussian mask. In this paper, we provide five Gaussian masks. H!
(n = 1) is symmetrical Gaussian mask. H? (n = 2) is horizontal Gaussian mask. H?
(n = 3) is right diagonal Gaussian mask. H* (n = 4) is vertical Gaussian mask and H®
(n = 5) is left diagonal Gaussian mask. These of all are illustrated in Figures 1 (a) to (e).

The use of the mask is adjusted to the image texture. If the part from the image has a
flat texture, it uses a Gaussian mask as in Figure 1(a). While part of the image that has
the edges texture in the horizontal direction, vertical, Diagonal Left and Right Diagonal,
then successively used Gaussian mask as in Figures 1 (b) to (e). More details in the fifth
Gaussian mask design will be explained in the following subsection.

3.2.1. Design of Gaussian mask. Gaussian mask can be set using two-dimension Gaussian
function as in Equation (7).

o mr)2 Ry
( 0) Jr(y y2o) )

H = Ae*( i 2y (7)

A is amplitude coefficient. z¢ and gy, are the coordinates of the center of the mask. o, and
o, are the x and y spreads of the blob. A two-dimensional elliptical Gaussian function
can be written in Equation (8).

1 — Ap(alz—0)2+20(z—20)(y—y0)+e(y—y0)?) (8)

In this case, A is the amplitude. The shape of the Gaussian blob is determined by variables
of a, b and ¢, and they can be written as Equations (9) to (11), respectively.

cos2f sin’6

“= 202 * 207 (9)
.9 .9
sin“f  sin”6

b= 10
402 4o} (10)
sin?f  cos?f

c= + (11)

202 207
The value of o, and o, will affect the shape of the Gaussian blob. If both have the
same value, there will produce a symmetrical Gaussian curve shape as shown in Figure
1(a).
We set 0, = 2 X g, for another mask. There are four 6 values (7, iﬂ', %ﬂ' and %ﬂ'), and
these will produce four shapes of mask as illustrated in Figure 1(b) to Figure 1(e).
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FIGURE 1. Five types of Gaussian mask. (a) Symmetrical Gaussian mask
(H'), (b) Horizontal Gaussian mask (H?), (c) Right diagonal Gaussian
mask (H?), (d) Vertical Gaussian mask (H*) and (e) Left diagonal Gaussian
mask (H”).

The total value of the mask element H7, is more than one. This will cause the results
of filtering tending to contrast. Therefore, we must normalize mask Hj, in order to have
the total elements equal to one. Equation (12) is normalization of mask H,,,.

. He,
Hgy - n
> >y HEy

3.3. Edge detection. Edge detection is used to make maps of an edge area in the
image. For designing an edge map, we use Sobel kernel. Furthermore, the process is
continued by threshold of the edge image. Equations (13) and (14) are the filtering image
with horizontal and vertical Sobel kernel. Meanwhile, Equation (15) is the average of

(12)
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Equations (13) and (14).

~

Dh =P Hh (13)
D,=P=«H, (14)
1

H, and H, are horizontal and vertical Sobel filters, respectively.
By performing threshold process of Equation (15), edge map will be obtained. Equation
(16) is the threshold of Equation (15).
N 1 if Dij >T
Di; = { 0 others (16)
Disa binary map of an edge image. ]f)i]- is an element of an edge image (]f)) D;; is an
element of matrix D. In this case, 1 indicates an edge pixel and 0 is not an edge.

3.3.1. Gaussian mask selection. In the Gaussian noise removal, we use five Gaussian
masks as shown in Figures 1 (a) to (e). Referring to the edge-map of the image, we
can select Gaussian mask which is suitable for texture. We present five rules in the
selection of Gaussian mask.

1) If not an edge, we use Gaussian mask with probability density function (pdf) as
shown in Figure 1(a).

2) If an edge in the horizontal direction, we use Gaussian mask with probability density
function (pdf) as shown in Figure 1(b).

3) If an edge in the right-diagonal direction, we use Gaussian mask with probability
density function (pdf) as shown in Figure 1(c).

4) If an edge in the vertical direction, we use Gaussian mask with probability density
function (pdf) as shown in Figure 1(d).

5) If an edge in the left-diagonal direction, we use Gaussian mask with probability
density function (pdf) as shown in Figure 1(e).

The mask can be changed during the convolution process following the edge directions
in the image. This convolution is different from conventional filtering process that uses
only one mask during the convolution process. Equation (6) is the conditional convolu-
tion based on five rules. This is a new convolution process that we call with adaptive
convolution based on edge direction.

3.4. Gaussian filter improvement. To improve the performance of a Gaussian filter
designed, we combine it with the theory of adaptive Wiener [21]. Convolution process of
an adaptive window uses a fix mask. Meanwhile, the proposed method uses conditional
convolution based on five rules that have been explained in the previous subsection.

Filter Adaptive Wiener with mp and ¢% has been updated, and it is presented on
Equation (17) [21].

U%‘(xay) »
F(,) = me(e,y) + B x (Plasy) = me(o,)) (17)

o2 is the power spectrum of the element matrix from representation of the original image.
02 is the power spectrum of noise prediction that is obtained from averaging of o%. mp
is mean of original image. In this case, mp ~ F'. Furthermore, 0% can be obtained using
Equation (18).

o = (PZ * H") —m (18)
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In Equation (17), the local mean remains unmodified. Meanwhile, the local contrast
is scaled according to the relative amplitudes of 0% and o2. If o% is higher than o2,
local contrast of P(x,y) was assumed in accordance with the F'(z,y) and local contrast

of P(z,y) is not reduced, and vice versa.

4. Experimental Result and Discussion. We have conducted some experiments to
see the performance of the proposed method in the qualitative and quantitative parame-
ters. Different densities of Gaussian plus impulse noise have been tested in our research.
We symbolize impulse noise density by p and Gaussian noise density by (o). In our ex-
periment, we use high impulse noise densities (p = 50%, 70% and 90%). Furthermore, we
use Gaussian noise density (¢ =5 and 10). The entire method was implemented in CPU
3.3 GHz and RAM 4GB using MATLAB 7.5.0 release 2007b.

4.1. Experimental result. We compare our proposed method with the previous studies.
The previous methods to compare with our proposed method are Two-phase method (TP)
[7], Fast two-phase image deblurring (FTPID) [8], Total variation (TV) [11] and Modifying
K-SVD [20]. In order to evaluate performance of the filter, a simulation result was tested
by using Lena’s image (512x512) and Barbara’s image (512x512). Figure 2 is the filtering
result of Lena’s image with o = 10 and p = 70%, and Figure 3 is the filtering result of
Barbara’s image with o = 5 and p = 90%.

4.2. Evaluation method. The quality of the filtering image is evaluated by qualitative
and quantitative evaluation. The information about these evaluations is explained in
subsection below.

FIGURE 2. The filtering result of the Lena corrupted image. (a) Lena image
is corrupted by Gaussian and impulse noise with 0 = 10 and p = 70%. (b)
TP method [7]. (¢) FTPID method [8]. (d) TV method [11]. (e) Modifying
K-SVD [20]. (f) Proposed method.
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FIGURE 3. The filtering result of the Barbara corrupted image. (a) Barbara
corrupted by Gaussian and impulse noise with o = 5 and p = 90%. (b) TP
method [7]. (c¢) FTPID method [8]. (d) TV method [11]. (e) Modifying
K-SVD [20]. (f) Proposed method.

4.2.1. Qualitative evaluation. The quality of filtering image result is evaluated by visual
observation.

The corrupted image by o = 10 and p = 70% is shown in Figure 2(a). In this condition,
it has difficulty in identifying an object in the image. Further, Figures 2(b), 2(c) and 2(d)
are the filtering results of TP, FTPID and TV methods, respectively. The quality filters
of TP, FTPID and TV methods are not good enough to reduce the mixed Gaussian
plus impulse noise in condition that o = 10 and p = 70%. The result of modifying K-
SVD is presented in Figure 2(e). By visual observation, the capability to reduce impulse
noise in Figure 2(e) is a little bit better than Figures 2(b), 2(c) and 2(d). However, the
quality of the filtering result by modifying K-SVD as shown in Figure 2(e) is too smooth.
The filtering result of the proposed method is presented in Figure 2(f). The proposed
method looks better than other comparison methods. The detail of important pixel has
maintained in the proposed method.

The corrupted image by o = 5 and p = 90% is shown in Figure 3(a). Further, Figures
3(b), 3(c) and 3(d) are the filtering results of TP, FTPID and TV methods, respectively.
Similar with Lena’s image, the quality filters of TP, FTPID and TV methods are not
good enough to reduce the mixed Gaussian plus impulse noise in condition that o = 5
and p = 90%. The result of modifying K-SVD is presented in Figure 3(e). By visual
observation, the capability to reduce impulse noise in Figure 3(e) is a little bit better
than Figures 3(b), 3(c) and 3(d). Meanwhile, Figure 3(f) is the filtering result of the
proposed method. Figure 3(f) looks better than Figure 3(e). In this case, the lines door
behind the chair in Figure 3(f) is smoother than Figure 3(e).

In addition, we use SSIM-map in the qualitative evaluation. SSIM-map is a local
perceptual quality indicator that is used to measure the similarity between original image
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and the filtering result. If SSTM-map has a high-contrast result, the filtering image results
also have a high similarity with the original image. Meanwhile, SSIM-map has a low-
contrast result when the filtering image results have a little similarity with the original
image.

Figure 4 is SSIM-map result of Figure 2. Dominant black color is resulted from the
corrupted Lena’s image as shown in Figure 4(a). Figures 4(b) and 4(c) are the SSIM-map
of TP and FTPID. SSIM-map of both methods is causing low-contrast quality. Further,
SSIM-map of TV method is shown in Figure 4(d). By visual observation, Figure 4(d) has
a higher contrast image than Figures 4(a), 4(b), and 4(c). Meanwhile, Figures 4(e) and
4(f) are SSIM-map from modifying K-SVD method and the proposed method. Figures
4(e) and 4(f) have the quality a little bit similar. However, Figure 4(f) has a higher
contrast quality than Figure 4(e).

FIGURE 4. SSIM-map of Lena image in Figure 2. (a) Lena image corrupted
by Gaussian and impulse noise with ¢ = 10 and p = 70%. (b) TP method
[7]. (c) FTPID method [8]. (d) TV method [11]. (e) Modifying K-SVD
method [20]. (f) Proposed method.

Figure 5 is SSIM-map result of Figure 3 Barbara’s image. Dominant black color is
resulted from the corrupted Barbara’s image as shown in Figure 5(a). Figures 5(b), 5(c)
and 5(d) are the SSIM-map of TP, FTPID and TV methods. These methods have low-
contrast quality in the SSIM-map result. Meanwhile, Figures 5(e) and 5(f) are SSIM-map
from modifying K-SVD and the proposed method. Both methods have the quality a little
bit similar. However, the proposed method in Figure 5(f) has a higher contrast image
than Figure 5(e), especially in the face area of Barbara’s image.

4.2.2. Quantitative evaluation. The important evaluations to determine the quality of
image filtering results are PSNR, SSIM index and computation time result. PSNR is
an abbreviation of Peak Signal-to-Noise Ratio that uses a standard mathematical model.
The PSNR is the ratio of the maximal power of original image and the noise power of
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FIGURE 5. SSIM-map of Barbara image in Figure 3. (a) Barbara image
corrupted by Gaussian and impulse noise with o = 5 and p = 90%. (b) TP
method [7]. (¢) FTPID method [8]. (d) TV method [11]. (e) Modifying
K-SVD [20]. (f) Proposed method.

distorted image. The bigger the PSNR value is, the better image quality is and vice versa.
Peak signal-to-noise ratio (PSNR) is illustrated in Equation (19).

255.M.N
PSNR = 20log —; o

N
D i1 2 (T — ij)?

(19)

PSNR is usually expressed in terms of a logarithmic decibel scale as illustrated in
Equation (19). M is represented as row of an image; N is a column of an image; x;; is an
original image and y;; is the filtering result.

The PSNR values of the several methods with different various impulse noise densities
(p = 50%, 70% and 90%) and standard deviation (o = 5 and 10) are presented in Table
1.

Referring to Table 1, PSNR values for Barbara’s and Lena’s images between modifying
K-SVD method and our proposed method are almost similar. In this case, our proposed
method is a little higher than in the modifying K-SVD method. Sometimes, the proposed
method also has PSNR value little bit lower than the modifying K-SVD. However, if
we analyze to use computation time parameter, the proposed method is faster than the
modifying K-SVD method.

Further, the structural similarity (SSIM) index is a method for measuring the similarity
between two images. MSSIM takes the idea that human vision is sensitive to structural
distortion of nature images, so local structure distortion as well as luminance and contrast
are considered in MSSIM index [22]. The MSSIM converges to 1 [23]. It will obtain a
better image quality. The MSSIM index values exhibit much better analysis with the
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TABLE 1. Comparison result of PSNR value

Noise Methods
Images | pand o | Cail [7] | Cai2 [8] | TV [11] | Modifying K-SVD [20] | Proposed
Barbara 25.47 27.86 25.77 28.73 28.76
Peppers 9747 | 20.39 | 28.21 30.24 30.87
House | 50 and 5 | 29.29 31.82 31.52 34.33 34.33
Lena 28.81 31.25 30.11 32.40 32.47
Barbara 22.91 25.89 23.95 26.09 26.25
Peppers 24.74 27.75 26.03 28.02 28.54
House | 70 and 5 | 26.21 30.06 28.03 30.47 31.23
Lena 26.08 29.46 27.54 29.72 30.28
Barbara 19.53 23.28 20.61 22.45 23.38
Peppers 20.86 23.52 21.96 23.63 25.54
House | 90 and 5 | 21.09 25.54 22.75 23.79 26.73
Lena 21.90 26.29 23.28 25.43 26.97
Barbara 24.21 26.35 25.30 28.10 28.10
Peppers 25.60 27.42 27.44 29.41 29.89
House |50 and 10| 26.56 28.74 29.94 33.17 33.17
Lena 26.37 28.38 28.92 31.07 31.77
Barbara 22.08 25.08 23.51 25.73 25.75
Peppers 9357 | 26.65 | 25.32 97.55 9736
House |70 and 10| 24.38 28.32 26.96 29.82 30.05
Lena 24.51 27.83 26.59 29.17 29.78
Barbara 19.66 22.76 20.29 22.50 23.33
Peppers 20.31 23.04 21.52 23.74 24.71
House |90 and 10| 20.41 24.87 22.24 23.99 25.17
Lena 21.12 25.42 22.70 25.27 26.33

qualitative visual appearance that is calculated by using Equation (20).

M
MSSIM(, £) = - S SSIM(f. £, (20)
j=1

f and f, are the clean image and filtered images, respectively. f; and f,. are the image
contents at the local window. Furthermore, M is the number of local windows in the
image [24]. Furthermore, Equation (21) is used to obtain SSIM.

(2pppg, + C1) (2044, + Cs)
(17 + 3, +C1)(0F 4+ 0F + )
py and piy, are the mean intensities of images f and f, respectively. oy and oy, are
standard deviations of images f and f, respectively. C and Cy are constant to avoid
instability.

Table 2 presents MSSIM index results. Similar to PSNR results, our proposed method
is a little higher than the modifying K-SVD method. However, in general, the quality of
our proposed method is better than the modifying K-SVD and all comparison methods
(TP, FTPID and TV methods).

Furthermore, referring to the computation time result our proposed method as pre-
sented in Table 3 has faster results compared to all methods (TP, FTPID, TV and Mod-
ifying K-SVD). As you know, the fast computing time and a good visual result are very
important task in the image filtering process.

SSIM(, fo) =

(21)
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TABLE 2. Comparison result of MSSIM index value

Noise Methods
Images | pand o | Cail [7] | Cai2 [8] | TV [11] | Modifying K-SVD [20] | Proposed
Barbara 0.85 0.83 0.80 0.90 0.90
Peppers 0.74 0.80 0.77 0.80 0.82
House | 50 and 5 0.79 0.85 0.89 0.93 0.93
Lena 0.86 0.85 0.88 0.91 0.92
Barbara 0.76 0.78 0.75 0.83 0.84
Peppers 0.65 0.77 0.71 0.76 0.78
House | 70 and 5 0.72 0.85 0.84 0.90 0.93
Lena 0.79 0.83 0.84 0.88 0.90
Barbara 0.56 0.67 0.62 0.69 0.71
Peppers 0.52 0.69 0.60 0.68 0.73
House | 90 and 5 0.58 0.81 0.71 0.79 0.84
Lena 0.63 0.77 0.73 0.79 0.83
Barbara 0.75 0.7 0.77 0.86 0.86
Peppers 0.57 0.65 0.70 0.75 0.76
House |50 and 10| 0.57 0.66 0.81 0.85 0.85
Lena 0.73 0.67 0.84 0.87 0.88
Barbara 0.66 0.68 0.71 0.78 0.78
Peppers 0.50 0.66 0.64 0.73 0.74
House |70 and 10| 0.53 0.70 0.74 0.83 0.84
Lena 0.67 0.7 0.79 0.85 0.87
Barbara 0.55 0.62 0.59 0.66 0.69
Peppers 0.42 0.64 0.53 0.66 0.68
House |90 and 10| 0.42 0.74 0.62 0.78 0.80
Lena 0.54 0.71 0.68 0.76 0.79

4.3. Discussion. Proposed method has a filtering result slightly better than the complex
methods such as K-SVD. The proposed method is 118.75 times faster than K-SVD for
denoising a Lena image with impulse noise density 50 and Gaussian noise variance 5.
So, the proposed method is more possible implemented for denoising corrupted image
sequences by mixed Gaussian and impulse noise. This caused that the proposed method
is a much simpler method and faster in the processing time than the previous method
such as illustrated in Table 3. On the application of image sequences, we first take a
frame as an image, then we apply a filter to that image, and at last we convert back into
a movie. For implementing on real time image sequences denoising, the faster hardware
is needed.

The method is made not only good implemented on the image in an indoor area but
also for the image of the outdoors. We give examples for the images in an outdoor area
as Figure 6 and Figure 7. The simulation results in Figures 6 and 7 show that the simple
method of proposed method is optimal for reducing noise compared to the comparison
methods. The evaluation of Figure 6 obtains PSNR for Cail [7] = 18.92 dB, Cai2 [§] =
20.54 dB, TV [11] = 19.31 dB, Modifying K-SVD [20] = 20.22 dB and Proposed method
= 20.90 dB.

5. Conclusions. Two stages filtering process is proposed for reducing the mixed Gauss-
ian plus impulse noise. We make impulse noise removal of a merger between the decision
based method and the kernel observation. Furthermore, reducing Gaussian noise in the
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FIGURE 6. The filtering result for outdoor image. (a) Image is corrupted
by Gaussian and impulse noise with ¢ = 10 and p = 50%. (b) TP method
[7]. (c) FTPID method [8]. (d) TV method [11]. (e) Modifying K-SVD
[20]. (f) Proposed method.

FIGURE 7. The filtering result for sequence images. (a) Image is corrupted
by Gaussian and impulse noise with o = 10 and p = 50%. (b) TP method
[7]. (c) FTPID method [8]. (d) TV method [11]. (e) Modifying K-SVD
[20]. (f) Proposed method.
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TABLE 3. Comparison result of times process in second

Noise Methods
Images | pand o | Cail [7] | Cai2 [8] | TV [11] | Modifying K-SVD [20] | Proposed
Barbara 9.63 22.09 19.78 1271.93 5.43
Peppers 9.69 20.84 21.75 540.44 5.20
House | 50 and 5 4.17 4.32 3.06 163.87 1.33
Lena 9.59 17.85 15.43 621.10 5.23
Barbara 10.67 33.37 23.35 996.78 6.08
Peppers 10.51 30.48 28.97 400.52 5.73
House | 70 and 5 3.88 5.91 3.45 149.76 1.42
Lena 11.17 26.54 20.26 468.57 5.84
Barbara 40.64 86.66 63.74 573.56 7.89
Peppers 42.14 84.41 71.79 302.44 8.05
House | 90 and 5 | 11.36 16.80 10.95 157.28 1.85
Lena 40.00 73.10 58.24 343.16 7.55
Barbara 9.34 25.08 19.52 392.50 5.44
Peppers 9.63 22.62 21.36 181.17 5.30
House |50 and 10| 3.73 4.40 2.50 92.45 1.22
Lena 9.59 19.20 15.30 230.53 5.33
Barbara, 10.20 33.74 21.06 294.89 6.05
Peppers 11.43 34.79 25.93 195.88 6.10
House |70 and 10| 3.92 6.86 3.56 89.26 1.40
Lena 11.34 28.80 19.06 269.60 6.04
Barbara 46.25 85.54 59.94 157.85 7.60
Peppers 42.42 82.15 69.14 133.91 7.93
House |90 and 10| 10.94 17.43 10.59 83.33 1.81
Lena 40.00 74.71 58.22 127.95 7.63

image can be conducted by convolution of the corrupted image with a Gaussian mask.
The proposed method provides five Gaussian masks in different directions (symmetrical,
horizontal, vertical, diagonal left-diagonal and right-diagonal Gaussian). Simulation re-
sult is able to achieve significant performance improvements of the previous study as the
comparison result.

For future work, we will develop the capability of the proposed method not only optimal
to reduce the mixed Gaussian plus impulse noise, but also for other types of noise.
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